An exact algorithm for point location on spherical maps

MARCUS VINicius A. ANDRADE!, WAGNER F. BARROS', JORGE STOLFI?

!Depto. Informética - Univ. Fed. Vigosa - MG - Brasil - 36570-000
{marcus,wbarros}@dpi.ufv.br
2Inst. Computagido - UNICAMP - Caixa Postal 6176 - Campinas - SP - Brasil - 13083-970
stolfi@ic.unicamp.br

Abstract. We describe here an exact, and hence robust, algorithm for point location on spherical maps
(maps on the sphere composed by arcs of circles, not necessarily geodesic ones). The algorithm relies on
an exact representation for arcs of circles on the sphere, based on integer homogeneous coordinates, and
exact geometric operations for such arcs. The topology of the map is represented by a specialized data
structure (SMC — spherical map by corners) that supports fairly general map topologies, including closed
edges without endpoints (ovals), isolated vertices, and faces with multiple borders. This framework makes
it possible the construction of robust geographical information systems (GIS) and reliable algorithms for

robotics, computer graphics, and other areas.

1 Introduction

A spherical map is a partition of the spherical surface
into three kinds of elements: wvertices (points), edges
(circles and arcs of circles), and faces (open regions).
Note that the arcs are not restricted to geodesics, but
may belong to circles of arbitrary radius (i.e. to either
“great” or “small” circles). See figure 1.

Figure 1: Examples of spherical maps.

This definition is general enough to cover most maps
that arise in geographical information systems (GIS),
including regions bounded by geodesic polygonal lines,
flat polygonal maps under stereographic projection,
latitude-longitude grids, footprints of aerial and satel-
lite images, etc. [5]. Spherical maps also find appli-
cations in other areas such as robotics and computer
graphics.

Here we briefly describe an exact representation
for spherical maps [1,2], and we give an exact algo-
rithm for point location on such maps. The represen-
tation consists of two parts: a data structure that en-
codes the topology of the map, and an exact encoding

of points, circles and circular arcs on the sphere.

The topological data structure, named SMC
(spherical maps by corners), allows the representation
of fairly general map topologies, including maps with
oval edges (closed simple curves, not incident to any
vertex), isolated vertices (not incident to any edge),
and faces with multiple borders.

The geometry of the map is represented by var-
ious flavors of integer coordinate vectors, similar to
the homogeneous coordinates of projective geometry.
The representation provides dense sets of points and
circles on the sphere, and allows us to define exact
(rounding-free) geometric operations such as comput-
ing the points of intersection of two circles, the location
of a point with respect to a circle, the ordering of cir-
cular arcs around a point, and the circular ordering of
three points on a circle.

Exactness may seem a pointless luxury in GIS ap-
plications, since GIS data is by its nature approximate,
and approximate results are sufficient for all practical
purposes. However, most geometric algorithms used in
GIS, such as point location and map overlay, become
much more complex and prone to failure if their basic
operations are subject to rounding errors, no matter
how small [9]. Consider for example a distributed ap-
plication that cuts a map into smaller submaps, han-
dles each piece to a separate processor, and combines
the partial results into a single map. If the cutting
step is exact, the final step needs only to identify com-
mon boundary edges between the partial results, and
remove them. The task becomes much harder if the
cutting step is affected by rounding errors: the partial
results may overlap, or may be separated by gaps. The

99

pasting operation is then almost impossible to specify,
let alone to implement. Similar problems arise when
we try to merge maps that cover overlapping regions
but were developed under different flat projections.

The representation described here allows us to
represent, any spherical map with arbritary accuracy,
without increasing the number of elements of the orig-
inal map; and also to develop exact (hence robust) al-
gorithms for geometric operations on spherical maps,
such as point location and map overlay [8]. The repre-
sentation is such that the overlay of two maps can be
overlaid again and again, without intermediate round-
ing or simplification steps, and without increasing the
bit size of the coordinates.

All algorithms described here were implemented in
C++ using the GNU Multiple Precision (GMP) arith-
metic library [3] and are avaliable through the Inter-
net!.

2 Exact spherical geometry

We consider here only maps on the unit sphere S? =
{(@,y,2) : 2 +y*+22=1}. The geometry of a
map is then completely determined by the geometry
of its vertices and edges, since these implicitly define
the faces. We use here an exact representation for such
elements which was proposed by Andrade and Stolfi [2].

Maps on some other spheroidal surface (such as
the Earth) can be handled by establishing an appropri-
ate correspondence between the latter and S2, e.g. by
identifying points with same latitude and longitude.
Even if this correspondence is not exactly computable,
the approximation errors can be viewed as a mere in-
put/output problem, similar to other data acquisition
and display quantization errors, and do not affect the
exactness of the internal representation nor the robust-
ness of the geometric algorithms (which are all carried
out on the S? model sphere).

