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ABSTRACT
In this paper, vertical temperature profiles are inferred by
neural networks based inverse procedure from satellite data,
non-linear function estimation. A new approach to classical
Radial Basis Function neural network is trained using data
provided by the direct model characterized by the Radia-
tive Transfer Equation (RTE). The neural network results
are compared to the ones obtained from classical neural net-
works Radial Basis Function and traditional method to solve
inverse problems, the regularization. In addition, real radi-
ation data from the HIRS/2 - High Resolution Infrared Ra-
diation Sounder - is used as input for the neural networks
to generate temperature profiles that are compared to mea-
sured temperature profiles from radiosonde. Analysis of the
new approach results reveals the generated profiles closely
approximate the results obtained with classical neural net-
works and regularized inversions, [5] [15], thus showing ade-
quacy of neural network based models in solving the inverse
problem of temperature retrieval from satellite data. The
advantages of using neural network based systems are re-
lated to their intrinsic features of parallelism; after trained,
the networks are much faster than regularized approaches,
and hardware implementation possibilities that may imply
in very fast processing systems.
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1. INTRODUCTION
The vertical structure of temperature and water vapor

plays an important role in the meteorological process of the
atmosphere. However due to logistics and economic prob-
lems, there is a lack of observation in several regions of the
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Earth. In this sense, the retrieval of temperature and humid-
ity profiles from satellite radiance data became important
for applications such as weather analyzes and data assimi-
lation in numerical weather predictions models. Interpreta-
tion of satellite radiance in terms of meteorological param-
eters requires the inversion of the Radiative Transfer Equa-
tion (RTE) where measurements of radiation performed in
different frequencies are related to the energy from differ-
ent atmospheric regions. The degree of indetermination is
associated with the spectral resolution and the number of
spectral channels. Moreover, usually this solution is very
unstable due to the presence of noise in the measuring pro-
cess [17, 24]. Several methodologies and models have been
developed to improve the satellite data processing. Due to
the difficulty of obtaining correct RTE solutions, several ap-
proaches and methods were developed to extract information
from satellite data [6, 21, 14].

In order to deal with the ill-posed characteristic of inverse
problems, regularized solutions [22, 2, 4], and also regular-
ized iterative solutions [1, 12, 8] have been proposed. Also,
several research works have tried artificial neural networks
to solve inverse problems [11, 2, 13, 25]. The atmospheric
temperature estimation is a classical inverse problem that
been approached by ANNs, employing an Multi Layer Per-
ceptron [20] [18] and a Radial Basis Function [19].

In this paper a new approach for a Radial Basis Function
ANN is used to retrieve vertical temperature profiles based
on remote sensed data. The temperature retrievals of the
new technique are compared to the ones obtained by [5,
15], who used Tikhonov and maximum entropy principle
regularization techniques.

2. DIRECT MODEL
The radiative transfer process can be modeled using the

linear integral-differential Boltzmann equation, considering
absorption, scattering, and radiative emission [5]. However,
depending on the range of satellite observation - infrared, in
our case - the RTE can be simplified. The Schwarzchild’s
equation is an RTE version where the scattering phenomenon
can be neglected, having a local thermodynamic equilibrium.
This means that the atmosphere behaves like a black body,
following the Planck’s law, relating the radiances with the
body temperature. This scenario represents our direct or
forward problem. Equation (1) represents the mathematical
formulation of the direct problem that permits the calcula-
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tion of radiance values from associated temperatures [14].

Iλ(0) = Bλ(Ts)=λ(ps) +

Z 0

ps

Bλ[T (p)]
∂=λ(p)

∂p
dp, (1)

where, Iλ is the value of the spectral radiance, subscript s
denotes surface; p is the considered pressure; = is the space
atmospheric layer transmittance function that is a function
of the wavelength and the concentration of absorbent gas,
which usually declines exponentially with the height. In
pressure coordinate, the transmittance may be expressed by:

=λ(p) = exp

»
−1

g

Z p

p0

kν(p)q(p)dp

–
(2)

where, kν is the absorption coefficient, q is the ratio of gas
mixture, g is the acceleration of the local gravity, and p0 is
the pressure in the top of atmosphere; B is Planck’s func-
tion (Eq. 3), which is a function of the temperature T and
wavelength λ:

Bλ(T ) =
2hc2/λ5

[ehc/kBλT − 1]
(3)

h is Planck’s constant; c is the light speed; and kB is the
Boltzmann’s constant.

