
Postgis Raster Plugin for Quantum GIS
Maurı́cio Carvalho Mathias de Paulo1,2, Lubia Vinhas 2

1Diretoria de Serviço Geográfico – DSG
Quartel General do Exército, Bloco ”F”, 2o Piso, Ala Norte

CEP:70630-901 – SMU – Brası́lia – DF, Brasil
2Instituto Nacional de Pesquisas Espaciais – INPE

Caixa Postal 515 – 12245-970 – São José dos Campos - SP, Brasil

{mauricio, lubia}@dpi.inpe.br

Abstract. This article describes a graphic tool implementation to upload and
visualize raster data stored in a PostgreSQL database with PostGIS extension.
The implementation was done as a Quantum GIS plugin called WktRaster, re-
leased as an open source software. The plugin is one of the earliest efforts
to explore raster data storage, visualization and processing using the PostGIS
Raster extension in a Geographic Information Systems’ environment. The main
goal is to assist users in exploring the database design flexibility that PostGIS
raster type introduces.

1. Introduction
In the GIS (Geographic Information Systems) community there has been a long debate
about how to represent spatial information. Two different approaches coexist, the discrete
(object) representation in which spatial data is represented by vector data structures and
the continuous (field) representation in which spatial data is represented by raster data
structures. Cadastral data (such as a map of census sectors of a city) is an example of
vector data and satellite imagery is an example of raster data. In their daily work, GIS
users deal with both vector and raster data.

DBMS (Database Management Systems) have evolved to be capable of manag-
ing spatial data in a user friendly and efficient way providing spatial abstract data types,
indexing mechanisms and functions tailored for spatial data, generically called spatial ex-
tensions. One of the most known open source object-relational DBMS is PostgreSQL,
that has a spatial extension called PostGIS [PostGIS 2011] . PostGIS’ spatial types rep-
resent vector data in conformance with OGC (Open Geospatial Consortium) and ISO
(International Standards Organization) standards, allowing the storage and manipulation
of spatial data using the SQL (Structured Query Language). Even though this is a reality
for vector data, there is still a lack of standards for raster data processing and storage in
spatial extensions.

Initially PostGIS only had vector data types. A first attempt to support raster data
in PostGIS (called PGRaster) was discontinued and in 2010 the Postgis Raster project
replaced it’s predecessor [PostGIS 2011]. Although PostGIS Raster is an ongoing project,
PostGIS version 2.0 is going to include raster support [Obe and Hsu 2011]. This article
discusses PostGIS Raster and describes a tool developed to upload raster data to PostGIS
as well as to retrieve and visualize the data stored in database, that was released as a plugin
for Quantum GIS, a free and open source GIS.

This article starts with an introduction on geographic raster database storage. Sec-
tion 3 describes the concepts applied in PostGIS Raster. Section 4 describes the Quantum
GIS plugin implemented to manage PostGIS Raster layers. Section 5 outlines an example
usage of SQL queries to perform processing and visualization of raster data stored using
PostGIS’ functions.

2. Related work

The main demands that drive implementations are visualization and processing efficiency,
interoperability and adequacy to client-server capabilities. The approaches for storing and
processing raster data might vary but the partitioning of raster in tiles and maintenance of
resolution pyramids are found in most implementations of raster storage.

The partitioning of a raster in tiles, usually of fixed size (for example 128 x 128
cells), allows the indexing of each raster part independently, resulting in efficiency gain
when just a raster partition should be processed or visualized. Resolution pyramids are
multi-level auxiliary structures that store downsampled (and also tiled) versions of the
original raster data. The bottom level contains the original resolution, while higher levels
contain the subsequent lower resolution versions. This feature is especially useful for
visualization purposes, when applications can retrieve the raster at a level according to a
desired zoom level [Vinhas et al. 2003].

One approach to store raster data is using files in a file system. This is the principle
of many softwares compliant with the Web Map Tile Service (WMTS) such as gdal2tiles
[Masó et al. 2010]. In this case, the raster data server is the file system itself. The main
advantage is that the data is served the same way that it is stored. One disadvantage is
lack of integration with processing functions so the server works only as a repository for
raster data.

Some implementations focuses on using the DBMS as a repository for the meta-
data about the raster, and the data itself is stored as a long binary with no semantics. This
approach is similar to the file system’s, with the advantage that it maintains vector and
raster data stored in the same DBMS. There might be some efficiency loss due to the in-
teraction with the DBMS for data retrieval before being decoded and handled by client
applications.

Performance improvement can be achieved by specialized raster DBMS such as
PARADISE and RASDAMAN, however, as non-standard servers, they increase the man-
agement needs of GIS applications working on top of them [Imran 2009]. An intermedi-
ate approach is to construct tiling and multi-pyramids using BLOB (Binary Large Object)
type, available on most object-relational DBMS, and adequate indexing and compression
mechanisms for efficient data retrieval. The TerraLib library follows this approach provid-
ing inside the library data upload and retrieval methods using SQL [Vinhas et al. 2003].

