
Generation Environment, Execution and Test Management
Software Embedded

Marcos Flávio Reis, Ana Maria Ambrosio, Mauricio Ferreira
Instituto Nacional de Pesquisas Espaciais, Brasil

marcosfsreis@gmail.com, ana@dss.inpe.br, mauricio@ccs.inpe.br

Abstract
This paper presents a proposed architecture for

creating and managing test embedded system to be used
in Software testing lab which is being deployed at INPE.
It will be considered as a technique for generating tests,
tests based on models, where test cases are generated
automatically based on a finite state machine. The
architecture also includes the management of test plans,
results of their execution, and the management of defects
detected. This architecture can contribute to the process
of creating and managing tests in the INPE´s testing lab.

1 Introduction

The embedded software development demands a high
reliability throughout all its process, especially when used
in space projects. These projects have different levels of
complexity, increasing the difficulty in validating their
functionalities. The improvement of activities and
processes of a project of software quality has been the
cause of several studies.

One of the approaches proposed for this type of
system are tests based on models. A according to Utting
[1] is a test strategy where test cases are derived
completely or partially from models describing some
aspect of a software. One way to accomplish this is
through representation of Finite State Machines (FSM).
There are some tools which are capable of automatically
generating test cases through the representation of a FSM.

Taking into account that the test cases are generated
automatically by the FSM, another important step is the
test plan, which predicts when, how and who will be
involved in testing. The test cases generated automatically
also compose the test plan..

 It is important that the failures and defects found
during the tests are reported at the end of the test process.
They will be corrected in the future and will serve as an
example.. This effort is treated as Defect Management.

One of the challenges to implement an environment
for testing is the integration of all involved activities
(Planning, Design, Implementation and Analysis).
Another challenge is to maintain and reuse of historic

activities that could serve as a knowledge base for future
work.

 This paper aims to propose architecture to underpin
the operation of a test lab of embedded software take into
account the variables such as automatic generation of test
cases through FSM, planning and design of tests, defect
management and knowledge base of tests.

2 Model based testing

Test-Based Model (TBM) consists of a technique for
automatically generating a set of test cases with expected
inputs and outputs, using models extracted from software
requirements [2]. The TBM models the aspects that the
system can pass during its operations. One approach is
very common for representing this model is by using
finite state machine (FSM), which represents the behavior
of the system through states, transitions and actions. The
FSM can be of two types: Moore and Mealy machine.

3 Test Management

Software test is any activity from the assessment of an
attribute or ability of a program or system can be
determined whether it achieves the desired results [3].

 The test management activity is to control the main
steps and testing activities. It basically consists of four
activities: Planning, Design / Construction,
Implementation and Analysis, as shown in Figure 1. A
major product of this management is the test plan, which
consists of a set of information that guide or represent the
testing process, as requirements, test cases and scenarios
[4]. Most of this information is documented in part,
scattered in multiple documents and are subject to change
as the project evolution

Figure 1: Representation of the phases in a test run

4 Defects Management

Can be defined as a set of processes and procedures
that seeks to store and manage information about the bugs
and failures found throughout the lifecycle of an
application, including from the project until its removal or
production output [5].

 The main information stored in a defect management
is: Identification of the defect, Description, Severity,
Priority, Risk associated, Status, and Proof / Evidence of
the existence of the defect.

 There are free tools for managing defects, but the
integration of these tools requires understanding and
adapting to the associated process.

5 Architecture

The initial proposal for the architecture to be used in
laboratory testing embedded software is a tool for
modeling finite state machine capable of generating
automatically test cases. For this activity will be used
CONDADO tool, created and maintained by Unicamp.
Test cases generated will be incorporated into a Open
Source test management tool called TestLink [6]. This
tool will be created test plans and managing all the tests.

Another important role in the architecture, which is
also part of the configuration management application, is
the management of defects, faults found in the tests will
be reported and managed until the problem is resolved.
For this task will be using another OpenSource tool called
Mantis [7].

There will be integration between the tools Mantis and
TestLink with the aim of linking to the faults found to the
test cases executed. This association is important for the
knowledge base to be powered by providing information
that could be used in future projects as a way to mitigate
such problems or proposed solutions. This information
knowledge base will be shaped according to the needs
encountered during deployment of the architecture.

The Figure 2 represents the architecture described for
implementing the laboratory testing of embedded
software.

Figure 2: Test Process Architecture

6 Conclusion

The proposed architecture uses key concepts of
planning and execution of tests and free tools, interlinked,
creating a knowledge base specific to testing embedded
software. This environment is presented with an
interesting option, both to increase the final quality of
software products developed, and to reduce costs, since
they are open source tools. Contributions, such as, enrich
the laboratory infrastructure in public institutions aiming
at verificating and validating an embedded software of
high complexity, such as the INPE embedded system..

7 References

[1] Utting and Legeard, Practical model-based testing: a
tools approach, Editora Morgan Kauffman, 2007

[2] Binder, R, Testing Object-Oriented Systems: Models,
Patterns, and Tools, 2000.

[3] Moreira, Trayahú e Rios, Emerson. Projeto &
Engenharia de Software – Teste de Software, Alta Books,
2003

[4] Molinari, Leonardo. Inovação e Automação de Testes
de Software, Visual Books, 2010

[5] Molinari, Leonardo. Testes Funcionais de Software,
Visual Books, 2008

[6] TestLink available at http://www.teamst.org/

[7] Mantis available at
http://www.mantisbt.org/download.php

