

Mapeamento agrícola do polo de fruticultura irrigada do Semiárido brasileiro a partir de bandas e índices espectrais de imagens de satélite e machine learning

Discente: Pedro Vinícius da Silva Brito

Orientadores: Dr. Rafael Santos

Dr. Michel Chaves

Setembro de 2024

São José dos Campos-SP

Introdução

Uso e cobertura da terra

Fonte: Adriano Kirihara (2021).

Fonte: Companhia de Desenvolvimento dos Vales do São Francisco e do Parnaíba (2017).

Fruticultura

Fonte: G1 Petrolina (2022).

Fonte: G1 AGRO (2023).

Fonte: Julien Pereira, G1 (2022).

Fonte: Folha de Pernambuco

(2021).

Fonte: Codevasf (2020).

Fonte: G1 Petrolina (2022).

MANGA - 9.355,98 HECTARES	
42%	
UVA - 6.922,30 HECTARES	BANANA ACEROLA OUTROS
28%	4% 4%
COCO - 1.944,65 HECTARES	5% MANGA
10%	43%
GOIABA - 1.079,85 HECTARES	9%
5%	
BANANA - 945,13 HECTARES	
5%	
ACEROLA - 890,07 HECTARES	
5%	UVA 31%
OUTROS - 862,28 HECTARES	51/0
5%	

Fonte: Distrito de Irrigação Nilo Coelho - DINC (2024).

Introdução

Cubo de dados de observação da terra e extração de séries temporais

Tempo

Índices espectrais

Fonte: Ghosh et. al (2021).

Índice de solo exposto

O objetivo é combinar bandas e índices espectrais de imagens de satélite para mapear áreas de cultivos agrícolas no município de Petrolina, Pernambuco, Brasil, utilizando séries temporais e algoritmos de ML.

Procedimentos metodológicos

Figura 1. Fluxograma das etapas metodológicas do trabalho.

Procedimentos metodológicos

MAPA DE LOCALIZAÇÃO DO MUNICÍPIO DE PETROLINA - PE

Figura 2. (A) Localização geográfica do município de Petrolina, Pernambuco. (B1) Amostras utilizadas no treinamento dos classificadores RF e TempCNN. (B2) Amostras utilizadas para validar os mapas classificados a partir da técnica de área ponderada.

6

Procedimentos metodológicos

	Bandas espectrais						
Disponibilidade	Banda	Descrição					
	B02	Blue					
	B03	Green					
	B04	Red					
PDC	B08	Nir					
BDC	B11	Swir16					
	B12	Swir22					
	B8A	Nir08					
	SCL	Cloud					
		Índices espectrais					
Disponibilidade	Índice	Fórmula	Referência				
BDC	EVI	$2, 5 \cdot \frac{nir-red}{nir+6\cdot red+7.5\cdot blue+1}$	Huete, Justice e Leeuwen (1999)				
BDC	NDVI	$\frac{nir-red}{nir+red}$	Rouse et al. (1974)				
	DBSI	$\frac{swir-green}{swir+green} - NDVI$	Rasul et al. (2018)				
	GNDVI	nir-green NDVI+green	Gitelson, Kaufman e Merzlyak (1996)				
	MNDBI	$\frac{swir22-nir}{swir22+nir}$	Faridatul e Wu (2019)				
Computado localmente	MNDWI	$\frac{green-swir}{green+swir}$	Xu (2006)				
	MSAVI	$\frac{2 \cdot nir + 1 - \sqrt{(2 \cdot nir + 1)^2 - 8 \cdot (nir - red)}}{2}$	Qi et al. (1994)				
	NDBI	$\frac{swir16-nir}{swir16+nir}$	Zha, Gao e Ni (2003)				
	C 11 11	nin-red (d T)	TT (1000)				

Tabela 1. Bandas e índices espectrais que serão utilizados os experimentos.

BDC = Brazil Data Cube; EVI= Enhanced Vegetation Index; NDVI = Normalized difference vegetation index; DBSI = Dry Bare Soil Index; GNDVI = Green Normalizad difference vegetation; MNDBI = Modified Normalized Difference Bare Land Index; MNDWI = Modification of Normalized Difference Water Index; MSAVI = Modified Soil Adjusted Vegetation Index; NDBI = Normalized Density Building Index; SAVI= Soil Adjusted Vegetation Index.

Tabela 2. Sequências dos 4 experimentos realizados no estudo.

Experimento	Atributo	Modelo	Período
01	Bandas		
02	Bandas	RF	
	Índices		2019/2020
03	Bandas		2017/2020
04	Bandas	TempCNN	
	Índices		

Figura 3. Padrões espectro-temporais de cada classe para as bandas B02, B03, B04, B08, B11, B12 e B8A obtidos via GAM.

Figura 4. Padrões espectro-temporais de cada classe para os índices DBSI, EVI, GNDVI, MNDBI, MNDWI, MSAVI, NDBI, NDVI, SAVI-1 e SAVI-2 obtidos via GAM.