The pressure is used as a vertical coordinate, due to the
linear relationship between these two quantities (hydrostatic
equation): p = −gρz ; being g the gravity, ρ the air density,
and z the height above the ground.

Equation (1) is discretized, for practical purposes, using
central finite differences leading to Equation 4:

Ii = Bi,s(Ts)=i,s +

NpX
j=1

„
Bi,j + Bi,j−1

2

«
[=i,j −=i,j−1] (4)

where i = 1, ..., Nλ; Ii ≡ Iλi ; Nλ is the number of satellite
channels; Bi,j = Bλi(Tj); =i,j = =λi(pj); and Np is the
number of atmospheric layers considered. It is assumed that
each atmospheric layer has a characteristic temperature Tj

to be computed.

3. NEURAL NETWORK ARCHITECTURE
RBF networks are feed-forward networks with one hid-

den layer, initially developed for function approximation in
multidimensional space, but they may also be used to learn
arbitrary input-output mappings [10] [3]. Each unit in the
hidden layer has an associated receptive field centered at a
particular input value at which it reaches a maximal output.
The output of a unit tails off as the input moves away from
its central point. The mostly used function in RBF net-
works is a Gaussian, though other types of function may be
used [10]. The weights from the input layer to the hidden
layer (the centers of the Gaussians) represent vector pro-
totypes within the available data that may be determined
by clustering methods or by random selection in data set.
The weights between the hidden layer and the output layer
are trained by using the delta rule [10], by presenting the
available input-output pairs to the RBF through a number
of iterations pursuing a specific performance index given by
the minimization of the sum of square error over the entire
training set. The classical RBF activation is obtained:

y =

NX
i=1

wiφ (‖x̄− t̄i‖) (5)

where x̄ is the input vector, t̄i is the center of ith function
and φ is the radial basis function.

This paper presents new results on the construction of a
reformulated radial basis function neural network. A new
family of radial basis functions based on non-extensive en-
tropy. Are proposed. The non-extensive form proposed by
Tsallis [23] is obtained by:

Sq(p(r)) =
k

q − 1

 
1−

WX
i=1

p(r)q
i

!
(6)

where pi is a probability, W the total number of possibilities
and q is a free parameter. In the thermodynamic theory,
the k parameter is known as Boltzmann constant. In the
limit, q → 1 , Tsallis entropy reduces to the usual form of
Boltzmann-Gibbs-Shannon [9].

As presented in Tsallis [23], the distributions pq(r) to dif-
ferent values of q are obtained by:
if q > 1
pq(r) = φ(r) =

=
1

σ

»
q − 1

π(3− q)

– 1
2 Γ

“
1

q−1

”
Γ
“

3−q
2(q−1)

” 1“
1 + q−1

3−q
r2

σ2

” 1
q−1

, (7)

if q = 1

pq(r) = φ(r) =
1

σ

»
1

2π

– 1
2

e−(r/σ)2/2, (8)

if q < 1
pq(r) = φ(r) =

=
1

σ

»
1− q

π(3− q)

– 1
2 Γ

“
5−3q

2(1−q)

”
Γ
“

2−q
1−q

” »
1− (1− q)

(3− q)

r2

σ2

– 1
(1−q)

(9)

If |r| < σ[(3− q)/(1− q)]1/2 and zero otherwise.
The family of solutions is presented in Figure 1. For q = 1

it is equivalent to a Gaussian function and for q = 2 it is
equivalent to Cauchy distribution.
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Figure 1: Distributions for different values of q
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4. NEURAL NETWORK FOR ATMOSPHERIC
PROFILE RETRIEVAL

Artificial neural networks have two stages in their applica-
tion, the learning and activation steps. During the learning
step, the weights and bias corresponding to each connection
are adjusted to some reference examples. For activation, the
output is obtained based on the weights and bias computed
in the learning phase.