2.1 Points of R?

We represent a point p = (X,Y, Z) of R? by a vector of
four homogeneous coordinates [po, p1, p2, p3], where pg
is an arbitrary positive weight, X = p1/po, Y = p2/po,
and Z = ps/po. After Stolfi [7], we consider two homo-
geneous vectors to denote the same point if and only if
they differ by a positive scalar factor. With this con-
vention, the homogeneous vectors ([0, 0,0, 0] excluded)
comprise a double cover of projective three-space P3,
called the oriented projective space T®. In particular,
the homogeneous vectors with positive weight can be
identified with the Cartesian space R?; and any vector

Ihttp://www.dpi.ufv.br/ marcus/smaps/

of the form [0, z,y, z] can be interpreted as a point at
infinity in the direction of the Cartesian vector (z, y, 2).

A point of T? is said to be rational if it is a point
of R? with rational Cartesian coordinates, or the point
at infinity along the direction of some rational vector
of R%. Tt is easy to see that a point is rational if an only
if it has an all-integer homogeneous coordinate vector.

2.2 Oriented planes

Dually, an oriented plane o of T? is defined by a vec-
tor of four homogeneous coefficients {agp, a1, as,as),
except (0,0,0,0). The position of a point p =
[po, p1, D2, p3] relative to a, is determined by p<$ a =
sign(agpo + a1p1 + aapa + agps). By definition, the
point p lies on « if p<4>a = 0; otherwise p is said to be
in the positive or negative half-space of a, depending
on the sign of p < a.

As in the case of points, two coefficient vectors
denote the same plane if and only if they differ by a
positive scalar factor. The opposite of a plane « is the
plane —a that goes through the same points but has
its positive and negative half-spaces swapped, namely
(—ag, —ai1,—aa, —ag). The points at infinity are all
incident to the plane at infinity Q = (1,0,0,0), and
to its oppositely oriented version (—1,0,0,0). A plane
is said to be rational if it admits a coefficient vector
whose entries are all rational numbers (or, equivalently,
all integers). The normal of a plane « is the unit vec-
tor (direction) nrm(«) that is parallel to the vector
(ala Q2, a3)-

2.3 Oriented circles

We will use the term S-circle for an oriented circle (of
nonzero radius) lying on the sphere S2. The orientation
of an S-circle s consists of the choice of a positive sense
of travel along s. We denote by —s the same circle as s,
but with the other orientation. The complement S?\ s
of the S-circle consists two connected components, the
caps or sides of s. The orientation of s and the right-
hand rule allow us to distinguish the positive side from
the negative side. By definition, the (spherical) center
of the circle, denoted by sctr(s), is the point of S2 that
is the center of its positive cap.

An S-circle s has a unique supporting plane o =
pln(s), which satisfies s = aNS? and is oriented so that
the positive cap of s lies in the positive halfspace of a.
Conversely, every oriented plane « that intercepts S2
defines a unique S-circle s = cire(a). See figure 2.

It follows that we can unambiguously represent
an S-circle s by the homogeneous coefficients
(ag,1,a2,a3) of the oriented plane a = pln(s).
We will write (ao,a1,a2,a3)) as a shorthand for

100

N o)
aetr{ch

« = spin(c)

© = 8000 a)

Figure 2: Example of an S-circle.

circ({ap, a1, az,az)). We say that an S-circle s is ra-
tional if pln(s) is a rational plane — in other words, if
s = (ag, 1, a2, a3)) where ag, a1, o, g are integers.

A plane « intersects the sphere S? at more than
one point if and only if o < af + a3 + a3. When
equality holds, the plane is tangent to S?, and the in-
tersection reduces to a single point — which is not an
S-circle, by our definition.

2.4 Rational and quasi-rational points

For exact spherical geometry, we need exact represen-
tations for points on the sphere S? (S-points). An ob-
vious class of points that admit such representation is
the set A of the rational points of R? that happen to lie
on S2, such as (2/3,2/3,1/3) = [3,2,2,1]. These are a
proper subset of B, the quasi-rational points, which are
radial projections onto S? of rational points of R —
such as (1,2,3)/v14 = [V/14, 1,2, 3]. More precisely,

A={lag,..a3] : @} =al + a3 +a3, a€ Zl}
B={[bo,.bs] : R=12+13+12 beRxZ3}

where Z* = 7%\ {(0,..0)}.

Both A and B are dense subsets of S2. Note that
the homogeneous coordinates of any S-point p satisfy
Po = \/P? + p3 + p3; so we can leave the weight po im-
plicit, and exactly represent any point of B (and hence
of A) by three integer coordinates p1, p2, p3. Note also
that sctr(s) € B for any rational circle s.

