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Nonlinear driven response of a phase-field crystal in a periodic pinning potential
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We study numerically the phase diagram and the response under a driving force of the phase field crystal
model for pinned lattice systems introduced recently for both one- and two-dimensional systems. The model
describes the lattice system as a continuous density field in the presence of a periodic pinning potential,
allowing for both elastic and plastic deformations of the lattice. We first present results for phase diagrams of
the model in the absence of a driving force. The nonlinear response to a driving force on an initially pinned
commensurate phase is then studied via overdamped dynamic equations of motion for different values of
mismatch and pinning strengths. For large pinning strength the driven depinning transitions are continuous, and
the sliding velocity varies with the force from the threshold with power-law exponents in agreement with
analytical predictions. Transverse depinning transitions in the moving state are also found in two dimensions.
Surprisingly, for sufficiently weak pinning potential we find a discontinuous depinning transition with hyster-
esis even in one dimension under overdamped dynamics. We also characterize structural changes of the system

in some detail close to the depinning transition.
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I. INTRODUCTION

There exist many systems in nature with two or more
competing length scales, which often leads to the appearance
of spatially modulated structures. Such systems may exhibit
both commensurate (C) and incommensurate (/) phases [1,2]
characterized by differences in the spatial ordering of the
system. Important examples include spin density waves
[3,4], charge density waves [5], vortex lattices in supercon-
ducting films with pinning centers [6], and weakly adsorbed
monolayers [7,8] on a substrate. The emerging structures are
characterized by an order parameter (e.g, charge, spin or par-
ticle density) that is modulated in space with a given wave
vector g. In particular, for two-dimensional (2D) adsorbate
systems, there is competition between the commensurate
state which is favored by a strong periodic pinning potential
and the cost of the elastic energy depending on the mismatch
between the intrinsic lattice constant a of the overlayer, and
the period b of the pinning potential.

While the static properties of C and I structures have been
extensively characterized [1,2] much less is known about
their dynamics. A particularly interesting case arises when an
initially pinned phase is subjected to an external driving
force f. The resulting nonlinear response is relevant for a
variety of different physical systems which are accessible
experimentally. A driven atomic monolayer in a periodic pin-
ning potential is an interesting realization of such nonlinear
behavior [9], which is directly relevant for experiments on
sliding friction between two surfaces with a lubricant [10]
and between adsorbed layers and an oscillating substrate
[11,12]. Other systems of great interest are driven charge
density waves [13-15] in which commensurability and im-
purity pinning often compete [16], and superconductor vor-
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tex arrays in which different commensurability and pinning
behaviors have been experimentally observed [17-19], in-
cluding periodic and asymmetric potentials.

For a sufficiently large pinning potential, the phase may
remain pinned for small forces if there are no thermal fluc-
tuations present. This means that at zero temperature there is
a finite critical force f, above which the system starts mov-
ing. For many systems, it is found that just above the thresh-
old f,, the drift velocity v, shows a power-law dependence
with respect to the force f

vdoc(.f_fc)g' (1)

When this behavior is regarded as a dynamical critical phe-
nomenon, the power-law exponent { of the corresponding
driven depinning transition can be argued to result from the
scaling behavior of the system near the threshold [13] with
corresponding divergent time and length scales and universal
behavior. In general, however, the observed value of { may
depend on the system and its dimensionality. For a pure elas-
tic medium with quenched randomness there appears to be a
universal value which depends on the dimensionality of the
system, provided inertial effects are negligible [20,21]. For
the case of an initially commensurate phase in a periodic
pinning potential without disorder, a power-law exponent {
=1/2 is expected independent of the dimension as the thresh-
old behavior can be understood from the point of view of
single particle behavior [13-15,22]. In the limit of a large
force (f—f,.)/f.>1 the system is moving and the corre-
sponding relationship between the driving force and the slid-
ing velocity defines the sliding friction coefficient

77s=f/vd' (2)
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FIG. 1. Phase boundary between commensurate (C) and incom-
mensurate (/) phases for the 1D pinned PFC model, calculated nu-
merically (continuous line with triangles) and analytically (continu-
ous line).

