Procedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasilia, DF

FUZZY MODEL OPTIMIZATION BASED ON NELDER-MEAD SIMPLEX
METHOD APPLIED TO IDENTIFICATION OF A CHAOTIC SYSTEM

Leandro dos Santos Coelho, leandro.coelho@pucpr.br
Industrial and Systems Engineering Graduate Program, PSGE
Pontifical Catholic University of Parana

Rua Imaculada Conceicéo, 1155

80215-901, Curitiba, Parana, Brazil

Ernesto Araujo, ernesto.araujo@unifesp.bt, ernesto.araujo@lit.inpe.br?
!Universidade Federal de S&o Paulo, UNIFESP

Computer Science / Health Informatics Department, DIS

04023-062, Sao Paulo, SP, Brazil

2Instituto Nacional de Pesquisas Espaciais, INPE

Integration and Testing Laboratory, LIT

12227-010, Séo José dos Campos, SP, Brazil

Abstract. Nelder-Mead simplex method in conjunction with Takagiewg(T-S) fuzzy model are employed to nonlinear
identification of a chaotic system in this paper. Technigaiesh as Takagi-Sugeno fuzzy modeling have been employed
in many applications due the difficulties found out during itientification task of nonlinear systems. The premise part
of production rules is optimized here by using the Neldeailsimplex method. In turn, least mean squares technique
is applied to the consequent part of a T-S fuzzy model. Bxjeeital application using data supplied by chaotic system
called Chua’s circuit is analyzed. According to numericesults the Least Mean Square technique and Nelder-Mead
simplex method succeeded in constructing a T-S fuzzy navdehbnlinear identification in this particular applicatio
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1. INTRODUCTION

System identification is a procedure to identify a model ofiaknown process, for purposes of forecasting and/or
understanding the dynamical behavior. One of the centadlpms in system identification is to find out a set of model
structures for a certain model to approximate of a given dyinal process (Elshafei and Karray, 2005). There are three
standard approaches for building mathematical modelstewdox modeling (physical modeling), black-box modeling
(data identification or modeling) and grey-box modelingufig, 1987). A model describes reality in some way, and
system identification is the theory of how mathematical n®dier dynamical systems are constructed from observed
data. This paper is interested in black-box modeling whictdsigned entirely from data using no physical or verbal
insight and, due to that, the resulting model lack physicalesbal significance. The structure of the model is chosen
from families of models that are known to be very flexible andcessful in past applications and the parameters are tuned
to fit the observed data as closely as possible (Abdelazinveaitt, 2005).

The conception of mathematical models for the represemtafinonlinear systems is an important procedure and has
practical applications. However, the construction of reathtical models adjusted for engineering purposes is giyer
not a simple task. Exhaustive efforts have been devoted elaging techniques for the identification of nonlinear
systems. Since the mid 1980s, Nonlinear techniques usiry fiogic have been widely applied in many applications
in system identification and, in particular, to identify colex, nonlinear systems (Abonyi et al., 2000; Montoya et al.
2001; Akkizidis and Roberts, 2001; Hadijili and Wertz, 2Q02heoretical justification of fuzzy model as a universal
approximator has been given in the last decade (Kosko, 1R84atti, 1998). A central feature of fuzzy modelling is
that they are based on the concept of fuzzy coding of infdomaind operating with fuzzy sets instead of humbers.
Takagi-Sugeno (T-S) fuzzy model (Takagi and Sugeno, 198§e8o and Kang, 1988), for instance, exhibits both high
nonlinearity and a simple structure. As reported in thediere, it is capable of approximating a complex systemgusin
fewer fuzzy rules than conventional Mamdani-type fuzzy elsd

The identification problem in T-S modeling consists of twojongarts: structure identification and parameter iden-
tification. The structure identification is related to batle tdetermination of the premise part and the consequent part
of the production rules. It consists of determining the peenspace partition and extracting the number of rules and
determining the structure of the output elements (equs}joaspectively. Finally, the parameter-learning tasksesis of
determining the system parameters, i.e., membershipiuns;tso that a performance measure based on the outpu error
is minimized.