2.5 Sub-rational points

Geometric operations on spherical maps, such as
map overlay, often need to compute the intersec-
tion points of two arbitrary rational S-circles. Tt
turns out that those points may not be rational,
or even quasi-rational. For instance, the S-circles
(1,2,2,2) and ((1,2,—2,2)) meet at the point p =
[4, -1++7,0, -1—+/7] — which is not in B,

since the ratio p3/p1 = (=1 — V/7)/(=1 4+ +/7) is not
rational.

The intersection of two S-circles, in general, is ei-
ther empty or consists of two S-points. To remove the
ambiguity, we define the (canonical) meeting point of
two S-circles s and ¢ as being the point s A ¢ where s
is either tangent to ¢, or crosses t from its positive side
into its negative side. See figure 3.

L nrmio) \l nrmi[i) '\ : -[i

Figure 3: Intersection of two S-circles.

If the two circles s,t don’t intersect, then, for the pur-
poses of this paper, we define s At and ¢ A s as being
a special value @, meaning “no point.”

Notice that the set sNt is equal to the intersection
of the line I = pln(s)Npln(¢) and the sphere S2. For any
two oriented planes a and 3, we will denote by aAj the
line N B, oriented in the direction nrm(a) X nrm(8)—
see figure 3. Tt turns out that the canonical intersection
s At of s and t is precisely the point ext(l) where the
oriented line I = pln(s) A pln(¢) exits the sphere S2.

The oriented line o A 8 is uniquely determined
by its six Pliicker coeﬂ‘icients <l01, l()g, 112, 103, 113, l23>
where l;; = a;8; — o;B3; [7). For brevity, we will write
1 ={lo,l1,l5,13,14,15), where lg, ..l5 are the Pliicker co-
efficients /;; in the order shown above. Any six nonzero
numbers define an oriented line, provided that they
satisfy the Plicker equation mw(l) = loilag — loolis +
lozl12 = 0; and two coefficient vectors define the same
line if and only if they differ by a scalar factor. It
follows that a rational line — a line defined by two
rational planes, or two rational points — can be ex-
actly represented by six integers lg, .. [5 satisfying the
Pliicker equation.

We denote by ent(l) the point where an oriented
line [enters the sphere; and by mid(/) the midpoint of
ent(!) and ext(l), which is also the point of I closest
to the origin O of R®. Given I = (ly,..15), let 1(l) =

101

I3+13+12 and §(1) = (1) — (I3 + 13 +13); we then have

ext(l) = [u(l), —lils —Isls +15+/56(1),

lola — lsls — l4A/5(1),

lols + ils + 121/3(0) |
mid(l) = [K1), —lils —lsla, lola — U315, lols + 1115)

ent(l) = [u(l), —lila —Isls — l51/8(1),
loly = I3ls + 144/ 6(1),
lols + lils — lz\/é(l)]

From these formulas, we can see that the line [inter-
sects the sphere (and the points ent(l) and ext(l) exist)
if and only if §(1) > 0; and equality holds when [is tan-
gent to the sphere. Therefore, the set of all intersection
points of rational S-circles is precisely
C= { <l0,..l5> : 7T(l) =0, (5(l> Z 0, le Zg}

which turns out to be a superset of B. Further discus-
sion of these formulas, and the relationship between

A, B and C can be found in the paper by Andrade and
Stolfi [2].

2.6 Geometric operations on S-circles

In general, the same point p of C may be the exit point
of several rational lines. However, if p is in C \ A4, it
turns out that there is a unique rational line [such that
p = ext(l); whereas, if p is in A, the oriented line [that
joins the origin O = [1,0,0,0] to p is rational and has
that property. In either case, we call [the canonical
stabbing line of p, and denote it by stab(p). The integer
Pliicker coefficients of stab(p), reduced of any common
factors, provide then a canonical representation for the
point p.

We will need also two predicates for testing the
relative positions of S-circles and C-points. We de-
note by ®s(p,q,r) the relative circular order of three
points p, ¢ and r on a S-circle s that passes through
them, which may agree (®s(p,q,r) = +1) or disagree
(Rs(p,q,7) = —1) with the orientation of s; or may
be indeterminate because two or more of the points
coincide (®s(p,q,r) = 0).

Similarly, we denote by &, (r, s,t) the relative cir-
cular order in which three S-circles r, s and ¢ leave
a common point p. This predicate can be defined as
®o(p7“:ps:pt)a where p, =7 Ao, ps =sNo,pr =t Ao,
and o is a vanishingly small S-circle with sctr(o) = p.
Note that if two of the circles have the same tangent
direction at p, their circular order will depend on their
relative radii. Exact algorithms for these predicates
were given by Andrade and Stolfi [2].

2.7 Oriented arcs

If p and ¢ are any two points on an S-circle s, we de-
fine the oriented spherical arc (S-arc) of s from p to
q, denoted by (p, s, q), as being the non-empty set of
points encountered as we move from p to ¢ on s, along
its positive sense of travel. See figure 4.