The simple Frenkel-Kontorova (FK) model [23,24] ex-
tended to two dimensions and other similar elastic models
have been used to study driven depinning transitions and the
sliding friction of adsorbed monolayers [9,25]. Although
these models take into account topological defects in the
form of domain walls they leave out plastic deformations of
the layer due to other defects such as dislocations. These
defects are particularly important when the CI transition oc-
curs between two different crystal structures or in the pres-
ence of thermal fluctuations or quenched disorder, and
should be taken into account for a more realistic description
of the system. Such defects can be automatically included in
a full microscopic model involving interacting atoms in the
presence of a substrate potential using more realistic interac-
tion potentials. However, the full complexities of the micro-
scopic model severely limit the system sizes that can be stud-
ied numerically, even when simple Lennard-Jones potentials
are used to describe the interactions [26,27].

When the driving depinning transition is discontinuous,
hysteresis effects can occur which result in two different
critical forces f.'> f‘je, corresponding to the threshold values
for increasing the force from zero and decreasing the force
from a large value, respectively. A fundamental issue in mod-
eling such systems is the origin of the hysteresis. It is well
known that hysteresis can occur in underdamped systems,
where inertia effects are present. However, molecular dy-
namics simulations of a 2D model of an adsorbed layer with
Lennard-Jones interacting potential for increasing values of
the damping coefficient (microscopic friction) and analytical
arguments suggested that hysteresis should remain in the
overdamped limit [9,28]. On the other hand, results for the
pure elastic FK model shows that although the hysteresis
behavior is similar to Lennard-Jones model for weak damp-
ing, it disappears in the overdamped limit [25]. The different
behaviors could be due to the absence of some defects gen-
erated during the depinning transitions, which are allowed in
the Lennard-Jones model but not in the elastic FK model. In
fact, hysteresis can be argued to arise from topological de-
fects in the lattice such as dislocations in two-dimensional
systems [14] even in the absence of inertial effects. One thus
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FIG. 2. (a) Discontinuous depinning of the commensurate phase
for relatively low pinning strength (5,,=0.3125, V,=0.11). (b) De-
pendence of Af, on V, for 6,=0.3125.

expects that overdamped dynamics should be able to de-
scribed the hysteresis behavior in two dimensions provided
the model incorporates both elastic and plastic deformations.
For charge density waves, where the pinning potential is dis-
ordered, a field theoretical model has been introduced which
allows for dislocations as well as thermal fluctuations [29]
through amplitude and phase fluctuations, and shows both
elastic and hysteretic behavior in agreement with experi-
ments [30]. In absence of disorder, however, the possible
hysteresis behavior in such models has not been investigated.

Recently a phase field crystal (PFC) model was intro-
duced [31-33] that allows for both elastic and plastic defor-
mations in the solid phase. In this formulation a free energy
functional is introduced which depends on the field ¢(r,t)
that corresponds to the particle number density averaged
over microscopic times scales. The free energy is minimized
when ¢ is spatially periodic (i.e., crystalline) in the solid
phase and constant in the liquid phase. By incorporating phe-
nomena on atomic length scales the model naturally includes
elastic and plastic deformations, multiple crystal orienta-
tions, and anisotropic structures in a manner similar to other
microscopic approaches such as molecular dynamics. How-
ever, the PFC model describes the density on a diffusive and
not the real microscopic times scales. It is therefore compu-
tationally much more efficient.

In our previous works [34,35] we demonstrated how the
influence of an external periodic pinning potential can be
incorporated in the PFC model. Such a model provides a
continuum description of pinned lattice systems. The pinning
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FIG. 3. Continuous depinning transition for relatively high pin-
ning strength (5,,=0.3125 and V(;=0.250). The arrow marks the
value of the critical depinning force. The triangles represent the
numerical data while the continuous line is a fit to (f—f.)¢. The best
fit is obtained for the exponent {=0.50=*0.03.

potential is chosen such that it allows the occurrence of both
C and I phases as ground states of different symmetries in
the model. In Ref. [34] part of the phase diagram as function
of pinning strength and lattice mismatch between the pinning
potential and the PFC was mapped out. Numerical minimi-
zation was used to find the minimum free-energy configura-
tions and provide details on the topological defects in the
boundary region. In particular, we found that the transition
from the / to the C phase remains discontinuous for all val-
ues of the mismatch studied in Ref. [34]. We also performed
a detailed Voronoi analysis of the defects throughout the
transition region. In Ref. [35] the equilibration method was
improved and the range of mismatches extended to include
both positive and negative mismatches.

