I nteresting Results with an Optimizing Compiler when Refactoring
Embedded Code

Marcio Afonso Arimura Fialho
DEA - Divisédo de Eletronica Aeroespacial,
INPE - Instituto Nacional de Pesquisas Espaciais
Sao José dos Campos, SP, Brazil
maaf@dea.inpe.br

Abstract characteristics, one of the best implementations of
these two star identification algorithms was ported

This paper presents interesting results obtainedgorg the dﬁ_slat(_)p PC ben(;/cljrogment to the target
when refactoring a piece of code compiled with annardware, whichis an embedded system.
optimizing compiler. Some of the results were A starsensoris an instrument normally used aboard
surprising, and at a first glance, contradictoryMost @ spacecraft to gather spacecraft attitude infaomat
of these results can be explained by the optinsimati /N spacecraft terminology, attitude means spatial
performed by the compiler. This article concludéth orientation, and instruments used to gather atitod
lessons learned about compiler optimizations andinformation that can be used to calculate the spafte

some recommendations useful to achieve better codattitude are collectively known as attitude sens6tar
optimization. sensors are fine attitude sensors, capable ofniatur

very accurate attitude measurements, with unceigain
usually in the order of few arcseconds (micro-ragja

or less. Basically a star sensor takes a pictutheosky

) _ . or space, extracts a list of observed stars froim th
In embedded systems, especially in those withinage and by comparing this list of observed stars

limited memory and computational power, consid- \yith an internal database of stars (star catalsgjbie
erations about performance issues and code effigien 1, jerive the relation between the star sensorerte

cannot be forgotten during the development processame to an inertial reference frame. This relai®the
However excessive preoccupation with code effigenC giar sensor attitude, which can be very easily eded
can lead to code that is hard to understand and, the spacecraft attitude, since the relation betw
maintain, and may become unreliable. these two reference frames are known from the
This paper presents results obtained duringspacecraft assembly and alignment processes.
refactoring a piece of embedded code, some of which At the heart of the process of computing the star

were surprising, proving that some common gensors attitude lies the star identification aion

assumptions made by developers during codegiar D algorithm, for short). This algorithm mhaes

implementation are not always true. The main giars from the list of observed stars with stathénstar

motivation for refactoring was to improve code tar caa10g9. When a sufficient number of stars havenbee

and maintainability. matched (identified), the star sensor attitude ban
calculated.

2. Background The chosen star ID algorithm implementation,
ported to the embedded system, had a very large mai

In an effort to develop a Brazilian autonomous star function, followed by few small helper functionstime
sensor, a PC based software for testing algoritoms same module. This module was ported from PTASE,
this star sensor was created [1]. In this softwaaemed which was written in C++ to the embedded
PTASE, many versions of two base star identificatio environment, in plain C language. Since both lan-

algorithms were implemented [2]. After various $est guages are very similar, this migration was reéiv
were performed and considering the target hardwarestraightforward, with the exception of some modi-

1. Introduction

fications required due to naming conventions adbpte

in the embedded code and for some debugging fesature start_tinme = G ngGetTime();

present in PTASE but not in the embedded hardware. Li Ret Code = GildentifyStars(.....):
For embedded code running in spacecraft hardware,

code quality is very important, due to difficultiés

performing spacecraft maintenance after launch and igyre 1.1nstrumenting code to measure execution time by

associated high costs with a space mission. This the star ID algorithmGIngGetTimes a wrapper for the

end_tinme = A ngCGet Tine();

prompted a greater care during development of the RTEMS functionrtems_clock_get
embedded code to keep the code clean. _
Before refactoring, the main function of the st@r | To get comparable measurements every time the

module had 628 physical lines of code (including €St was run after a modification, the star ID &lpon
comments and blank lines) and 247 statements. Tha#/@s presented always with the same list of observed
huge size prompted splitting this function into man Stars. During the tests, no piece of code outsidestar
smaller functions during a code review, so the code!D module was modified.