11

Figura 5: Agrupamentos das séries temporais dos experimentos na grade 17x17.

Bandas espectrais					
Classe	Número de amostras	(%)			
Acerola	34	4,43			
Agropecuária/Solo exposto	83	10,83			
Área construída/urbana	89	11,61			
Banana	26	3,39			
Coco	65	8,48			
Corpos hídricos	120	15,66			
Goiaba	52	6,78			
Manga	43	5,61			
Outras culturas	70	9,13			
Uva	72	9,39			
Vegetação arbórea/arbustiva	112	14,62			
Total	776				
Bandas e ín	dices espectrais				
Acerola	55	6,73			
Agropecuária/Solo exposto	87	10,64			
Área construída/urbana	101	12,36			
Banana	40	4,89			
Coco	72	8,81			
Corpos hídricos	120	14,68			
Goiaba	43	5,26			
Manga	50	6,11			
Outras culturas	69	8,44			
Uva	69	8,44			
Vegetação arbórea/arbustiva	111	13,58			
Total	817				

Tabela 3. Amostras filtradas a partir da aplicação do SOM.

Figura 6: Porcentagem de confusão entre os grupos do agrupamento SOM com grade 17x17.

13

		Random Forest	TempCNN
	Acu	ırácia (%)	_
	Classes	Experimento 01	Experimento 03
	Acerola	82,2	85
	Agropecuária/Solo exposto	100	97,8
n ento do s	Área construída/urbana	93,2	91
	Banana	97,8	95,4
	Сосо	85,7	100
npCNN	Corpos hídricos	96,9	69
	Goiaba	78,3	77,3
	Manga	71,9	77,5
imento 03	Outras culturas	84	83
80.2	Uva	86,8	76,9
imanta 04	Vegetação arbórea/arbustiva	91,2	92
		Experimento 02	Experimento 04
95,0	Acerola	98,2	93
	Agropecuária/Solo exposto	89,4	99,1
	Área construída/urbana	100	100
	Banana	90,9	97,1
	Сосо	96,5	88,5
	Corpos hídricos	83,3	91,1
	Goiaba	84,3	95,2
	Manga	93,4	87,4
	Outras culturas	76,3	77,5
	Uva	93,2	96,1
	Vegetação arbórea/arbustiva	91,1	82,9

Tabela 4. Validação *k-fold* nos conjuntos de treinamento dos experimentos com os modelos RF e TempCNN.

	Random Forest					TempCNN
		Acurácia (%)				
Nº árvores:	100	500	1000	1500	2000	
Experimento 01					Experimento 03	
	88,3	88,4	87,9	90,3	88,4	89,2
Experimento 02					Experimento 04	
	90,7	92,3	90,1	91,4	90,9	93,6

		Random Forest	TempCNN
	Acu	ırácia (%)	
	Classes	Experimento 01	Experimento 03
	Acerola	82,2	85
	Agropecuária/Solo exposto	100	97,8
nento dos	Área construída/urbana	93,2	91
	Banana	97,8	95,4
	Сосо	85,7	100
npCNN	Corpos hídricos	96,9	69
	Goiaba	78,3	77,3
	Manga	71,9	77,5
imento 03	Outras culturas	84	83
80.2	Uva	86,8	76,9
imanta 01	Vegetação arbórea/arbustiva	91,2	92
		Experimento 02	Experimento 04
93,0	Acerola	98,2	93
	Agropecuária/Solo exposto	89,4	99,1
	Área construída/urbana	100	100
	Banana	90,9	97,1
	Сосо	96,5	88,5
	Corpos hídricos	83,3	91,1
	Goiaba	84,3	95,2
	Manga	93,4	87,4
	Outras culturas	76,3	77,5
	Uva	93,2	96,1
	Vegetação arbórea/arbustiva	91,1	82,9

Tabela 4. Validação *k-fold* nos conjuntos de treinamento dos experimentos com os modelos RF e TempCNN.

	Random Forest				TempCNN	
		Acurácia (%)				
Nº árvores:	100	500	1000	1500	2000	
Experimento 01					Experimento 03	
	88,3	88,4	87,9	90,3	88,4	89,2
Experimento 02					Experimento 04	
	90,7	92,3	90,1	91,4	90,9	93,6

		Random Forest	TempCNN
	Acu	ırácia (%)	
	Classes	Experimento 01	Experimento 03
	Acerola	82,2	85
	Agropecuária/Solo exposto	100	97,8
ento dos	Área construída/urbana	93,2	91
	Banana	97,8	95,4
	Сосо	85,7	100
pCNN	Corpos hídricos	96,9	69
	Goiaba	78,3	77,3
	Manga	71,9	77,5
mento 03	Outras culturas	84	83
0.2	Uva	86,8	76,9
ponto 04	Vegetação arbórea/arbustiva	91,2	92
		Experimento 02	Experimento 04
3,0	Acerola	98,2	93
	Agropecuária/Solo exposto	89,4	99,1
	Área construída/urbana	100	100
	Banana	90,9	97,1
	Сосо	96,5	88,5
	Corpos hídricos	83,3	91,1
	Goiaba	84,3	95,2
	Manga	93,4	87,4
	Outras culturas	76,3	77,5
	Uva	93,2	96,1
	Vegetação arbórea/arbustiva	91,1	82,9

Tabela 4. Validação *k-fold* nos conjuntos de treinamento dos experimentos com os modelos RF e TempCNN.