In the present work we focus on the case where the PFC
under an external periodic potential without disorder intro-
duced in Ref. [34] is driven by an external force in the ab-
sence of thermal fluctuations. To this end, we first present
improved detailed phase diagrams of the model both in 1D

.
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FIG. 4. The phases that minimize the free-energy, according to Ref. [35]: (a) hexagonal, (b) square (1 X 1
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and 2D. The main focus of the present work is on the influ-
ence of an external driving force on the pinned C phase,
which we study for different values of mismatch and pinning
strengths for 1D and 2D systems. As expected, due to the
competition between the pinning potential and the driving
force there is a depinning transition at f,. for a finite driving
force f. We demonstrate that within a certain range of param-
eters the depinning transitions are continuous, and find that
both in 1D and 2D the corresponding power-law exponent is
£=0.5 in agreement with the expected value [13-15,22]. We
also characterize structural changes of the system close to the
depinning transition. For large pinning strength transverse
depinning transitions in the moving state are also found. Sur-
prisingly, for sufficiently weak pinning potential we find a
discontinuous depinning transition with hysteresis even in
one dimension although overdamped dynamical equations
are used.

II. THE PHASE FIELD CRYSTAL UNDER A PERIODIC
POTENTIAL AND A DRIVING FORCE

For the phase field crystal in the presence of pinning po-
tential [31-34], the free energy functional can be written in
dimensionless form as

F=| dx ib[ +(1+V??] ﬁ
= | dx|,lr b+ 4 + VX x) |, (3)

where r is a temperature-dependent quantity and V(x) is an
external potential which represents the effect of the substrate.
This model can be derived directly from the classical density
functional theory [33] of freezing by expanding around the
properties of a liquid in coexistence with a solid phase. More
specifically it can be shown [36] that r is proportional to the
difference between the isothermal compressibility of the lig-
uid and the elastic energy of crystalline phase. Furthermore
the length scales in this model have been scaled by the near-
est neighbor distance in the coexisting liquid state.

), (c) square (2 X 1), (d) square

¢(2X2), and (e) square 2y2 X 2. The upper panels represent the density plotted in a gray color map and the corresponding lattice vectors,
while the lower panels show the structure factors and the relevant reciprocal lattice vectors. The black contours in Figs. 4(c) and 4(e) show

the bases which generate the (2 1) and (2\3‘5>< \5) lattices.
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FIG. 5. The phase diagram in terms of the pinning strength (V;)) and mismatch &, calculated (a) numerically, according to Ref. [35] and
(b) analytically using approximation of the density given by Eq. (9). The insets in (a) and (b) show the phase diagram close to &,,=0. The
circles in (b) mark the values for which the approximation for the density given by Eq. (9) breaks down.

In the absence of the pinning potential the equilibrium
minimum energy configuration of the system depends on the

parameter r and the average density = Vld Jdxy(x) [32],
where V, is the system volume in d dimensions. In 2D, the
solid phase corresponds to a triangular lattice. The length
scale chgsen here corresponds to ka', where  k,
=2m7/(a,N3/2)=1, with a, as the lattice constant of the intrin-
sic triangular lattice. When the external pinning potential is
present, the competition between the length scales associated
with the intrinsic ordering and the pinning potential can lead
to complicated phases depending on the parameters chosen
in the energy functional [34,35]. We choose an external pin-
ning potential of a simple periodic form V=V, cos(k.x) in
1D, and V=V,[cos(k.x)+cos(k,y)] in 2D. The wave vector k;
is related to the periodicity of the pinning potential a,, such
that k,=2m7/a.