would become easier to understand and maintairs Thi

function’s large size can be explained in partdunklof 4. Results

time for better organization during its development

and also by an attempt to prematurely optimize dode Before refactoring, the star ID module (Starldent.c
order to reduce function call overhead. had 1051 physical lines of code (LOC) and 5 funtio
Since the overall structure of the algorithm was The largest wasGildentifyStars with 628 LOC
preserved during the code refactoring, it was etquec (including comments, blank lines, etc) and 247 C
that after refactoring (mainly “extract function” language statements. Table 1 (below) and Table 2
refactoring), some loss in executable code size andhow many useful software metrics gathered during
performance would occur, due to the expected iserea module refactoring:
in function call overhead. To check for losses gaihs
obtained after every refactoring step the code was

. : Table 1 — Code size and execution time during
instrumented to allow measurement of time spent by

refactoring

the code and the executable code size was closely . number| largest '
monitored. file -~ | executable execution

SteP | Loc of | function ;) o (bytes) time’

functiong LOC

3. Method 0" | 1051 5 628 | 143652 120

ms

Before attempting to refactor the embedded code, a| A | 1125 8 514 143,508 1%:23

copy of the corresponding star ID module in PTASE 1158

was refactored, in order to check if refactoringuido B | 1206 11 253 | 143,558 o

be feasible, and also to provide a guideline thadd } 1158

be used when refactoring the embedded code itself. B | 1220 12 232 143,556 g

Refactoring was done mainly through the “extract c | 1269 14 160 143620 1158

function” technique. ' ms

The tests were performed in an embedded system D | 1349 16 147 143,748 1:1558

using the ERC-32 single chip processor[3], a prames = - -

based on the SPARC-V7 specification, running at 12 « measuied with an 8.333 ms r_esolut|on.

MHz. The system had 4 MB of RAM, being accessed step 0 = code before refactoring.

by the processor with zero waitstates. The code was _)

compiled with GCC version 4.3.2 cross-compiler for N the first column of Table 1 there is a label for

sparc-rtems 4.9 [4], with optimization level -O2. each step that allows these steps to be further
To measure the time spent by the star ID algorithm,referenqeOI n the text. Step 0 refers to the carferb

a call to thertems_clock_getfunction immediately refactor!ng,_whlle step D refers to the code after

before calling the star ID algorithm main function refactoring is completed. The second column present

(GildentifyStary and another immediately after, were the total number of lines in the modBearldent.cafter

made [5] (see Figure 1). The time difference betwee each refactoring step. The third column lists the
these two calls tdtems. clock_getwas saved in a number of functions in the module. The fourth shows

: the count of physical lines for the largest funatio
g;bbuegdgzlgrgggg created to check the operatiohef t (including blank and comment lines). The executable

size presented in the fifth column is the size tfoe 4.1. Useof the static keyword
whole application software layer binary image. This
layer is composed of 24 modules, including Much after this refactoring was performed, it was
Starldent.c and by the RTEMS operating system. noticed that the developer had forgotten to dediae
From these 143 kilobyteStarldent.caccounts for only functions in this module, that doesn't require exad
about 5 kilobytes. The last column lists the tirpers linkage, with the ‘static’ keyword. In C, when used
in GildentifyStarsand its subroutines when processing with a variable/function declared at file scopeg th
a standard list of observed stars. These time'static’ keyword tells the compiler that this vasla or
measurements were made with an 8.3333 mdunction doesn’t need to have external linkage,ciwhi
resolution. means that it will be visible only inside the maalul
Table 2 complements Table 1 with additional where it was declared. This allows further optimi-
software metrics, including the number of C stateime zations by the compiler, that would be impossilfle i
inside functions and counts of McCabe's cyclomaticthese functions/variables had to be visible outsite

complexity. module in which they were declared. But how much
gain can be obtained? Table 3 (below) gives some
Table 2 — Software metrics during refactoring answers:
max | state- | oo source
step | State- | ments fungtion module | code file Table 3 — Improvement with the use of #tatic
P ments in inside MVG size keyword
MVG y
_ function |functions (bytes) use of the statid]
0 247 309 46 75 48,241 SVN kevword in file executable execution
A 205 310 33 80 50,856 revision (m}(l)\gule) scopa size (bytes) time
B 111 322 14 87 50,369 ——
B | 100 | 323 14 87 | 51,018 missing in two
C 64 338 14 39 53 584 150 mter_nal 142,148 1.16s
D 55 351 12 91 55,944 functions
" measured with an 8.333 ms resolution. presentin
" step 0 = code before refactoring. 151 every mternal 141,572 1.16s
functions

