
FPGA-based fault injection architecture for real time
software dependability testing

Andre Corsetti
INPE

S.J.Campos, Brazil
andrecor7@gmail.com

Abstract: Fault injection is a useful technique for supporting
system validation. However, the non intrusiveness of fault
injection mechanisms is a challenge for the test architecture. This
paper presents a study of fault injection architectures for real
time systems testing with focus on dependability attributes. In
order to support testing of embedded real-time systems for space
applications regarding the use of a complete test methodology,
from model building to test generation and automatic test case
execution, a FPGA-based fault injection architecture is proposed.
The advantages of FPGA-based fault injection architecture are
highlighted in a case study which uses a fault injection prototype
developed to emulate failures in the communication channel.
Fault tolerance is an essential requirement for systems that
operate in the harsh space environment. The conception and
execution of fault scenarios supported by fault injection
mechanisms help the validation of the system behavior regarding
dependability attributes like robustness.

Space subsystem testing; fault injection; robustness; FPGA
based architecture;

I. INTRODUCTION

Software validation is an important activity in the
development of any software-intensive system that needs to be
reliable. Fault injection is an effective mechanism to evaluate
the system behavior facing emulated undesirable conditions.
Software embedded in space systems are dependable
computing systems which require special attention regarding
fault tolerance characteristics. This motivates the use and
extension of many validation techniques during different
software development phases. Fault Injection (FI) imposed
itself as a viable solution to the above problems [16]. Several
FI techniques have been proposed and practically
experimented; they can basically be grouped into simulation-
based techniques, software-implemented techniques, and
hardware-based techniques [16]. Each have pros and cons,
what make them best applicable in different project context
and for different objective.
In the Software document of the engineering branch of
European Cooperation for Space Standardization – ECSS, it is
stated: “5.6.4.2 b) The validation tests shall be “black box”,
i.e. performed on the final software product to be delivered,
without any modification of the code or of the data” [2]. This
widely used guideline in space projects sets a requirement that
make most of the fault injection methods unfeasible at latter
projects phase of black box software validation testing, since it

is denied the possibility for source code modification, source
code adding, or software data modification.
For the final software product validation as single black box
software or for validation of the dependability attributes of
communicating space systems, one should only use the
provided interfaces of the system. In this scenario a FPGA-
based fault injection architecture is proposed. It supports the
use of a formal test methodology based on automatic test
generation and fault injection test case execution. This
architecture integrates and extends the methodologies and
tools used in [3] and [4] for testing space systems.
This paper aims at presenting a fault injector prototype for
interoperability robustness testing, considering deviations in
communications, developed at INPE and discuss an extension
of the testing architecture to encompass chip level faults. The
paper is organized as follow. Section 2 presents a brief
discussion about fault injection and existing architectures.
Section 3 presents a fault injector prototype developed and in
use at INPE, section 4 discuss possible extension of the
presented fault injector considering the existing test
methodology and execution environment, and section 5
presents an extension of the fault injection architecture for
dependability testing using FPGA. Section 4 concludes the
paper with future work.

II. FAULT INJECTION

Fault injection is done to upset the system under test, in a
controlled manner, with possible conditions, events or data
that are undesirable in normal operation, aiming at the
validation of the system behavior. Test scenarios for fault
injection must mimic possible occurrences of real undesirable
conditions, events or data that the system may endure in
operation. The source of the faults detected in the software
operation may be: hardware or software.
Hardware faults occurring during system operation are
categorized mainly by duration. Permanent faults are caused
by irreversible device failures within a component due to
damage, fatigue, or improper manufacturing. Once a
permanent fault has occurred, the faulty component can be
restored only by replacement or, if possible, repair. Transient
faults, on the other hand, are triggered by environmental
disturbances such as voltage fluctuations, electromagnetic
interference, or radiation. These events typically have a short
duration, returning the affected circuitry to a normal operating