We define the relative mismatch §,, between the external
potential and the PFC as

5= (1-ky). (4)

The response of the system to a driving force can be obtained

by including a convective derivative f -V:/;, to the original
PFC model [32]. Thus, the dynamical equation of motion for
the phase field is given by

a—l/lz Vza—F + £ V= VHr+ (1 + V22 g+ 2 + Vi+ - Vi
or oY
(5)

For the forces considered in this work (typically f=fX), the
convective term does not change the average value of the
density field.

In contrast to the usual classical microscopic characteriza-
tion of particle positions and velocities, the measurement of
an average drift velocity in response to an external driving

force f requires some discussion. In the PFC model the
maxima of the density field that define the lattice structure
cannot always be interpreted as individual particles, since
vacancies may be present in the system. The conservation
law in the model concerns the local density field, not the

number of maxima in the field. This becomes evident in the
driven PFC model, where the motion of the density field
close to depinning may be more akin to flow in a continuous
medium than the motion of discrete particlelike objects.
Thus, defining the drift velocity in terms of the density field
maxima is computationally more demanding to implement.
We have found that measuring the drift velocity v, from the
rate of change of the gradient of the density field gives con-
sistent results, in absence of thermal fluctuations. We have

used the following definition:

0.1 —Increasing f
—<+Decreasing f

0.08
+° 0.06
0.04

0.02

7008  0.09 0.1 0.11 0.12 0.13
(a) f

0.04 0.045 v 0.05 0.055
(b) 0
FIG. 6. (a) The variation of the velocity with respect to the
external force for a discontinuous transition for the commensurate
(1X1) phase (8,=0.125, V,=0.0350) and (b) the variation of the
gap Af, vs V; for the same mismatch 5,,=0.125.
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FIG. 7. Dependence of the velocity on the external force for a
continuous transition for the (1 X 1) phase (8,,=0.125, V;,=0.0900).
The vertical arrow marks the critical force f,.. The triangles repre-
sent the numerical data, while the continuous line is a power-law fit
with {=0.50%0.03.

va = (|l at)) e/ | o x|}z, (6)

where the subscripts X and ¢ in the brackets denote averaging
over space and time, respectively. Alternative definitions
were also considered, but this particular form proved the
most statistically accurate.

Although the definition of the drift velocity v, according
to Eq. (6) can be used to determine the velocity response
along the direction of the driving force, it is not particularly
useful in the study of the response in the transverse direction
since it is not a vector quantity. In order to study the trans-
verse response it is more convenient to determine the aver-
age velocity directly from the positions of the local peaks in
(x). This requires locating such peaks as a function of time

(a) (b)
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during the numerical simulation. We have developed a com-
putational method which determines the location and veloc-
ity of each individual peak in presence of the external force
and thermal fluctuations [37]. The method to locate the peaks
is based on a particle location algorithm used in digital im-
age processing [38]. The drift velocity for the lattice of den-
sity peaks is obtained from the peak velocities v; as

ip=( 20 ). )

where Np is the number of peaks. We find that the definitions
of the velocity from Egs. (6) and (7) give consistent results
for the longitudinal depinning in absence of thermal fluctua-
tions. However, in presence of thermal fluctuations only the
definition from the peak velocities (7) is able to separate the
contribution to the drift velocity due to the driving force
from thermal noise contributions.

III. RESULTS

In this section, we present results obtained for the static
and dynamic properties of the PFC model. Numerically, we
study the system properties by integrating Eq. (5) using a
simple Euler algorithm and the time derivatives are approxi-
mated by a forward finite difference with the time step dr
=0.005 (the time scale corresponds to the diffusion time over
the length scale kal). For the 1D case, the density field was
discretized on a uniform grid with dx=1/4, while for the 2D
case we used a square uniform grid with dx=dy=m/4. The
Laplacians are evaluated in 1D using a central difference,
while for the 2D the “spherical Laplacian” is used [32,39]. In
both the equilibrium and driven situations, fully periodic