Over the past few years an increasing number of optimizatiethodologies have been employed in tuning and



Procedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasilia, DF

design of fuzzy models, such as genetic algorithms (LinkermsNyongesa, 1996; Bonissone, 1999), descent gradient-
based method (Cerrada et al., 2005), and particle swarmizatiion (Marinke et al., 2005; Araujo and Coelho, 2006).
In this context, this paper combines fuzzy T-S model and dleMead simplex method (Nelder and Mead, 1965) in such
a way that a fuzzy T-S model is tuned by a Nelder-Mead Optitiingd NMO) approach.

The objective of this paper is to generate an optimized fumagel in order to describe the dynamical behavior of a
Chua’s oscillator and so to explore the effectiveness of N&Proach in constructing T-S fuzzy models for nonlinear
identification. Chua'’s oscillator consists of a simple #&leaic circuit that is capable of producing chaos, as weltas
exhibit a vast array of behaviors including an assortmesteddy-states, bifurcations and routes to chaos (Forlas et
2005). The Chua’s oscillators have been widely used asopiatdf tests in many areas related to the study of chaos, in
chaotic secure communication systems, chaotic spreatrapecommunications, and some other fields.

The structure identification of the premise and the consatpert of production rules of T-S fuzzy system are car-
ried out independently by distinct methods in this paper T+6 fuzzy system design employs Nelder-Mead’s simplex
algorithm for figuring out the premise part meanwhile leasamsquares is used for the calculus of consequent part of
production rules of a T-S fuzzy system for nonlinear idecition.

2. FUNDAMENTALS OF TAKAGI-SUGENO FUZZY SYSTEM

Fuzzy models focus on the use of heuristics in the systenrigéea. They can be seen as logical models that use “IF-
THEN" rules to establish qualitative relationships amoagables. Their rule-based nature allows the use of inftiona
expressed in the form of natural language statements @@ et al., 2005).

In this context, T-S models have recently become a powerfadtiral engineering tool for modeling and control
of complex systems. The T-S model representation oftenigies\efficient and computationally attractive solutionsito
wide range of modeling problems introducing a powerful iplétmodel structure that is capable to approximate noaline
dynamics, multiple operating modes and significant paraneatd structure variations.

The essential idea of T-S fuzzy model is the partitioninghaf input space into fuzzy areas and the approximation
of each area through a linear model in such a way that a glairdinear model is computed. It is characterized as a
set of IF-THEN rules where the consequent part are lineamsoibels describing the dynamical behaviour of distinct
operational conditions meanwhile the antecedent partdkamge of interpolating these sub-systems. The “IF statéshe
define the premise part that is featured as linguistic terim¢evthe THEN functions constitute the consequent part of
the fuzzy system characterized, but not limited, as linedynomial terms. The global model is then obtained by the
interpolation between these various local models. Thisehodn be used to approximate a highly nonlinear function
through simple structure using a small number of rules. T8erodels consist of linguistic IF-THEN rules that can be
represented by the following general form:

RO :IF 2;1S A} AND .. .AND z,, IS AJ, THEN g; = w} + wliu] + ...+ w’ ul; . 1)
The IF statements define the premise part while the THEN fomgtconstitute the consequent part of the fuzzy
system;z = [z1,...,2,]7, such asi = 1,...,m, is the input vector of the premige and A] are labels of fuzzy
sets. The parametets= [u{, Ceey ufl'j]T represents the input vector to the consequent paR(of that comprisingy;
terms; g; = g;(u’) denotes the-th rule output which is a linear polynomial of the consedtieput termSu-Z , and
w = [w{ ...,w;j]T are the polynomial coefficients that form the consequerdrpater set. Each linguistic IabAE is

associated with a Gaussian membership functiop,(z;), described by eq. (2) where,;; ando;; are the mean value
and the standard deviations of the Gaussian me}nbershiﬁduncespectively, and represent the centers/core and the
spreads/support of membership functions:

1 (Zz — mij)Q
i(z) =exp|—=—5—2—1| . 2
,LLAi (Z ) pl 5 0i2j ( )
The union of all these parameters formulates the set of geepdrameters. The firing strength of rileé) represents
its excitation level and, for instance, it can be chosen as:
pi(z) = Hoad (Zl)ﬂAg (22)... Fopi, (2m) - 3)

The fuzzy sets pertaining to a rule form a fuzzy region (@dstvithin the premise spacel-g X ... x A, with a
membership distribution described in eq. (3). Given theitryectors: andw’, such ag = 1, ..., M, the final output of
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the fuzzy system is inferred by taking the weighted averdgleeolocal outputg; (gﬂ) that is given by

M .
y=> v(2)g;w), (4)

j=1
whereM denotes the number of rules ang z) is the normalized firing strength ¢i(;) , defined as:

15(2)

M :
=1 (2)

The structure identification of T-S system is computed baselMO for premise part optimization while the conse-
guent part optimization is determined by batch least meaarsg method (pseudo-inversion method).

()

v;i(2) =

2.1 Nelder-Mead Optimization for T-S Fuzzy Modeling

The simplex search method, first proposed by Spendley, texdt,Himsworth (1962) and later refined by Nelder
and Mead (1965), is a derivative-free line search methotilaa particularly designed for traditional unconstrained
minimization scenarios, such as the problems of nonlirezetlsquares, nonlinear simultaneous equations, andyplesr
of function minimization (see, e.g., Olsson & Nelson (1978&)onsider first that function values at the (n + 1) vertices o
an initial simplex are evaluated, which is a polyhedron i fidictor space of n input variables. In the minimization case
the vertex with the highest function value is replaced bywlyneeflected, better point, which would be approximately
located in the negative gradient direction (Fan et al., 2006

Through a sequence of elementary geometric transfornsaieflection, inside contraction, expansion and outside
contraction), the initial simplex moves, expands or cartraTo select the appropriate transformation, the NMO oaéth
only uses the values of the function to be optimized at théoes of the simplex considered. After each transformation
the current worst vertex is replaced by a better one (Chéland Siarry, 2003). Nelder-Mead simplex method procedure
is illustrated in Figure 1.
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Figure 1. Nelder-Mead simplex method and the representafioew points in search space.

At the beginning of the algorithm, one moves only the pointt@ simplex, where the objective function is worst
(this point is called “high”), and one generates anothenpionage of the worst point. This operation is the reflection.
If the reflected point is better than all other points, thehmdtexpands the simplex in this direction, otherwise, iit i
at least better than the worst, the algorithm performs at@meflection with the new worst point. The contraction step
is performed when the worst point is at least as good as thectefl point, in such a way that the simplex adapts itself
to the function landscape and finally surrounds the optimifrthe worst point is better than the contracted point, the
multi-contraction is performed. At each step we check thagenerated point is not outside the allowed reduced saluti
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space (Chelouah and Siarry, 2003). In this work, the fundtiinsearctof Matlab was employed for validation of Nelder
Mead simplex method.

3. NONLINEAR IDENTIFICATION OF CHUA'S OSCILLATOR
3.1 Chua’s Oscillator

In recent years, chaos control, synchronization and itieation of chaotic systems, especially the Chua’s osoil)at
have received increasing attention from various scierdifid engineering communities due to its great potentialdh-te
nological applications (Torres and Aguirre, 1999, 2000amiiimaran et al., 2000; Palacios, 2002). In a simple case, th
Chua circuit can be described by ordinary differential diguas of the following form:

d’UC1 1)02 — vcl .
p— —_— 6
Cl dt Rll Zd(’001) ( )
ot v Zve: g, ™)
2Tt R
dig,
o = Yo (8)

whereR;; is a linear resistor. is an inductoryc, is the voltage on capacitdr;, j = 1,2; i, is the current through the
inductor. The static nonlinearity of Chua'’s diode is thecpigise linear curve given by current that passes for the €hua
diode as described in (Torres and Aguirre, 1999, 2000):

ia(vo,) = move, + 0.5(mo —ma){|ve, + Byl — |ve, — Byl} 9)

wheremy, m; andB,, are the parameters. The nonlinear characteristic can lieeeasing operational amplifiers (Torres
and Aguirre, 2000), as shown in Figure 2.
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Figure 2. Representation of Chua’s diode (Torres and Agu2000).