state without causing any lasting damage (although the system
state may continue to be erroneous). Transients can be up to
100 times more frequent than permanents, depending on the
system’s particular operating environment. Intermittent faults,
which tend to oscillate between periods of erroneous activity
and dormancy, may also surface during system operation.
They are often attributed to design errors that result in
marginal or unstable hardware. [5]
Software faults are caused by the incorrect specification,
design, or coding of a program. Although software does not
physically “break” after being installed in a computer system,
latent faults or bugs in the code can surface during operation
especially under heavy or unusual work-loads and eventually
lead to system failures. [5]
The methods and architectures to mimic these faults are, as
said, normally distinguished as: simulation fault injection;
software fault injection; and hardware fault injection.
In simulation fault injection the system under test is immersed
in a computational environment that may mimic the faults, the
system under test is normally a simulated model prototype.
The simulation injection has the benefit of been feasible at
early development stages of a project and providing ease of
use and control over the test. The disadvantage is that
simulation systems are complex by their own, so normally it is
needed a degree of abstraction in the tests and so forth a
differentiation from the real system.
In software fault injection, the objective of software fault/error
injection techniques is to modify the hardware software state
of the system under software control, thus causing the system
to behave as if a hardware fault were present. The argument
here is that since hardware functionality is largely visible
through software, faults at various levels of the system can be
emulated. Hence, this method of fault injection is quite
versatile because of the ability to alter the state of registers and
memory, is less expensive in terms of time and effort than
hardware implemented techniques, and the system under study
is never damaged during the injection. [6]
Advantages of software fault injection are flexibility and
controllability. Code may be altered, inserted or coupled in the
system under test to deterministically provide the mean of the
fault. Disadvantage is intrusiveness to enable the software
injector system. The altered software may not correspond to
the behavior of the unaltered one. Common methods include
offline fault injection, where piece of codes are altered to
provide a faulty code, and online fault injection, where piece
of codes are inserted or coupled in the software under test to
provide the mechanism of the fault.
Hardware fault injection uses separate hardware components
to stimulate the fault in the system under test. Faults may be
induced by special hardware, as radiation exposition [7], faults
may be inserted by hardware signals, as in pin signalizing
faults [8], or faults may be inserted in the system under test by
special fault injector hardware in the test target interfaces [3].
The advantage of hardware injection is its intrusiveness
compared to software injection, hardware injection may need
less or none altered/inserted code, and it does pass to the
external hardware most of the fault mechanism computational

load. The disadvantage with these approaches is that the fault
and error injection requires special hardware. In addition,
these approaches require accessibility to the hardware of the
target system which may be difficult or extremely expensive
to accomplish. Furthermore, this approach has the possibility
of damaging the system under study. [9]

III. PROTOTYPE UNDER USE

Embedded software robustness is a vital requirement in space
domain applications. A fault injector for robustness testing of
communicating systems [3] was developed at INPE, as an
extension of the QSEE project [15]. This fault injector is a
hardware fault injector that acts at the communication
channels of the target system via its interfaces with the test
system. This fault injector, named FEM (Failure emulator
mechanism), emulate failures in the communication channel
of interoperable space subsystems without modifying any
source code of the System Under Testing (SUT).
The injector acts in the middle of a communication channel
and can apply corruption of data and timing faults into the
messages exchanged by the sub-systems (S1 and S2). Figure 1
shows the FEM as part of the Test System, improving the
execution of interoperability test cases with controllability and
observability [3] in the lower interfaces

Figure 1. FEM architecture

FEM was implemented as a hardware fault injector using a
dedicated 16 bits micro-controller running at 16MHz and
discrete electronic circuitry. It operates counting messages that
are transferred in the communication channel in each
communication way. When injecting faults, the mechanism is
aware of the structure of the protocol used in the
communicating channel, and can work byte wise in applying
faults.
An unwanted overhead is injected by FEM when analyzing
bytes transferred. The overhead is less than two bytes time
transmitted in the communication channel. So a
communication channel of 9600 bits per second would have,
in worst case, an unwanted overhead of about two
milliseconds.
The fault injector is integrated at the automated test
environment [4] and supports the execution of the test cases
automatically generated following the model-based approach

presented in [3]. The benefit of this fault injector is the very
small intrusiveness in the SUT. The fault injector is
transparent when not injecting faults, and adds a negligible
unwanted time overhead when injecting faults. The
disadvantages of the injector is its capacity of space coverage,
the fault injector can only inject faults in the system’s
communication interfaces, not been able to possible apply
memory faults, processor faults or other internal system faults.
Possible faults injected by FEM violate two attributes of the
messages, its timing and its data. When inserting timing
deviations in the messages, FEM can manipulate the messages
to cause: lost messages; messages delays; message ordering
change; communication channel delay; and messages
clutching. When manipulating the data of the message, FEM
can: corrupt data; insert data; duplicate data; and delete data.
Lost messages are messages with theoretical infinite delay, it
does not pass from the sender to the receiver. Message delay is
a deviation delay inserted in the communication interfering
one message, possibly causing communication timeouts or
losing synchronism. Message ordering change is a case of a
major delay deviation applied to a message, making it be
received after other sent messages. Communication channel
delay is a delay inserted in the channel, all messages that are
transferred in it are delayed by some amount of time. Message
clutching is a specific case of a delay injection in a message or
a group of messages, making two or more messages clutch
together and been passed to the receiver in a small interval.
Data corruption is the application of a single or series of bit
flips in the message been transferred. Data insertion is the
stuffing of new bytes in some point of the message. Data
duplication is the duplication of the message and passing both
to the receiver after some defined time interval between them.
This time interval can even be enough to the duplicate
message being received after other sent messages. Data
deletion is the removal of some bytes from the message before
passing it to the receiver.
In Figure 2 one can see the FEM added to the Test System
facilities aiming at the validation of the expected robustness
behavior of the target subsystem (SwPDC) facing delayed
message received from EPP.