R R = BB B R B B
R R R RENEEEE TN
R R R R BB R B R B

FIG. 8. Change of the lattice structure (upper panels) and the corresponding structure factor (lower panels) with the applied force for
8,=0.125, V4=0.0350, where depinning is discontinuous. Image (b) corresponds to f=0.11 with a nonmoving initial configuration, while for
(c) the applied force is the same but the initial configuration is a moving one. The case (a) f=0.07, (d) f=0.13 are outside of the hysteresis
region and same result is obtained with moving or nonmoving initial configuration.
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boundary conditions have been used. Note that for the con-
served time-dependent Ginzburg-Landau (TDGL) equation
(5), the addition of the driving force of the form f(dis/ dx)

preserves the local conservation of # under periodic bound-

ary conditions. For the study of the static properties f is set
to zero. For a given value of the mismatch, the pinning
strength V) is increased from zero to a maximum in steps of
dV, and then decreased back to zero. Each time the pinning
strength is changed we allow the system to equilibrate. The
final state corresponds to a configuration that minimized the
energy functional.

For the study of the influence of a driving force we
choose the mismatch and pinning strength such that the sys-

tem 1is initially in a commensurate state. The driving force f

is then increased from zero to a maximum value |f] > f. and
then decreased back to zero. In the case where the depinning
transition at f, is continuous, we determine the correspond-

ing depinning exponent ¢ in the limit |f|— f,. Unless speci-
fied the force is applied in the x direction, i.e., f=fX.

A. Phase diagram and nonlinear response for a 1D system
1. Equilibrium properties

The static properties of the pinned PFC in 1D (f=0) are
presented as a phase diagram in the V,—J,, plane shown in
Fig. 1. For comparison, we include in Fig. 1 the phase
boundaries obtained analytically and numerically from Eq.
(5). The analytical phase boundary was obtained by minimiz-
ing the free energy F[¢(x)], expanding the density field as

l(x) = A, cos(x) + A, cos(kx) + Az cos[(2 — kx|, (8)

where the last term accounts for the distortion of the lattice.
Next we investigate the influence of an external force on
the 1D commensurate phase. For this purpose, the param-

eters are chosen such that r=—1/4 and =0. Depending on
the values of the mismatch and pinning strength different
behavior is found when the driving force is added. Several
values of mismatch between 0.3125 and —0.50 were investi-
gated. For §,,=-0.3 two types of depinning are present, dis-
continuous and continuous. For values of the pinning
strength close to the /-C phase transition, the depinning tran-
sition is discontinuous. The dependence of the drift velocity
as a function of the driving force exhibits a hysteresis [see
Fig. 2(a)]. The gap Af,=/"—f% decreases when the pinning
strength increases [Fig. 2(b)], which indicates that the tran-
sition becomes continuous for large enough V.

Note that for J,,=-0.3 the depinning transition of a C
pinned phase is continuous for all values of the pinning
strength, while for §,,=-0.3 only for values of pinning
strength above a certain threshold. In Fig. 3, we show the
behavior of a continuous depinning transition for J,
=0.3125, V;,=0.11. The dependence of the drift velocity on
the force follows a power law v, (f—f.)¢, as can be seen in
Fig. 3. The exponent ¢ does not depend of the pinning
strength and it is equal to 0.50*+0.03 in all cases studied
here. This result can be understood as follows. When the
pinning potential is periodic and large in magnitude the

PHYSICAL REVIEW E 79, 011606 (2009)

neighboring phases are weakly coupled and the system
should behave as a single particle in a periodic potential
[13-15,22]. This effective single particle behavior which is
expected to describe the threshold behavior for a commen-
surate phase in absence of defects, is independent of the
dimension, leading to a depinning exponent [13-15,22] ¢
=1/2. We also find that the critical force increases with the
pinning strength and for &,,=—0.3 has linear dependence on
the pinning strength, while for §,,<-0.3 its dependence on
pinning becomes sublinear. Finally, we also note that for
large driving forces f> f,. the system is totally depinned and
the dependence of the drift velocity on the force follows Eq.
(2) with a linear dependence.