The construction of this circuit can be realized by the cositpan of a network of linear passive elements connected
to a nonlinear active component called Chua’s diode, astitited in the circuit of the Figure 3. The conception of this
inductorless Chua’s circuit structure was based in Tomelsfsguirre (1999, 2000). It is worth mentioning that diffate
values for the components of the electric circuit resultttreators with different geometry.

3.2 Identification of T-S Fuzzy Model

Identification of dynamic systems can be performed with @&sgrarallel or parallel model. Series-parallel struetur
is the type of mathematical model adopted for identificafmme-step ahead forecasting) of Chua’s oscillator whemgusi
the hybrid NMO-TS modelling approach as shown in Figure 4.

The estimated T-S fuzzy model output based on NNJ(@;), used for computing the minimum square error when
compared with the actual outputi k) was computed by using one-step ahead forecasting. Depote,, andn,, as the
time maximum lags of the model output, control input, andsapiespectively. Depending on the time-lagged inputs that
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Figure 3. Implementation of Chua’s oscillator.

are used for the T-S fuzzy model, different configurationmoflels can be used. In this work, a NAR (Nonlinear Auto
Regressive) model was adopted, given by:

g(k) = fTS(u(k - 1)7 ce 7u(k - nu)ay(k - 1)5 s ay(k - ny)ve) (10)

where the unknown nonlinear functigis is the TS fuzzy model of the systeimrepresents théth instant of time, and
0 is the estimated vector of parameters for the model.

One of the most important tasks in building an efficient fasting model based in T-S fuzzy model is the selection
of the relevant input variables. The input selection probten be stated as follows: among a large set of potentiat inpu
candidates, choose those variables that highly affect tehroutput. Unfortunately, there is no systematic procedu
currently available which can be followed in all circumstas. In this work, input selection is heuristically perfewuin
The inputs of T-S fuzzy system are process output and conat signals of reduced order with, = 2, n,, = 0, and
n, = 0. Aditionally, the input vectors for the T-S fuzzy system && — 2); y(k — 1)] while the model outputig(k).

The Chua'’s oscillator experimental data (voltage on capa€il) shown in Figure 5 was employed to elicit the fuzzy
model through Nelder-Mead approach. The first part of 106@pdas were used during training (estimation) phase of T-S
system design while the other 1160 in validation (test oegalivation) phase.

Although, NMO allows to extract the number of rules and toed®iine the premise and consequent elements, here
this method is applied to obtain membership functions and tb determine the premise space partition.

Setting up this parameter as 2 or 3 production rules, NMO si¢edlieal with a vector of decision variables whose
elements are 9 or 12 centres and 2 or 3 spreads of a Gauss@iofmespectively, core and support of membership
functions. In this case, the spread of Gaussian membershgtién adopted for each input of vectdysk — 2); y(k — 1)]
of T-S fuzzy model is the same.

The system identification by T-S fuzzy model is approprifgesuitable performance index is available according to

Disturbances, d(k)

Voltage in o@ System output, y(k}
operational amplifiers Oscillator ‘

r
error, e(k)
TS fuzzy 3 One-step ahead for i I
model - I
Y

ry Estimated output, y(k)
-1
q
Rule base
ﬂ | +—— Optimized rules Optimiation methods
1 | <premise part parameters > | | < Nelder-Mead simplex > |
THEN  ["<'consequent part parameters > | {