[l w11

o

o = sarc

Figure 4: Example of an S-arc.

In particular, if p and ¢ are the same point, there is
only one S-arc on s, comprising the whole circle minus
that point. It is convenient to allow also p = ¢ = &,
in which case the S-arc (p, s ,q) is, by definition, the
whole circle s. It follows that an S-point x # & belongs
to that arc if z 4> s = 0, and either p = ¢ # =z, or
®S(pﬁ ‘/E’ q) = +1'

Note that an S-arc is always non-empty, and has
a definite orientation, namely that of the circle s. If
a=(p,s,q), wewrite s = circ(a) (the supporting circle
of a), p = org(a) (the origin) and ¢ = dst(a) (the
destination). We also denote by —a the reversal of a,
namely the arc (¢,=s,p) that contains the same points,
oriented the opposite way. The arc is proper if p # q.

It is convenient to extend the S-circle intersection
operator ‘A’ to S-arcs: namely aAb is defined to be the
point circ(a) A cire(b), if that point belongs to a and b,
or @ otherwise.

An S-arc is rational if has a rational circle and its
endpoints are sub-rational (or &). Note that if ¢ and b
are two rational S-arcs, then aAb is either sub-rational
or @. Note also that removing any sub-rational point
from a rational arc breaks it into one or two rational
arcs.

2.8 Rational maps

We propose to consider only rational maps on the
sphere, whose vertices are sub-rational S-points, and
whose edges are rational S-circles and S-arcs. This is
not a significant restriction for practical purposes, since
the set of rational arcs is dense in the set of all S-arcs,
under the Hausdorff metric [2]. In other words, given
an arbitrary S-arc a and a real € > 0, there is a ratio-

102

nal S-arc a* such that the Hausdorff distance between
a and a* is at most e.

3 Representing the topology

We represent the topology of a spherical map by the
the SMC (Spherical Maps by Corners) data structure
proposed by Andrade and Stolfi [2]. The SMC is a
variant of the well-known half-edge data structure [6],
extended so as to handle maps with isolated vertices,
ovals (edges without endpoints), and faces with any
number of borders.

The chief concept of the SMC structure is that
of map corner: a triple |v,e, f|, where, in general, v
is a vertex, e is an oriented edge incident to v, and
f is a face incident to v and e. We may think of a
corner as identifying a position on the map: “at vertex
v, facing towards the local direction of edge e, with
the left foot on face f”. Thus each undirected edge
gives rise to precisely two distinct corners, [v',e, f']
and [v",—e, f"], where {v',v"} are the endpoints of e,
and {f’, f'} are the faces incident to e. Note that we
may have v/ =v" or f' = f".

In some cases, field v and/or field e may be &, de-
noting “no element.” In particular, if e is an oval edge,
its two corners have the form | @, e, f'| and | @, —e, f"],
and their implied position is “somewhere on e”. In the
same spirit, each isolated vertex v gives rise to a single
corner |v,d, f], where f is the only face incident to v.
See figure 5.

The trivial spherical map — with only one face, no
vertices and no edges — has no corners, by definition.

In the SMC, the adjacency relations between ele-
ments are given by three permutations of the corners,
sym, onext and lnext. Given a corner ¢ = |v,e, f],
sym(c) returns the symmetric corner |v',—e, f'|, de-
fined over the oppositely oriented edge —e. The func-
tion onext(c) returns the next corner after ¢ around
the vertex v, in the sense determned by a global orien-
tation of the sphere. Finally, Inext(c) returns the next
corner after ¢ when walking along the frontier of f in
the direction of the directed edge e. See figure 5.

Note that the same face may have multiple Inext
orbits. Each of these orbits is called a border of f. The
topology of a face f, and its connection to the rest of
the map, is then determined by the (unordered) set of
all its borders, denoted by frontier(f). With these four
functions, one can “walk” from any corner to any other
corner by a finite sequence steps.

corner onext, | lnext | sym
c1 = v, e, fi €10 €2 c4
c2 = |va, €2, fi] Ca C3 11
c3 = |vs,es, fi] C11 C1 C10
c4 = |va2, e, fo] €12 Cs c1
cs = |1, es, fo] 1 Ce cy
c6 = |3, €6, f2] Cy Cq C12
cr = |vs, es, f3] Cé 8 cs
cg = vy, mes, f3] cg Co cr
co = |v3, —eq, f3] cr €10 cs
c10 = |v1,—es, f3] cs c11 3
ci1 = |vs, —ea, f3] €3 c12 c2
c12 = |v2, —eg, f3] 2 cr C6
c13 = |9, er, f3] €14 c13 | ci4
c1a = |9, —er, f4] c13 cis | ci3
c15 = |vs, 9, f3] Ci5 €15 | cis

Figure 5: A spherical map (flattened out on the plane),
and its SMC representation.