B. Phase diagram for a 2D system

Next we present a summary of the static properties of the
2D PFC model in the presence of the external pinning po-
tential V(x,y)="Vy[cos(ksx)+cos(ksy)]. The parameters cho-

sen are r=—1/4 and =—1/4. Analytically, we consider the
density to be a sum of hexagonal and square modes

Yx,y)=A (cos(x\ 3/2)cos(y/2) — 1 cos(y))

+ A [cos(kex) + cos(k,y)]
+ Ay, cos(kex)cos(k,y)

sceol el B} o5 0
+ A, cos 2x cos 2x + .
For small values of the pinning strength the system is in a
hexagonal T phase for all mismatches [Fig. 4(a)]. When the
pinning strength is large enough, the system will be in one of
the commensurate phases, of which the (1 X 1) phase is an
exact match with the pinning potential here [Fig. 4(b)].

The other ordered phases are higher commensurate
phases, which exist only when one of the reciprocal lattice
vectors for the commensurate phase is close to the wave
vectors of the square pinning potential [35]. One of these
phases is the ¢(2X2) phase [Fig. 4(d)] in which every sec-
ond site of the lattice of the pinning potential corresponds to
the maximum in the phase field [1]. This state is favored for
mismatch values close to 1 —+2. Another higher commensu-
rate phase is the (2 X 1) [Fig. 4(c)] which is generated by a
translation of the basis with the reciprocal lattice vectors of
the a ¢(2 X 1) lattice [1]. Finally, the (242 % \V2) phase [Fig.
4(e)] is similar to the (2X 1) phase. The lattice is generated
by a translation of the basis with vectors which are rotated
45° with respect to the pinning _potentlal and the magnitudes
of the vectors are 2+ 2a and \2a,. The phase is favored for
mismatch values close to —0.27.

The transitions between the different phases are found by
investigating the positions and the heights of the peaks in the
structure factor. The results of our extensive numerical cal-
culations are summarized in the phase diagram of Fig. 5(a)
which has been taken from Ref. [35].

1. Nonlinear response of the (1X1) phase

We now turn to the influence of an external driving force
for the pinned, commensurate (1 X 1) and c(2X?2) phases.
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FIG. 9. Change of the structure factor with the applied force for
6,,=0.125, V;=0.0900, where depinning is continuous. The images
correspond to (a) f=0.3776 [before the depinning transition marked
by the vertical arrow in Fig. 7(a)], (b) f=0.3782 (after the depinning
transition).

Depending on the values of J,, and V|, for both phases we
find both discontinuous and continuous depinning transi-
tions. For §,,=-0.2 and V(,=0.09 both continuous and dis-
continuous depinning mechanisms were found for the com-
mensurate (1X 1) phase. For smaller values of the pinning
strength close to the IC transition, only discontinuous depin-
ning transitions were found. Similar to the 1D case, we iden-
tify two values of the critical forces for a discontinuous de-
pinning, namely, f.' for when the force is increased and f‘cJe
when the force is decreased back to zero. Figure 6(a) shows
the velocity dependence with respect to the applied force for
a discontinuous transition. We have also tested the effect of
thermal fluctuations here and find that for temperatures low
enough the hysteresis remains unchanged up to some value
which depends on the mismatch and pinning strength. The
gap Af,=f"-f% for a given &, decreases as the pinning
strength is increased [Fig. 6(b)]. Finally, when the gap Af.
vanishes the depinning transition becomes continuous. In
this regime we find that the sliding velocity follows a power
low v, (f-£.)¢ (Fig. 7), consistent with {=0.5 in all cases
studied here as in the 1D case. We note that for J,,<-0.2
only continuous depinning transitions were found for all val-
ues of the pinning strength.

Both depinning mechanisms are accompanied by struc-
tural changes. The system changes from a commensurate
(1X1) phase (below critical threshold) to a distorted hex-
agonal phase (Figs. 8 and 9).