Measured with a 10 ms resolution.
The second column of table 2 presents the number

of C language statements inside the function with t

|argest number of statements. The third column In table 3, the Column ‘SVN reViSion’ refers to the
presents the summation of statements inside every€vision number when committing changes made in the
function in the module. The fourth column shows the Software in the revision control system. The défeze
highest contribution from a single function to the between revisions 150 and 151 is just the additibn
overall module McCabe's cyclomatic complexity. The the ‘static’ keywords to these two functions where it

fifth column shows the overall module cyclomatic Was missing, an addition of only two words to thele.
complexity. However this simple modification reduced the code

The number of C language statements inside §ize in 576_ bytes, in a_module whose; total C.Ode siz

function is a much more meaningful metric than the after C(_)mp|lat|on) was just around 5 kilobytesisTis

number of physical lines or even the number ofdioé & NUge improvement!

code in a function, since the number of lines afeco

can vary significantly due to coding style, whilket 5. Discussion

number of statements is practically insensitivetie

coding style used. However we also show the number Looking at the second column from table 1 (column

of lines of code in Table 1 for completeness. Value ‘file LOC’) and the third column from table 2 (cotun

presented in the second and third columns of Table ‘max statements in function’) it can be seen tisathe

do not count empty statements, those consisting of refactoring progressed the overall source code rumb

single semicolon. of lines and statements increased as the large

The McCabe's cyclomatic complexity was GildentifyStarfunction was split into smaller functions,

measured with "CCCC - C and C++ Code Counter"and even though the size of individual functions on

version 3.1.4, a free software for measurement ofaverage decreased, the total number of functions

source code related metrics [9]. increased. At first glance, this might suggest that
have simply traded off complexity inside this large
function for complexity outside functions and ireth

function call hierarchy, without too much gain. loops. Probably this is what allowed the compiler t
However this is not the case. As that large fumctias perform a better code optimization. A similar gaias
split into many smaller functions, each important observed in PTASE, when the same refactoring was
segment of that function became a function wittaicle done in PTASE, using another compiler.

interface. In a sense, the code became more self On the other hand, one should not take this

documenting. Added to that, comments explainingrefactoring technique to extremes. Having too many

every parameter passed to these new functions wergmall functions with only one or two statementsoals

written, as required by the automatic documentationreduces code clarity. From our experience, it seem

system. These comments were responsible for much ohat good code clarity is better achieved when tions

the line count increase while the file was being have between 5 to 200 lines of code and the nuwiber

refactored. functions per module is between 5 and 20, excluding
As explained in the section II, one of the reasonsspecial cases.

the star ID algorithm was implemented with a very

large function was to avoid function call overhead, 51 The static keyword case

which can be very costly in some platforms. However

looking at the fifth column of table 1 we see thia¢ The huge improvement seen in section 4.1 can be
executable code size fluctuates around the sibadt exp|ained by the fact that the two functions areyve
before refactoring, sometimes increasing a bit, &ut similar. One of them increments an index, while the
other times decreasing a little. Also, contrary to other decrements the same index, however their
expectations, we can see in the last column, thaktructure is practically the same, to the point the
the processing time has actually decreased afteppject code in one function may be essentially
refactoring. These results suggests that somehew thduplicated in the other. Thus, it seems that duthrey
compiler is avoiding these function call overheads, gptimization allowed by the addition of thstatic
probably by merging functions with internal linkage keyword, the compiler noticed the strong similarity
that are small or are called only once, into thBeca petween those two functions, finding a better
function. This suggestion is confirmed when we 100K implementation where a single code could perforen th
more carefully at what happened between step B angunction of both functions, provided that some
step B’ during code refactoring. variables where set up correctly at the beginning,
The only difference between those two versions, isdepending on the case. With this optimization, we
that when going from step B to step B’ a functioasw believe that roughly the code of one of these fonst
extracted from the largest function in B, which &8 could be removed from object code. To prove this
lines and 111 statements. The extracted functionexplanation, an analysis of the generated assembly
having 25 lines and 12 statements overall, is used code would be required. This will be left for thatre.
the caller function to compute an attitude estinthsd Regarding execution time, there was no noticeable
is used to identify the remaining stars selecteddifference before and after the addition of static
for identification. Performing a binary comparison keyword. This is due to the fact that the affeatede
between the executable code generated from step B not in a critical section, so that any timing