Batch least mean square |

Figure 4. One-step ahead forecasting using T-S fuzzy mailey NMO and batch mean least squares.
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Figure 5. Experimental data of Chua’s oscillator for id&ecdition task.

the necessities of users. The performance criterion chiosesvaluate the relationship between the real output aed th
estimate output during the optimization process (maxitiongproblem) was the Pearson multiple correlation coeffiti
index. This coefficient represents tRé of training phase of T-S fuzzy model computed as given by:

o ly(k) = (k)
| _ 2k 11
o lyk) — ) -

where N, is the total number of samples evaluated in estimation preas#y; is the system real output. Whei(.)? is
close to unit,R(.)? = 1.0, a sufficient accurate model for the measured data of themyistfound. AR(.)? betweer.9
and1.0 is suitable for applications in identification and modesééd control.

In this context, the performance evaluation of validatibage of optimized T-S fuzzy system is realized by:

Zk 0.5Na+1 ly(k) — (k)]
Zk 0.5Ner1 [Y(E) — 7)°

whereN, is the total number of samples evaluated in validation phBased on values @&? in training and validation
phases, the NMO uses an objective function given by maximizaf harmonic mean of thesg? values and it is called
Ry,

The NMO used in the computational simulations wadthi@searctfunction of Matlab (MathWorks). To illustrate the
effectiveness of the T-S fuzzy model several simulationevperformed. The programs were run oB.& GHz Pentium
IV processor with2 GB of RAM. In each case stud$) independent runs were made with the NMO based on 30 different
initial trial solutions.

The results (best ¢f0 independent runs with00 evaluations of objective functions in each run) for the NMIO<®
fuzzy system design in training and validation phases aegnted in Table table:tablel.

The best performance indé¥,, was obtained by T-S with 2 production rules. The resultsgi$i with 2 production
rules present small standard deviation and also theﬂ’fﬁ&tmnq andR? mean value (best convergence property)
as itis presented in Table 1.

R2

training

R? =1- (12)

validation

validation

Table 1. Results (best of 30 independent runs) for the NMG 8fflizzy system design in training phase.

Production Performance Minimum Maximum Mean Median Stadida

Rules Index (worst) (best) Desviation
2 Rfmmmg 0.8246 0.9984  0.9748 0.9983 0.0577
2 R2 Lidation 0.8221 0.9981 0.9739 0.9980 0.0584
2 R? 0.8234 0.9984  0.9741 0.9981 0.0581
3 Rfmmmq 0.0079 0.9984  0.9368 0.9970 0.2088
3 R2 Lidation 0 0.9982 0.9356 0.9966 0.2109
3 R? 4.4 x 10716 0.9983  0.9361 0.9968 0.2106
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Figure 6. Best response obtained through resulting T-S hvaitte2 production rules based on NMO.
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Figure 7. Best response obtained through resulting T-S hvatte3 production rules based on NMO.

NMO-TS fuzzy models witl2 and3 production rules achieved a good approximation for expenital data in training
and validation phases. Continuous and dashed lines repnesasured and simulated outputs in results presented in
Figures 6 and 7. Experimental results had shown that thgrimieg NMO and T-S fuzzy system presented successful
results due precision in one-step ahead predicting naalidggnamics.

4. CONCLUDING REMARKS AND FUTURE RESEARCH

Fuzzy models represent attractive platforms to model neali systems since they can work in sinergy with distinct
efficient tuning algorithms. In this work, a NMO approachvaleated in T-S fuzzy system modeling and design.

The elicited fuzzy model with only two membership functialetermining the premise space partition demonstrated
its effectiveness in emulating the time response for theaGhascillator. The computational performance and the rogu
of the proposed methodology integrating T-S fuzzy model [dMD indicates that the proposed approach is suited for
applications in the design of nonlinear identification misder a wide class of the complex systems.

Further research intends to compare the use of other lgponioptmization techniques such as simulated annealing,
evolutionary algorithms, artificial neural network in orde verify the improvements that can be carried out by cornigin
the T-S fuzzy model with other tools when tuning the desigrapeeters.
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