2. Nonlinear response of the c(2X2) phase

Similar to the (1X 1) phase, the commensurate c(2 X 2)
phase also exhibits both discontinuous and continuous depin-
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FIG. 10. (a) The variation of the velocity with respect to the
external force for a discontinuous transition for the ¢(2X2) phase
(6,,==0.50, V4=0.099) and (b) Af, vs V, for ,=-0.50.

ning. For low value of pinning strength discontinuous depin-
ning transition was found (Fig. 10), while for large values of
the pinning strength the depinning becomes continuous (Fig.
11) with the exponent {=0.5. In both cases the structure of
the systems changes when the force is applied from a C
phase to a distorted hexagonal depinned phase (Figs. 12 and
13).

-3
1 x 10
< numerical data
0.8} |—power law fit
0.6f
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>
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0.2f

0.101116 ]O.11117 0.11118 0.11119 0.1112
f

FIG. 11. The variation of the velocity with respect to the exter-
nal force for a continuous transition (8,,=-0.50, V(,=0.207) for the
c(2X2) and the corresponding power law fit. The vertical arrow
marks the value of the critical depinning force. The triangles repre-
sent the numerical data, while the continuous line the power law fit

with {=0.50%0.03.
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FIG. 12. Change of the lattice structure (upper panels) and the corresponding structure factor (lower panels) with the applied force for
8,=-0.5, V,=0.099 for ¢(2 X 2), where depinning is discontinuous. Image (b) corresponds to f=0.10504 with a nonmoving initial configu-
ration, while for (c) the applied force is the same but the initial configuration is a moving one. The cases (a) f=0.018, (d) f=0.13 are outside
of the hysteresis region and same result is obtained with moving or nonmoving initial configuration.

While for the cases presented here the structural changes
occur when the system starts to depin, it is also possible for
changes to occur for forces below the critical threshold. For
some values of the mismatch and pinning strength, if the
force is rotated 45° the ¢(2 X 2) phase will change first to a
(1X 1) phase from which the systems depins continuously as
described before. Other force induced transitions between
commensurate phases with no sliding are also possible.

The hysteresis behavior of the depinning transition found
for sufficiently small pinning strength V|, and the critical ex-
ponent £ for the continuous transition for larger V) are con-
firmed by calculations of peak velocity v, from Eq. (7). For
large V|, where there is no hysteresis, the behavior of v, as
function of f show a depinnning transition at a critical force
f.- A power-law fit of the velocity near f, gives an exponent
{=0.52+0.03 which is consistent with the estimate using the
velocity definition in Eq. (6).

The determination of the velocity response from the peak
positions allows us also to study the response to an addi-
tional force f, applied perpendicular to the longitudinal force
f, in the moving state. For f, > f. the longitudinal velocity v,
is proportional to the force since in the moving state the
external pinning potential in the direction of the force ap-
pears as a time dependent perturbation in a reference system
comoving with the lattice, with a vanishing time average
[40]. However, the pinning potential remains static in the
transverse direction [40]. One then expects that for suffi-
ciently larger pinning strength, a transverse depinning tran-
sition is possible for increasing force f, while f, is kept
fixed. Figure 14(a) shows the behavior of the transverse ve-
locity component v, when an increasing f, is applied in the
moving state with fixed f,> f.. The transverse critical force
fye decreases with the longitudinal force f, and appears to
vanishes at the longitudinal depinning transition f,, as shown
in Fig. 14(b).

IV. DISCUSSION AND CONCLUSIONS

In this work we have considered the recently developed
phase field crystal model [32] in the presence of an external
periodic pinning potential [34,35] and a driving force. As the
model naturally incorporates both elastic and plastic defor-
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Q

(a) (b)

FIG. 13. Change of the structure factor with the applied force
for 8,,=-0.50, V,=0.207 for the ¢(2X2), where depinning is con-
tinuous. The images correspond to (a) f=0.1111664528 [right be-
fore the depinning transition indicated by the vertical arrow in Figs.
11(a) and 11(b)] f=0.1111672800 (right after the depinning
transition).
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FIG. 14. (a) v, as a function of an additional force f, in the
transverse direction, with f, fixed. (b) Critical transverse force fey
as a function of the longitudinal force f,. Results for V;=0.275,
5,=—0.5.