with the code generated from step B’, no differencedifferences, if any, are smaller than the sensjbibif
was detected, which means that the object codeyur experiment.

generated by these two versions were identicals Thi In face of the reduced risk of name clashes that th

has .happened despite the fact .that the - extracted yqition of thestatic keyword brings to variables and
function had 12 statements, a function call anda@ll ¢, tions declared at file scope that don't neet el
variable, and is crucial for the stellar identifioa linkage, it's use is mandated or strongly recomneeind
algorithm. by most of the coding standards used in the aecespa

When going from step A to step B, it was seen a bigand high reliability industries [6] [7].
improvement in the processing time. The algorithm

became around 6.5% faster. Between those two stepS 5> The compiler documentation
the code inside two nested loops was extracted as a~

new function. It happens that is precisely in thbse . After discovering that the code produced from step
neSted loops that thg a_lgonthm spends most of it'sg g step B' where identical, we decided to chiack
time. When the code inside these loops was exttacte . compiler documentation [10] what compiler optim

some variables that_ hqd scope greater than theps, 0 - ;a0 switch was responsible for merging the exé
but were used only |n5|d_e this Ioop_ have been_md)_tved function in B’ with its caller. This extracted faiion is
the new extracted function, effectively changingith

scope to a smaller scope that does not involveethes

called only in one place, and was declared wit@rirdl
linkage.

The command line @2 optimization switch acts as
a master switch that enables many optimization

efficiency, only that code efficiency and perforroan
should be set as secondary goals, with safety and
clarity set as primary goals [7]. Another important
conclusion is that the programmer should neverebrg

switches in GCC. One of these, in GCC 4.3, is thethe ‘static’ keyword, as this oversight may sigrafntly

-funit-at-a-tinme switch which in turn turns the
-finline-functions-called-once. This last
switch considers for inlining every function with
internal linkage that is called only once. If thalldo
that function is inlined by the compiler, no separa
code is generated for that function.

The compiler documentation [10] warns that some
optimizations may introduce compatibility issueghwi

impair optimization, aside from increasing the rigk
name clashing in the linking process.

When implementing a system where performance is
critical, it's advisable first to check if the coilgy is
indeed able to perform these optimizations before
relying on them. We have used GCC 4.3.2 which is
fairly recent. Older versions of GCC and older
compilers might not be so good in code optimization

code that relies in assumptions that may becomeflSO, when compiler optimizations are being used i

invalid after optimization (such as a particuladening
of variables, etc). Hence it is strongly advisahks the

strongly recommended that the development team
reads the compiler manual carefully, in order town

developer read carefully the chapter about compilerth€ implications of the optimizations performed thy

optimizations in the compiler manual if he/she is
compiling code with optimizations turned on.

6. Conclusion

Compiler technology and compiler optimization
techniques have improved significantly in the last
decades, to the point that in many situations & ha

become hard to surpass code generated by a goo

optimizing compiler with handwritten assembly code

[8].

This experiment showed some remarkable results

from where some lessons could be learned:

The optimizing compiler used is capable of
performing many intra and interprocedural
optimizations, including the ability to merge
functions in order to avoid function call
overheads.

These and many other optimizations performed
by the compiler allow a very high performance
to be achieved without the need to hand
optimize code.

Many optimizations are only possible when
variables and functions are declared with the
‘static’ keyword. Hence, every function or

variable (declared at file scope) that doesn't
need external linkage should be declared with
the ‘static’ keyword.

compiler. This is specially true for projects wighme
safety criticality aspect, as ours.