Figure 2. Test Environment

IV. FAULT INJECTOR EXTENSION

Aiming at the generalization and extension of the fault
injection mechanism presented in last section, a new
architecture is proposed based on a FPGA infrastructure. The
architecture takes into consideration the existing automated
test executor presented in [4] and the model-based approach
for test generation, named InRob, presented in [3]. InRob
creates service-based interoperability models of the
communicating systems and extend these models to cope with
robustness testing. Based on the cause-effect rationale the
InRob approach guides the addition of states and transitions in
the nominal models of interoperability in order to represent the
expected robustness behavior of each SUT subsystem facing
delayed message received from the other communicating
subsystem. This approach can be extended to be equally
applicable to some other types of faults, even considering fault
at chip level. The process of extending models to encompass
fault behavior is presented in [1]. The models would be
extended to represent system behavior related to undesirable
events of memory and processor faults, such as bit flip. From
those extended models, one can generate test cases
automatically and automate the execution. of dependability
testing.
The test execution automation using the new fault injector
would be a challenge because the automatic test engine would
have to have some control over the fault mechanism in order
to guarantee traceable test results. Actually, the QSEE-Tas
tool for automatic test execution [4], supports pin insertion
emulated faults in a system under test, as it uses multiple ports
for communication and to control the system under test. The
tool can be extended to control not only the system under test
but also an additional tool to inject faults in processor and
memory levels, that would be the new proposed fault injector
executor.
The extended test architecture should be able to use FEM fault
injection capabilities, and also inject memory and processor
level faults in the system under test, as well as be able to use
the existing methodology and test execution tools.

V. PROPOSED ARCHITECTURE

The new proposed FPGA-based architecture takes advantage
of the available soft-cores computers to space systems, as
LEON, and the capability of the FPGA to emulate micro-chip
hardware. The architecture would use a FPGA to emulate the
space system’s target micro-chip, and also provide hardware
circuitry provision to create into the FPGA a mechanism to
generate faults in specific points of the LEON emulated chip
or memory areas. Figure 3 depicts the use of the FPGA to
emulate the target micro-chip and to create to fault injector
mechanism that will have access to processor and memory
points of the emulated chip.
In this scenario, some of the FPGA pins would be used by the
emulated target chip as its IO ports, and some pins of the
FPGA would be used to control the fault injection mechanism.
Since both emulated micro-chip and the fault injector resides
inside the same FPGA, an alternate route may be created from

the fault injector to points of memory or processor areas, to
create controlled faults as bit flips at chip level.

Figure 3. FPGA circuit with emulated chip and fault

injector

The real time embedded space software would be loaded in
the FPGA emulated micro-chip and be able to run unmodified.
The benefits of this architecture is that no modification is
necessary in the software, and that the fault injector can be
seen as a parallel running hardware, using the characteristics
of parallel processing of FPGAs, with access to chip inside
circuitry, the fault injection can be deterministic in time and
space when injecting faults, that means that the fault would the
triggered at a predicted time and in a known point of the
emulated chip.
The fault injector circuit would be commanded by dedicated
FPGA pins, making it possible to be automated by testing tool,
and letting emulated target chip IO ports free to be
manipulated by FEM.
Some limitation of this architecture is that the target micro-
chip circuit is emulated by the FPGA. Even thou the logic of
the micro-controller is the same as the real micro-controller,
the circuit and its physical operation is not. In this case, it is
the circuit and physical operation of the FPGA.
This architecture would provide an emulated micro-chip,
capable of loading the developed space software, and ready
for use in dependability tests, since it is not target software
dependent. The test bed would extend the actual possible fault
capabilities of the test environment integrating itself with a
complete test methodology and realizing a general and ready
to use test bed for validation of space software.