mations, it provides a continuum description of lattice sys-
tems such as adsorbed atomic layers on surfaces or 2D vor-
tex lattices in superconducting thin films, while still retaining
the discrete lattice symmetry of the solid phase. The main
advantage of the model as compared to traditional ap-
proaches is that despite retaining spatial resolution at its low-
est length scale its temporal evolution naturally follows dif-
fusive time scales. Thus the numerical simulation studies of
the dynamics of the systems can be achieved over realistic
time scales, which, for example, in the case of adsorbed
atomic systems may correspond to many orders of magni-
tude over the time scale used in microscopic atomic models.
In this work we have exploited this method to determine the
phase diagram in one and two dimensions as a function of
lattice mismatch, pinning strength, and a driving force.

We have concentrated on the nonlinear response to an
external driving force on the most common stable commen-
surate states, namely, the (1 X 1) and the ¢(2X2) phases.
These are particularly interesting cases which are relevant for
physical systems of current interest and accessible experi-
mentally such as, driven adsorbed layers [9,26], which deter-
mine the sliding friction behavior between two surfaces with
a lubricant [10] and between adsorbed layers and an oscillat-
ing substrate [11,12].

PHYSICAL REVIEW E 79, 011606 (2009)

Our results for the phase field crystal model with over-
damped dynamics indicate both discontinuous and continu-
ous transitions depending on the magnitude of the pinning
strength. For high enough pinning strengths continuous tran-
sitions occurred with the velocity near the transition scaling
as (f—f.)!2, independent of the dimension of the system.
This is as expected, since for a commensurate state in a
strong periodic pinning potential, each “particle” acts inde-
pendently and the model reduces to an effective single par-
ticle in a periodic potential, with a known depinning expo-
nent of 1/2. Perhaps more interesting is the observation of
discrete transitions and hysteresis loops found at low pinning
strengths. In the two-dimensional case, the observed hyster-
esis behavior is consistent with the arguments and atomistic
molecular dynamics simulations of driven adsorbed layers
[9,26] indicating that hysteresis remains in the overdamped
limit. However, our results show that it disappears for large
enough pinning strength. For the discontinuous transition,
there are two different critical values f’f> f‘je, correspond to
the static and kinetic critical forces, respectively, which lead
the to stick and slip motion at low sliding velocities as ob-
served experimentally [10]. The general features observed of
hysteresis and power-law behavior near the continuous de-
pinning transition are also of interest for driven charge den-
sity waves [15,29] and driven flux lattices [41,43] although
in these cases there are important additional effects due to a
large degree of disorder in the pinning potential. Whether the
present phase field model also shows the same main features
observed for the atomistic model in presence of thermal fluc-
tuations [26-28] is an interesting question which will require
further investigation.

In addition to the longitudinal depinning transition where
the lattice system is moving in the same direction as the
driving force, a driven two-dimensional lattice on a periodic
potential can also show an interesting behavior for the trans-
verse response in the moving state. When the lattice is al-
ready moving along some symmetry direction of the pinning
potential the response to an additional force applied in the
direction perpendicular to the longitudinal driving force may
lead to a depinning transition for increasing transverse force
[40]. Such transverse depinning has been found in different
driven lattice systems with periodic pinning including driven
vortex lattices [41,42] and adsorbed layers [27] in standard
molecular dynamics simulations. In the present PFC model,
we have obtained similar results for the transverse depinning.
Experimentally, some evidence of transverse pinning has
been observed in measurements on charge-density waves
[44]. Wigner solids [45], and vortex lattices [46], although in
these cases disorder in the pinning potential plays a more
important role.

While the hysteresis behavior is expected in the presence
of inertial terms both in 1D and 2D, it is quite interesting to
see it in 1D when the dynamics being used is overdamped
and purely relaxational. In 2D, it can be argued that topologi-
cal defects such as dislocations can lead to this behavior even
with overdamped dynamics but these defects are not avail-
able in 1D. It is interesting to speculate that the hysteresis
behavior is intimately related to the need for plastic defor-
mations to mediate the transition from one lattice structure to
another. Work on these problems is already in progress.
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