The GeoRaster feature of Oracle Spatial (the spatial extension of Oracle DBMS)
allows user to store, index, query, analyze, and deliver raster data and associated meta-
data. Similarly there is the RasterLite extension for SQLite. Although with different
implementations both aimed at the same goal: provide a raster data type that can be han-
dled similarly to the vector data types. The concept implemented by Oracle’s GeoRaster
doesn’t follow the expected behavior. Instead, an auxiliary table using the SDO Raster

type is created in order to store the gridded data that was assigned to a row in a Geo-
Raster table. This means that the object and the data are not stored together as expected
[Oracle Corporation 2011].

PostGIS Raster follows the same concept of similarity to vector data types behav-
ior, but the raster type objects are complete self-describing values in a table’s column.
The project also offers a set of SQL functions (like ST Intersects) to operate seamlessly
on vector and raster data. As an example, consider the computation of an elevation pro-
file following a vector feature (for example a road) from a grid (or raster) dataset with
elevation values.

3. PostGIS Raster

3.1. Storage

PostGIS Raster aims to implement a minimalistic yet complete raster data structure in
the database. There is a single raster type that can be used to define a database entity’s
attribute. In other words, PostGIS Raster allows the definition of a table where one (or
more) columns is of RASTER type. No restriction is implicitly imposed on the raster
instances in the column. This means that each row may contain raster tiles that may have
different sizes, overlap or snap to different grids [Refractions Research 2011]. Another
PostGIS Raster’s feature is the option to maintain the raster data itself in it’s original data
file outside the DBMS, while a representation is stored in the database for organization
and storage purposes.

This implementation is flexible enough to allow distinct uses of the Raster type
to support the concept of coverages. For example, one row in a table can represent a
complete image, a tile of an image or one image that is part of a large mosaic of images.
These possibilities fit most users’ needs.

3.2. Loading data

Once the Raster type is available in the spatial extension, it is necessary to have tools to
insert data into the DBMS. PostGIS 2.0 provides a Python script (”raster2pgsql.py”) to
upload raster data to a database with PostGIS Raster installed. The script depends only
on GDAL [Warmerdam 2008] but has no graphic interface. Sometimes it’s difficult for
the user to call the script with the right combination of parameters in order to make the
best use of PostGIS Raster storage flexibility.

GDAL’s command line utilities are able to read raster data stored in database and
save it back as a raster file, although, in order to facilitate raster data loading and retrieval
from PostGIS database, a graphic tool integrated to a GIS was developed and is described
in the next section.

4. The Quantun GIS Plugin for PostGIS Raster
Quantum GIS (or simply QGIS) is an open source GIS able to visualize, analyze and
edit vector and raster data. Since it’s earliest versions it has been able to handle vec-
tor data stored in PostGIS with no raster support. In order to read and write raster data
Quantum GIS uses GDAL that since version 1.6 includes a PostGIS Raster driver. Only
since version 1.8 the driver became stable and capable of reading irregularly tiled layers

[Refractions Research 2011]. Since GDAL is currently the only library able to read Post-
GIS’s Raster layers and is actively supported by the PostGIS Raster team, Quantum GIS’
support for PostGIS Raster was a natural transition.

QGIS Plugin API (Application Programming Interface) provides support for users
to add customized tools for specific functionalities The recommended environment for
creating plugins is using Python programming language and Qt interface toolkit. Once a
plugin is developed and tested it can be published in QGIS’ plugin repository1 maintained
by it’s development team.

4.1. Loading

QGIS PostGIS Raster Plugin’s first goal is to provide a graphical user interface to facilitate
the uploading of single and/or multiple raster data to PostGIS Raster, as can be seen in
Figure 1.

Figure 1. QGIS Plugin interface to upload raster to PostGIS

Connection information is read from QGIS’ settings. By default the interface ex-
poses only the minimum parameters needed to upload a single raster file to one table. The
interface allows the user to select the number of levels, in the multi-resolution pyramid,
to be built. The command line script did not have this functionality, so if a user wanted to
create four levels the script would need to be called four times.

Another important parameter that the plugin deals with is the Spatial Reference
Identifier (SRID) in which the raster is georeferenced. This is a unique integer identifier,
given by a specific authority that should be registered in the database. OGC recognizes the
EPSG (European Petroleum Survey Group) as the standard authority to provide SRIDs
and some raster formats (for example GeoTiff) include this information. The plugin is
able to extract this information and if it is available, avoids the task of finding it manually.

The “Advanced Options” allow users to select the table configuration that should
be used, permitting the construction of mosaics and coverages in one or multiple tables.
For example, in order to build a mosaic in a single table the user should append many files
to one existing table. Since the tiles are self-descriptive the GDAL driver is able to read
the mosaic as a single raster coverage.