The experimental data, which intrinsically contains errors
in the real world, is simulated by adding a random pertur-
bation to the exact solution of the direct problem, such that

Ĩ = Iexact + Iexactσµ (10)

where σ is the standard deviation of the noise and µ
is a random variable taken from a Gaussian distribution,
with zero mean and unitary variance. All numerical experi-
ments results presented in this paper were carried out using
σ=0.05.

The error of temperature profiles is computed in 5 lay-
ers, with Layer-1 [1000 hPa, 500 hpa]; Layer-2 [500 hPa,
250 hpa]; Layer-3 [250 hPa, 85 hpa]; Layer-4 [85 hPa, 20 hpa].
Some discrete points (pressure) are considered for each layer:
Layer-1: 500, 570, 620, 670, 700, 780, 850, 920, 950, 1000
hPa; Layer-2: 250, 300, 350, 400, 430, 475 hPa; Layer-3:
85, 100, 115, 135, 150, 200 hPa; Layer-4: 20, 25, 30, 50, 60,
70 hPa.

This feature is important because the main interest for
meteorological purposes are the layers below p = 100 hPa,
where 1 hPa = 100 Pa.

The average errors of simulation results for each atmo-
spheric layer obtained with the ANN are computed by:

Error =
1

N

vuut ptX
pb

`
TRadiosonde

i − TNeuralNetwork
i

´2
(11)

where N is the number of sample points (sub-layers) at
each layer, pb and pt are, respectively, pressure (level) at
bottom and top for each layer.

4.1 Generalization
The activation test is an important procedure to indicate

the performance of an ANN, the effective test is conducted
using data that does not belong to the training set. This
action is called the generalization test of the ANN. In this
work, 3 different databases are employed in the ANN tests,
the first with 101 synthetic profiles derived from some known
atmospheric profiles in Brazil; the second using 324 profiles
of TIGR data set; and the third using the union of the syn-
thetic and the TIGR profiles. The generalization test errors
presented in the Table 1 were obtained with the synthetic
data, the Table 2 the TIGR database and Table 3 with the
synthetic + TIGR database. From the Tsallis’ formulation
for the non-extensive thermodynamics, there is no theory to
calculate the free parameter q. For some applications, it is
possible to derive a criterion to compute the non-extensivity
parameter [16]. For the present application, there is no the-
ory for estimating such parameter. Therefore, numerical
experimentation is the procedure that we have adopted to
find out the best choise of parameter q. The Tables present
the RMSE of the profiles obtained by the proposed Radial
Basis Function Non-Extensive (RBF-NE) with q = 0.5, 1.0,
1.5, 2.0 and 2.5.

Table 1: Generalization with RFBR-NE - sintetic
database

q Layer1 Layer2 Layer3 Layer4 Layer5
0,5 0,9080 0,9702 1,4511 1,1228 0,8088
1,0 0,6867 0,7992 1,0296 1,2185 0,7191
1,5 0,7728 0,6911 0,9693 1,3113 0,6978
2,0 0,7649 0,7269 1,0364 1,3539 0,6386
2,5 0,7603 0,7398 1,0873 1,3424 0,6376

Table 2: Generalization with RFBR-NE - TIGR
database

q Layer1 Layer2 Layer3 Layer4 Layer5
0,5 1,1134 1,3122 1,9393 1,6463 1,9420
1,0 1,1091 1,3114 1,9560 1,5958 1,9553
1,5 1,1178 1,3121 1,9801 1,5814 1,9368
2,0 1,1158 1,3004 1,8942 1,5743 1,9314
2,5 1,1135 1,2956 1,8940 1,5474 1,8928

Table 3: Generalization with RFBR-NE - Synthetic
+ TIGR database

q Layer1 Layer2 Layer3 Layer4 Layer5
0,5 0,7023 1,5797 2,8594 2,0310 1,3913
1,0 0,4736 1,2221 2,4897 1,5770 1,1683
1,5 0,5029 1,1977 2,6024 1,3525 1,1594
2,0 0,5323 1,1907 2,6065 1,3822 1,1424
2,5 0,5628 1,1810 2,6619 1,4636 1,1271

As shown in the Tables 1, 2 and 3, different values of
free parameter q can improve the results comparing with
the classical RBF with Gaussian radial basis function, i.e.
q = 1.0. To exemplify this improvement, Figure 2 shows the
desired radiosonde profile, in black line, classical RBF with
q = 1 in blue line and RBF-NE with q = 2.5 the red line.