3.1 Concrete representation

Concretely, the SMC data structure is implemented as
a collection of records (objects) of four main types:
Face, Vertex, Circle, and Corner.

FEach Vertex record v stands for a vertex of the
map, whose position pt(v) is a sub-rational S-point,
defined by the Pliicker coeffcients of its canonical stab-
bing line. Each Circle record contains the coefficients of
a rational S-circle. As in the quad-edge data structure
of Guibas and Stolfi [4], pointers to Circle records are
always tagged with an orientation bit, so that the cir-
cles s and —s can share the same record while retaining
their respective orientations. Note that a single Circle
record may be shared by two or more edges.

The edges are defined implicitly by the Corner
records. A Corner record contains: pointers to the ori-
gin vertex org(c) (which is either a Vertex, or @) and
to the left Face left(c); a tagged pointer to the under-
lying circle circ(c) (which is @ for corners of isolated
vertices); and tagged pointers to the corners onext(c),
oprev(c), and sym(c). Note that all other SMC cor-
ner functions can be derived from these, e.g. dst(c) =

103

org(sym(c)), Inext(c) = sym(oprev(sym(c))), etc.. In
particular, the underlying edge is the S-arc edge(c) =
(p,s,q), where p = pt(org(c)), ¢ = pt(dst(c)), and
s = circ(e).

Finally, each Face object f points to a list
frontier(f) of corners ¢ with left(¢) = f, one on each
connected component, of f’s boundary. Presumably,
clients will extend the Face, Vertex and Corner ob-
jects with other application-specific attributes of the
elements.

The SMC structure for a spherical map M is usu-
ally handled by a pointer to one of its Face objects,
denoted by root(M). Note that this convention works
even for a trivial map, which has a single Face but no
Vertex or Corner records.

4 Point location on a spherical map

The spherical point location problem is to determine
which element (vertex, edge or face) of a given spheri-
cal map M contains a given point p € C.

We assume that the map is represented by an SMC
structure, as described in section 3. For uniformity
and usefulness, the procedure is required to return
also a corner associated to the element in question,
if there is one. More precisely, the algorithm must
return an address for the point p, defined as a pair
I = (crn(l),dim(7)) where dim(/) is the dimension (0,
1, or 2) of the map element containing p, and crn(l) is
either a corner of that element, or @ if M is a trivial
map. Note that a point p may have more than one
address on a map. For example, if p lies on an edge e
the result could be either (¢, 1) or (sym(c), 1), where ¢
is a corner such that e = edge(c); and, if p coincides
with a vertex v, then any pair (c,0) with org(c) = v
would be adequate.

4.1 Main procedure: Locate

We now describe a procedure Locate(p, M) that solves
the spherical point location problem, by computing an
address for p on M.

The procedure uses a simple incremental walk ap-
proach, often used for point location on plane maps.
Namely, it simulates the motion of a point z along a
reference path that starts at a point r, with a known
address /., and ends at the given point p, updating the
address [, of x every time it crosses a vertex or an edge.
When z reaches p, I, will be the desired address.

The starting point r and its address I, are easily
generated. If M is the trivial map, then we pick r
arbitrarily in C, and set [, < (&,2). Otherwise, let
¢ = |v,e, f] be any corner of the map. If v # &, we
set r < pt(v), and I, + (¢,0). Otherwise, e must be

an oval edge, without endpoints; we pick any point r
on the S-circle of e, and we set I, < (¢, 1).

Ideally, the reference path should be a single ra-
tional arc from r to p; however, such arc may not ex-
ist. (Two sub-rational points r and p lie on a com-
mon rational S-circle if and only if one of them is in
A, or the lines stab(r) and stab(p) are coplanar.) If
that is the case for r and p, we generate a third point
u € A, and build a reference path with two ratio-
nal S-arcs A; = (r,s1,u) and Ay = (u,s2,p), where
s1 = circ(stab(r) Vu) and so = cire(uVstab(p)). Note
that s; and s, are always rational circles.

In any case, the result is a path with at most two
proper rational S-arcs connecting r to p. Locate then
walks along each arc, in sequence, using the procedure
LocateRel described below.

4.1.1 Single arc traversal: LocateRel

Given an arbitrary proper S-arc a = (p, s ,q) on the
sphere, and an address I, for its starting point p, the
procedure LocateRel(a, ;) returns the address /, of its
destination g. Like the global Locate procedure, Lo-
cateRel simulates the motion of a point = from p to ¢
along the arc a, updating its address as it moves from
one map element to the next.