VI. FUTURE WORK

The use of FPGA for speeding up fault simulation can be
found in [10], [11], [12], [13] and [14]. The closest one found
is [16], which uses FPGA to emulate circuits, and implements
a mechanism concurrent to the test emulated circuit to insert
faults in it. An extension of his referred work is the use of a
soft core for faults injection in operating space software, and
the proposed FPGA-based architecture would be integrated to
a complete testing process.
Theoretical analysis was done for the proposed architecture,
and it was considered feasible. It is important now to evaluate
FPGA development environments for creating experiments.

REFERENCES
[1] Mattiello-Francisco, F.; Martins, E.; Corsetti, A.; Cavalli,

A.R.; Yano, E.;” Extended interoperability models for timed system
robustness testing”. LATINCOM '09 : IEEE Latin-American Conference
on Communications, Colombie (2009)

[2] ECSS-E-ST-40C, “Software”, Third issue, 06 March 2009.
European Cooperation for Space Standardization

[3] Mattiello-Francisco, Maria de Fátima. InRob – Uma abordagem
para testes de Interoperabilidade e de Robustez de subsistemas
de tempo-real intesivos em software. 2009. 212f. Tese de
doutorado em Engenharia Eletrônica e Computação, na área de
Informática – Instituto Tecnológico de Aeronáutica, São José
dos Campos.

[4] Silva, Wendell Pereira da. QSEE-TAS: execução automatizada
de casos de teste para software embarcado em aplicações
espaciais. São Jos_e dos Campos: INPE, 2009. 103p. ; (INPE-
15662-TDI/1438). Dissertação (Computação Aplicada) Instituto
Nacional de Pesquisas Espaciais, São José dos Campos,
20/11/2008.

[5] Clark, J. A., Pradhan, D. K.. Fault Injection – A method for
validating computer-system dependability. Computer, New
York, v. 28, n.6, p. 47-56, June, 1995.

[6] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham, “FERRARI:
A Flexible Software-Based Fault and Error Injection System,”
IEEE Trans. Computers, vol. 44, no. 2, pp. 248-260, Feb. 1995.

[7] J. Karlsson, P. Lide´n, P. Dahlgren, R. Johansson, and U.
Gunneflo, “Using Heavy-Ion Radiation to Validate Fault-
Handling Mechanisms,” IEEE Micro, vol. 14, no. 1, pp. 8-23,
Feb. 1994.

[8] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C.
Laprie, E. Martins, and D. Powell, “Fault Injection for
Dependability Validation—A Methodology and Some
Applications,” IEEE Trans. Software Eng., vol. 16, no. 2, pp.
166-182, Feb. 1990.

[9] G.A. Kanawati, N.A. Kanawati, J.A. Abraham, “FERRARI: A
Flexible Software-Based Fault and Error Injection System”,
IEEE Trans. on Computers, Vol 44, N. 2, February 1995, pp.
248-260

[10] S. A. Hwang, J. H. Hong, C. W. Wu, “Sequential circuit fault
simulation using logic emulation”, IEEE Trans. On CAD, Vol.
17, No. 8, Aug. 1998, pp. 724 -736

[11] K. T. Cheng, S. Y. Huang, W. J. Dai, “Fault emulation: A new
methodology for fault grading”, IEEE Trans. On CAD, Vol. 18,
No. 10, Oct. 1999, pp. 1487 -1495

[12] L. Antoni, R. Leveugle, B. Fehér, “Using Run-time
reconfiguration for Fault Injection in Hardware Prototypes”,
IEEE Int.l Symp. on Defect and Fault Tolerance in VLSI
Systems, 2000, pp. 405-413

[13] C. Hungse, E.M. Rudnick, J.H. Patel, R.K. Iyer, G.S. Choi, “A
gate-level simulation environment for alphaparticle-induced
transient faults”, IEEE Trans. on Computers, Vol. 45, No. 11,
Nov. 1996 , pp. 1248-1256

[14] B. Parrotta, M. Rebaudengo, M. Sonza Reorda, M. Violante,
“New Techniques for Accelerating Fault Injection in VHDL
descriptions”, IEEE Int.l On-Line Test Workshop, 2000

[15] QSEE – Quality of embedded software for space applications.
http://www.cea.inpe.br/qsee

[16] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda,
M. Violante, "Exploiting FPGA for Accelerating Fault Injection
Experiments," ioltw, pp.0009, Seventh International On-Line
Testing Workshop, 2001

	I. Introduction
	II. Fault Injection
	III. Prototype under use
	IV. Fault injector Extension
	V. Proposed Architecture
	VI. Future Work
	References