4.2 Estimation Using Real Satellite Radiance
Data

Simulations using real satellite radiance data, from the
High Resolution Radiation Sounder (HIRS-2) of NOAA-14
satellite, have been performed to evaluate the accuracy of
the RBF-NE. HIRS-2 is one of the three sounding instru-
ments of the TIROS Operational Vertical Sounder (TOVS).
ANN results are compared to in situ radiosonde measure-
ments and results obtained by [5, 15], who used Tikhonov
and Maximum Entropy Principle of second order regulariza-
tion techniques.

The number of observations corresponds to a fraction of
the number of temperatures to be estimated. For instance,
in the example presented hereafter, 40 temperature values
are estimated from 7 radiance measurements.

Figures 3, 4, 5, show the results of the generalization tests
performed. It is possible to notice a reasonable agreement
between RBF-NE’s retrieval and the radiosonde measure-
ments. Figure 3 shows the classical RBF with Gaussian
radial basis function compared with radiosonde, Tikhonov
and Maximum Entropy Principle of second order regulariza-
tion techniques [5, 15]. Figures 4 and 5 show, respectively,
the results of RFB-NE with q = 0.5 and q = 1.5.

The mathematical formulation of the problem of retriev-
ing vertical temperature profiles from remote sensing data is
given by the integral radiative transfer equation, and leads
to the solution of a highly ill-conditioned Fredholm integral
equation of the first kind. The results show the good agree-
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Figure 2: Generalization example obtained with
RBF-NE and q = 2.5

ment between estimation from the ANNs and the observed
temperature profile. It should be noted that the RBF-NE
trained with other values of q presented the better perfor-
mance in different layers of the atmosphere. This is an evi-
dence of that different values of q in the RBF-NE neural net-
work can improve the atmospheric temperature inversion.
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Figure 3: Retrievals achieved using radiance data
from NOAA-14 satellite - RBF-NE with q = 1.0

5. CONCLUSION
In the present work ANNs are presented as effective tools

for solving the inverse problem of retrieving atmospheric
temperature profiles. The obtained reconstructions with the
RBF-NE showed to be better than the ones obtained with
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Figure 4: Retrievals achieved using radiance data
from NOAA-14 satellite - RBF-NE with q = 0.5
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Figure 5: Retrievals achieved using radiance data
from NOAA-14 satellite - RBF-NE with q = 1.5

classical RBF and regularization methods [5, 15], even for
noisy data. It is to be noted that the most important layer
for numerical weather prediction lies between the layers 1000
to 100 hPa. The results suggest that we need to combine dif-
ferent techniques, considering different atmospheric layers,
in order to have a better inverse solution.

In practice, operational inversion algorithms reduce the
risk of being trapped in local minima by starting the itera-
tive search process from an initial guess solution that is suf-
ficiently close to the true profile. However, the dependence
of the final solution on a good choice of the initial guess rep-
resents a fundamental weakness of such algorithms, partic-
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ularly in regions where less a priori information is available
[7]. ANN approaches can relax this constraint incorporating
more data in the dataset during the learning phase.

The ANNs can be inaccurate if they are used to extrap-
olate to cases outside the training domain. However the
use of ANN techniques can provide good solutions when the
training phase encompasses the domain of the potential so-
lutions to the real problem. The TIGR database contains
2300 representative atmospheric situations collected around
the world and selected by statistical methods from 80,000 ra-
diosonde reports. Therefore, our training sets were chosen
from professional criteria, minimizing the chance for produc-
ing unrealistic atmospheric temperature profile estimation.
It can be seen – from generalization and real cases results
worked in this paper – good inversions obtained. One prob-
lem related to the present formulation for this new RBF-NN
is just because there is no theory to drive us to compute
the non-extensive parameter q. It is important to mention
that the present approach is under verification for applica-
tion as an operational issue for the Center of the Weather
Prediction and Climate Studies (CPTEC), a division of the
National Institute for Space Research (INPE).
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[11] H. Hidalgo and E. Gómez-Treviño. Application of
constructive learning algorithms to the inverse
problem. IEEE T. Geosci. Remote, 34(1):874–885,
1996.
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