In order to start this process, LocateRel must sim-
ulate an infinitesimal motion from the point p along
the arc a, and compute an address l,, = (¢, d,,) for the
displaced point z, given an address for p. This is not
an entirely trivial task, since there are several cases to
consider: p may belong to a vertex, edge, or face of the
map, and the displaced point & may lie either some-
where along an edge, or inside a face. For this task, Lo-
cateRel uses the auxiliary procedure WhereTo(p, [, s),
described in section 4.1.2.

Once the point z has started to move along the
arc a, LocateRel must find the next significant event
that may cause its address to change. If the point z is
presently traveling along an edge e of the map (which
must have circ(e) = circ(a) or circ(e) = —circ(a)),
then the next significant event is either the end of e,
or the end of a if it happens inside e. The procedure
EdgeExit(a, ¢,;), described in section 4.1.3, is called to
process this case.

If, on the other hand, the perturbed point z lies
in the interior of a face f of the map, the next signif-
icant event is when x either reaches the frontier of f,
or reaches the end of arc a while still inside f. The
procedure FaceExit(a, ¢;), described in section 4.1.4, is
called to handle this case.

In either case, the outcome is an address I, =
(¢z,d,) for the point & where that event occurred. If
x is the destination ¢ of a, the LocateRel procedure is

104

finished, and [, is an address for ¢. Otherwise, the
procedure sets org(a) < p < z (thus discarding the
part of a traversed so far), sets I, < I, and repeats
everything from the beginning. Since the arc a may
only intersect a finite number of edges and vertices
of the map, this loop must eventually terminate with
xr=q.

4.1.2 Starting along an arc: WhereTo

We now describe the procedure WhereTo(p, 1, s),
which simulates an infinitesimal (arbitrarily small) ad-
vance of the point p, which has address I, = (c,d),
along the S-circle s, in its positive direction; and re-
turns an address I, for the perturbed point z.

There are three main cases to consider, depending
on whether the initial point p lies on a vertex, an edge,
or a face of the map:

(i) If p lies inside a face f (that is, d = 2), then a
sufficiently small displacement will remain inside
f; return I, < 1.

(ii) If p lies on some edge e (d = 1), the result depends
on the position of s relative to the supporting S-
circle t = circ(c) of e, at that point:

(a) If ®p(t,s,~t) = +1, then z immediately
leaves the edge e and moves into the face
left(c); return I, + (c,2).

(b) Conversely, if &,(t,s,—t) = —1, then
x immediately leaves e and moves into
face right(c) = left(sym(c)); return I, <
(sym(c), 2).

(c) Finally, if ®,(¢,s,—t) = 0, then either ¢t = s
or t = —s, and any sufficiently small motion
will leave z on e; return I, < I,.

(i) Finally, if p coincides with a vertex v of the map
(d = 0), then WhereTo uses onext repeatedly to
enumerate all the corners leaving v, until a cor-
ner ¢ is found that satisfies one of the following
conditions:

(a) edge(c') = @. In this case, there are no edges
incident to v, and therefore z starts moving
into the face left(c’).

(b) circ(¢’) = s. In this case, z starts moving
along the edge edge(c’).

(c) circ(c') # s and onext(c') = ¢; that is, there
is only one directed edge incident on p, and
x is not moving along it. In this case x starts
moving into the face left(c’).

(d) ®p(r,s,t) = +1, where r = circ(c’) and
t = circ(onext(c')). In this case too x starts
moving into the face left(c’), in the gap be-
tween two distinct consecutive edges.

If the enumeration stops with condition (b), re-
turn I, < (c’,1); otherwise return I, « (¢, 2).

4.1.3 Walking along an edge: EdgeExit

The procedure EdgeExit(a, ¢) is called by LocateRel to
simulate the motion of a point 2 along the proper S-
arc a = (p, s ,q), which happens to start on and along
an edge e = edge(c) of the map, until this situation
changes — i.e., until z reaches an endpoint of either
arc. The procedure is expected to return the final po-
sition of z, and an address I, for that point. More
precisely, if the motion stops at an endpoint v of e,
then we must return v and an address l, = (¢’,0) such
that org(c¢') = v; otherwise, we must return z = ¢, and
an address on the edge e, say (c, 1).

In principle, the procedure should determine the
first endpoint that is encountered by z starting from
org(a). However, the two arcs may overlap in such a
way that, as x moves along a, it leaves arc e but re-
enters it later on. In this case, what happens between
these two events is irrelevant for the purposes of point
location. Thus, the EdgeExit procedure needs only con-
sider whether dst(a) lies inside e. More precisely:

(i) If dst(a) € e, return z < dst(a) and I, < (¢, 1).

(ii) Otherwise, the motion will end at an endpoint of
e. If circ(c) = s, set ¢ + sym(c). In any case,
return x < pt(org(e)), lp + (¢, 0).