1http://pyqgis.org/

4.2. Visualization
Once a PostGIS database is populated with raster data, users want to explore and visualize
them in QGIS. The PostGIS Raster plugin also supports this as shown in Figure 2. Initially
the plugin lists all tables that contains raster columns.

Figure 2. Interface to add a PostGIS raster layer to a Quantum GIS project

The “Reading mode” options allows the user to select how to interpret raster ta-
ble’s arrangement in the database. Since one table can store one raster grid (tiled or
untiled) or a mosaic of raster data, this option gives interpretation flexibility.

Choosing the option “Read one row as a raster” the program reads raster data from
a single row. It can be a whole image (in a mosaic) or a single tile from a tiled raster table.
Whenever the user wants to see the data stored in a table as whole, the option “Read one
table as a raster” can be chosen. In this option if each row represents one image, the
mosaic is going to be shown. This option also allows vizualization of whole images when
a table represents a tiled image. Since some tables can store huge mosaics, the plugin
offers the option to “Read the table’s vector representation”. This allows the user to know
what regions each row covers before visualizing the desired area.

4.3. Raster metadata reading
In order to identify the available raster tables, the implementation uses PostgreSQL’s in-
ternal tables together with the PostGIS Raster’s metadata table. This approach allows the
plugin to list tables that contain raster columns even if there is no row in the metadata ta-
ble describing it. This feature makes it possible to explore every storage option described
in Section 4.2.

Since PostGIS Raster type is defined as a new PostgreSQL type, it’s definition is
stored in the “pg type” table. The query in Listing 1 makes use of this concept by search-
ing every table’s attribute for the raster type identifier. This is accomplished by joining the
“pg class” and the “pg attribute” tables that respectively store tables and attributes lists.

Listing 1. Query to list every existing raster table
SELECT re lname , a t t n a m e FROM p g c l a s s AS c l a JOIN p g a t t r i b u t e AS a t t

ON a t t . a t t r e l i d = c l a . o i d AND a t t . a t t t y p i d = ’ r a s t e r ’ : : r e g t y p e ;

5. Raster analysis using SQL
Using the WktRaster plugin together with other plugins available it is possible to process
raster and vector data on databases with PostGIS enabled. A valid procedure for process-
ing data is to use the “CREATE TABLE AS” statement. There must be an unique integer

column named “rid” to load the table as a Quantum GIS’ raster layer and a column named
“rast” that contains the raster tiles. Using this syntax the user can store the results of a
query as a new raster table and open it for visualization using the WktRaster plugin on
Quantum GIS.

Listing 2 shows an example SQL query that applies a threshold of height’s above
300m to a raster elevation table. The result of this query is a table containing two columns.
One column contains the raster data and the other column contains the unique integer.

Listing 2. Example raster processing using the WktRaster plugin
CREATE TABLE t e s t e r a s t e r AS SELECT r i d , s t m a p a l g e b r a (r a s t , ’CASE WHEN

r a s t BETWEEN 0 and 500 THEN 0 WHEN r a s t BETWEEN 500 and 1000 THEN
r a s t ELSE 0 END’) as r a s t from r e c o r t e 2 ;

6. Conclusion
The plugin developed allows Quantum GIS’ users to upload and visualize raster data
stored in PostgreSQL databases with PostGIS enabled. This is one of the first imple-
mentations that explores the georeferenced raster storage options of PostgreSQL in a GIS
environment. This opens path for raster and vector processing using the SQL language.

The plugin explores many of the possible storage options available through the
raster type. This flexibility allows easy image mosaicking and improves raster database
design options.

The raster visualization speed can be tunned using tiling and pyramids. This can
be a workaround for the current GDAL’s driver speed as it is in early development and
lacks many features that are still being implemented.

References
Imran, M. (2009). Extending an open source spatial database with geospatial image sup-

port: An image mining perspective.

Masó, J., Pomakis, K., and Julià, N. (2010). Opengis web map tile service implementation
standard.

Obe, R. O. and Hsu, L. S. (2011). PostGIS in Action. Manning Publications Co.

Oracle Corporation (2011). Georaster overview and concepts. http://download.
oracle.com/docs/html/B10827_01/geor_intro.htm, [accessed on Aug
9].

PostGIS (2011). Postgis. http://www.postgis.org, [accessed on Aug 9].

Refractions Research (2011). Chapter 8, raster reference. http://postgis.
refractions.net/documentation/manual-svn/RT_reference.
html, [accessed on Aug 9].

Vinhas, L., de Souza, R., and Câmara, G. (2003). Image data handling in spatial databases.
In V Brazilian Symposium on Geoinformatics, Campos do Jordão, Brazil. Citeseer.

Warmerdam, F. (2008). The geospatial data abstraction library. Open Source Approaches
in Spatial Data Handling, pages 87–104.