In some very safety critical applications compiler
optimizations are severely restricted or even
completely forbidden by requirements. The resutid a
conclusions of this study do not apply to thesesas

This work has led to many new ideas that could be
better explored in future works. For example, one
theresting test would be to perform the same
comparison done here, but with optimizations turned
off to see how the employed refactorings would ciffe

code efficiency in this case.

" As additional suggestions for future works, this
experiment could be repeated with more precise time
measurements (using resolution of microseconds or
better), and using additional software metrics desi
those we have used.

7. Acknowledgments

First, we would like to thank Omnisys Engenharia
Ltda. and Wisersoft Informatica companies, who have
written a significant portion of the star sensor
embedded software, which has served as the basis fo
this work.

We are also grateful for the OAR Corporation for
freely making a great open source real time opwgati
system such as RTEMS available for download, and fo
RTEMS contributors, for their efforts in improving

These results provides another argument to theRTEMS quality and reliability.

recommendation that
optimizing code prematurely when implementing code,
since this may reduce code clarity,
optimizations that the programmer tries to perfdiyn

programmers should avoid

Many thanks to FINEP, who has sponsored the
development of the aforementioned star sensor sod a

and many of a significant fraction of the embedded software.

We would like also to thank for everyone who in a

hand can be better performed by a good optimizingmanner or in another contributed to this work.

compiler. However, this doesn't mean that the

programmer should completely forget about code

(1

(2

(3

(4]

(5]

References (6]

FIALHO, Méarcio Afonso Arimura. “Ambiente de
simulagdes e testes de algoritmos para sensores de
estrelas autbnomos2003. 120p. Undergraduate Thesis [7]
- Instituto Tecnoldgico de Aeronautica, Sdo José do
Campos.

FIALHO, Marcio Afonso Arimura. “Estudo
comparativo entre dois algoritmos de identificagco [8]
estrelas para um sensor de estrelas autbnomo gemcam
largo”. 2007. 237p. Master Thesis — Instituto
Tecnolégico de Aeronautica, Sao José dos Campos.

ATMEL Corporation. “Low-voltage rad-hard 32-hit
SPARC embedded processor TSC695FIgroduct [9]
datasheet. May 2005. (Doc. Rev. 4204C—-AERO-05/05).
Available online at:
<http://www.atmel.com/dyn/products/product_card?asp
part_id=3187>.

OAR Corporation. GCC Cross compiler system for the
SPARC-RTEMS targeAvailable at:
<http://www.rtems.com/ftp/pub/rtems/linux/4.9/fedtd
/i386/> retrieved in December 2009.

OAR Corporation.“RTEMS C User's Guide”Edition
4.9.0, September 2008. Available at:
<http://www.rtems.org/onlinedocs/releases/rtemsdocs
4.9.0/share/rtems/html/> retrieved in February 2011

(10]

MIRA Limited. "MISRA-C: 2004 Guidelines for the use
of the C language in critical systemsEdition 2.
Warwickshire, UK: MIRA Limited, July 2008 (ISBN
978-0-9524156-4-0)

Lockheed Martin Corporation. “Joint Strike Fightir
Vehicle C++ coding standards for the system
development and demonstration program.” Document
Number 2RDU00001 Rev D. June 2007

Byte Craft Limited. Proof that C can match or beat
assembly.2006.
<http://www.phaedsys.com/principals/bytecraft/byédc
tdata/bcCversusAssemblyProof.pdf> retrieved on
February 16th 2011.

Littlefair, T. et al. ‘CCCC - C and C++ Code Counter.

A free software tool for measurement of source code
related metrics by Tim Littlefair.2006.
<http://cccc.sourceforge.net/> and
<http://sourceforge.net/projects/cccc/>

retrieved on February 14th, 2011.

Free Software Foundation, Inc., ‘Options That Caintr
Optimizations’ in ‘Using the GNU Compiler Collection.
For GCC version 4.3)5 GNU Press, Boston, 2010. pp.
77-113. Available online at:
<http://gcc.gnu.org/onlinedocs/gcc-4.3.5/gcc.pdf>
retrieved on April 2nd, 2011.