4.1.4 Crossing a face: FaceExit

The function FaceExit(a,c) is called by LocateRel to
simulate the motion of a point x along the proper arc
a = (p,s,q), which starts by moving into the face
f = left(c). The procedure is expected to return the
point z where this situation changes, and an address
1, for that point.

The situation may change either because z reaches
the destination of a while still inside f, or because x
reaches the frontier of f, at or before the end of a. In
the first case, we return z = dst(a) and I, = (c',2)
where ¢ is some corner with left(¢’) = f, possibly ¢
itself. Otherwise, we return the point 2 where a hit
the frontier, which may lie on a vertex or inside an
edge of the map; and an appropriate address for it.

As in the case of EdgeExit, it may happen that
the arc a leaves f only to re-enter it at some later

105

point — perhaps right away. In that case, those two
events, and any others that may occur between them,
are irrelevant for point location purposes; ans we might
as well continue the simulation as if 2 had never left f.
Therefore, FaceExit actually returns the destina-
tion of a, if it lies inside f; otherwise, it returns only
the last point where a exits f. See figure 6: in case
(a) the S-arc a exits face f at points q¢1, g2, g3, g4 and
qs, so FaceExit returns the exit point g5 with address
(c2,1). In (b), it returns the arc endpoint dst(a), for
which (e,2) would be a valid address; and, in (c), it
returns the vertex ¢, possbly with address (¢1,0).

Vértice isolado

/»A.dst

A.dst

() (b) (c)

Figure 6: Traversing a face with FaceExit.

This seemingly minor optimization actually has a sig-
nificant impact on the worst-case running time, as dis-
cussed in section 5.

Each point of intersection between the arc a and
the frontier of f (which may comprise more than one
connected component) must be either with a vertex
v = org(c’) that lies on a, or with an (open) arc e =
edge(c’) that has nonempty intersection with the arc
a; where ¢ is a corner of f (that is, with left(¢') = f).
Note that an edge e of the frontier may contribute zero,
one, or two intersection points; and may only touch the
arc a, without actualy crossing it.

If the arc a goes through a vertex v, we can deter-
mine the status of the point z just after that event by
looking at the relative position of the circle s = circ(a)
(and of its reverse) among all directed edges of the
frontier of f that are incident to v. After leaving
v, the point x will be inside f if v is an isolated
vertex, or has at most a single incident edge e with
circ(e) # s, or there are two distinct succesive corners
¢ and ¢’ = onext(c'), with org(c’) = org(c”) = v and
left(¢’) = f, such that &, (circ(c), s, circ(¢")) = +1.

When testing the above conditions for a vertex v,
it is not necessary to enumerate its entire onext or-
bit (which may include many corners which are not
incident to the face f). Instead, we use the fact that
every corner ¢’ that is relevant to the test is visited
exactly once during the enumeration of the face’s fron-
tier. Thus we need to test those conditions only once

for each visited corner ¢/, at the time it comes up in
the enumeration.

Finally, after we find an intersection point z, we
may safely ignore any intersections that occur before
it on a. Specifically, FaceExit(a, c¢) does the following;:

(i) [Initialize.] Set z < org(a), b < a, q + dst(a),
s + circ(a), I, + (¢,2). So, perform steps (ii)
and (iii) for each corner ¢’ = |v,e, f| on the fron-
tier of f:

(il) [Check for intersections with e = edge(c’).]

(a) If e = @, go to step (iii).

(b) If g € e, then terminate the FaceExit proce-
dure, returning = < ¢ and I, < (¢, 1).

(c) Compute the intersections ' = bAe, 2" =
eNb. If ' = 2" = @, go to step (iii).

(d) If ' =", set © + z'. Else, if 2’ = &, set
r+12". Else, if 2" =@, set z < x'. Else, set
" if ®g(z,2',2") =41, x+ ' otherwise.

(e) Set org(b) « z, t + circ(c’).

If ®.(t,s,-t) = +1), then set I, « (¢,2),
else set I, « (¢, 1).

(iii) [Check for intersection v = org(c’).] If v # @, set
u + pt(v), and do:
(a) If u = q, then terminate the FaceExit proce-
dure, returning = + u and I, < (¢, 0).

(b) If u is inside the arc b, set org(h) + = + wu,
l. + (c,0).

(c¢) If u # x, we are done with ¢'.

(d) Otherwise, if e = &, set I, + (¢, 2);

(e) Otherwise, let t' = circ('); if t' = s, set I, +
(c',0);

(f) Otherwise, let ¢ = onext(c'); if ¢ = ¢, set
la + (c,2);

(g) Otherwise, let ¢ < circ(c").
If &, (t',s,t") = +1, then set I, + (¢/,2).

(iv) [Finalize.] If the enumeration of frontier(f) ends
without a premature exit from steps (ii)(b) or
(iii)(a), then the remaining arc b, including its des-
tination ¢, doesn’t intersect said frontier. Then,
if dim(l,) = 2, ¢ is inside f, so faceExit returns
z <+ q and l,. Otherwise, x = org(b) is the last
point where u leaves f, so and [, are returned.

The key invariants of this algorithm, valid just
before steps (i) and (iii), are: (I) b = (z,s,q) is a
terminal piece of the original arc a. (II) No frontier
element found so far contains ¢ or intecepts b. (III)
If dim(l,) = 2, then points infinitesimally ahead of z

106

(but not necessrily x itself) lie inside the face f, and
I, is a valid (face-style) address for those points. (IV)
If dim(l,) < 1, then z lies on the frontier of f, and I,
is a valid (vertex-type or edge-type) adddress for z.

5 Complexity of the Locate algorithm

We define the complexity of a spherical map as being
the number of corners in its SMC representation; and
the complexity of an element is the number of corners
that reference it. This is a useful metric because most
other natural metrics (number of vertices, edges, faces,
etc.) are bounded by the number of corners.

Tt is easy to see that the cost of WhereTo(p, 1, s) is
O(1) if p lies on a face or an edge; and O(k),in the worst
case, when p coincides with a vertex of complexity k.
Furthermore, the worst-case cost of EdgeExit(a,c) is
O(1), and that of FaceExit(a, c) is ©(k) where k is the
complexity of the face left(c). It follows that the cost
of LocateRel(a,l) is ©(m), where m is the total com-
plexity of all map elements that are intercepted by the
S-arc a (or by its origin).

Note that the complexity of each face is counted
only once in the measure m, no matter how many times
it is entered by a. That is true only because FaceExit
returns the last intersection with the frontier, rather
than the first one. Without this optimization, the cost
of LocateRel could be quadratic on the map complexity.
Finally, since Locate performs at most two calls to Lo-
cateRel, we conclude that it too has worst-case com-
plexity @(m), where m is the total complexity of all
elements intercepted by the path — which, at worst,
is equal to the complexity of the map.

6 Conclusions and future work

We have described here an original framework (appar-
ently, the only one so far) for ezact geometrical compu-
tations on spherical maps with general circular edges.
The framework includes a data structure (SMC) for
representing the topology of such maps; an exact repre-
sentation for a dense set of points, circles, and circular
arcs on the sphere; exact algorithms for basic geomet-
ric operations on such objects; and an exact algorithm
for point location in those maps.

We believe that this framework can be quite valu-
able in many practical applications, such as robotics,
computer graphics, and GIS. We note that a robust
algorithm for computing the overlay two maps within
this framework was given by Andrade [1]; and many
geometrical operations in GIS can be reduced to map
overlay and some trivial post-processing.

Our point location algorithm was presented
mainly as proof of concept. Its large worst-case cost

(linear on the number of traversed elements) restricts
its use to small maps, or to applications where most,
queries are located close to each other. For random
queries in large maps, one should pre-process the map
into some efficient search structure.

Other promising themes for further research
within this framework may be the development of
space-efficient “multi-scale” representations of local ge-
ometric detail; good algorithms for approximating non-
rational points and curves; and robust algorithms for
other geometric operations, such as sweepline enumera-
tion, topology-preserving rounding, and region expan-
sion (“convolution”).

Acknowledgements

This work has been partially supported by CNPq,
Fapemig and Fapesp.

References

[1] M. V. A. Andrade. Representacio e manipulagio
ezxatas de mapas na esféricos. PhD thesis, Instituto

de Computacio - UNICAMP, 1999.

[2] M. V. A. Andrade and J. Stolfi. Exact algo-
rithms for circles on the sphere. International Jour-
nal of Computational Geometry and Applications,
11(3):267-290, 2001.

[3] T. Granlund. The GNU multiple precision arith-
metic library. Technical report, Free software foun-
dation, 1996.

[4] L. Guibas and J. Stolfi. Primitives for the manipu-
lation of general subdivisions and the computation
of Voronoi diagrams. ACM Transactions on Graph-
ics, 4(2):74-123, 1985.

[5] D. J. Maguire, M. F. Goodchild, and D. Rhind.
Geographical Information Systems - Principles and
applications. John Wiley & Sons, 1991.

[6] M. Méntyla. An Introduction to Solid Modeling.
Computer Science Press, 1988.

[7] J. Stolfi. Oriented Projetive Geometry - A frame-
work for geometric computations. Academic Press,
1991.

[8] P.Y.F. Wuand Wm. R. Franklin. A logic program-
ming approach to cartographic map overlay. Cana-

dian Computational Intelligence Journal, 6(2):61-
70, 1990.

[9] C. K. Yap. Towards exact geometric computation.
In Proc. 5th Canad. Conf. Comput. Geom., pages
405-419, 1993.

107