	Random Forest				TempCNN	
		Acurácia (%)				
Nº árvores:	100	500	1000	1500	2000	
	Experimento 01					
	88,3 88,4 87,9 90,3 88,4					89,2
	Experimento 02					
	90,7	92,3	90,1	91,4	90,9	93,6

14

		Random Forest	TempCNN
	Acu	ırácia (%)	
	Classes	Experimento 01	Experimento 03
	Acerola	82,2	85
	Agropecuária/Solo exposto	100	97,8
nento dos	Área construída/urbana	93,2	91
	Banana	97,8	95,4
	Сосо	85,7	100
npCNN	Corpos hídricos	96,9	69
	Goiaba	78,3	77,3
	Manga	71,9	77,5
imento 03	Outras culturas	84	83
89.2	Uva	86,8	76,9
imento 04	Vegetação arbórea/arbustiva	91,2	92
02.6		Experimento 02	Experimento 04
95,0	Acerola	98,2	93
	Agropecuária/Solo exposto	89,4	99,1
	Área construída/urbana	100	100
	Banana	90,9	97,1
	Сосо	96,5	88,5
	Corpos hídricos	83,3	91,1
	Goiaba	84,3	95,2
	Manga	93,4	87,4
	Outras culturas	76,3	77,5
	Uva	93,2	96,1
	Vegetação arbórea/arbustiva	91,1	82,9

Tabela 4. Validação k-fold nos conjuntos de treinamento dosexperimentos com os modelos RF e TempCNN.

	Random Forest				TempCNN	
		Acurácia (%)				
Nº árvores:	100	500	1000	1500	2000	
	Experimento 01					Experimento 03
	88,3	88,4	87,9	90,3	88,4	89,2
Experimento 02					Experimento 04	
	90,7	92,3	90,1	91,4	90,9	93,6

		Random Forest	TempCNN
	Acu	ırácia (%)	
	Classes	Experimento 01	Experimento 03
	Acerola	82,2	85
	Agropecuária/Solo exposto	100	97,8
mento dos	Área construída/urbana	93,2	91
	Banana	97,8	95,4
	Сосо	85,7	100
mpCNN	Corpos hídricos	96,9	69
	Goiaba	78,3	77,3
	Manga	71,9	77,5
rimento 03	Outras culturas	84	83
89.2	Uva	86,8	76,9
imente 04	Vegetação arbórea/arbustiva	91,2	92
		Experimento 02	Experimento 04
95,0	Acerola	98,2	93
	Agropecuária/Solo exposto	89,4	99,1
	Área construída/urbana	100	100
	Banana	90,9	97,1
	Сосо	96,5	88,5
	Corpos hídricos	83,3	91,1
	Goiaba	84,3	95,2
	Manga	93,4	87,4
	Outras culturas	76,3	77,5
	Uva	93,2	96,1
	Vegetação arbórea/arbustiva	91,1	82,9

Tabela 4. Validação *k-fold* nos conjuntos de treinamento dos experimentos com os modelos RF e TempCNN.

		Ra	ndom F	TempCNN							
			Acurácia (%)								
Nº árvores:	100	500	1000	1500	2000						
		Exp	perimen	Experimento 03							
	88,3	88,4	87,9	89,2							
		Exp	perimen	Experimento 04							
	90,7	92,3	90,1	91,4	90,9	93,6					

		Random Forest						
	Acu	rácia (%)						
	Classes	Experimento 01	Experimento 03					
	Acerola	82,2	85					
	Agropecuária/Solo exposto	100	97,8					
nento dos	Área construída/urbana	93,2	91					
	Banana	97,8	95,4					
	Сосо	85,7	100					
npCNN	Corpos hídricos	96,9	69					
	Goiaba	78,3	77,3					
	Manga	71,9	77,5					
imento 03	Outras culturas	84	83					
89.2	Uva	86,8	76,9					
imanta 04	Vegetação arbórea/arbustiva	91,2	92					
		Experimento 02	Experimento 04					
93,0	Acerola	98,2	93					
	Agropecuária/Solo exposto	89,4	99,1					
	Área construída/urbana	100	100					
	Banana	90,9	97,1					
	Сосо	96,5	88,5					
	Corpos hídricos	83,3	91,1					
	Goiaba	84,3 → 10,	9% ← 95,2					
	Manga	93,4	87,4					
	Outras culturas	76,3	77,5					
	Uva	93,2	96,1					
	Vegetação arbórea/arbustiva	91,1	82,9					

Tabela 4. Validação k-fold nos conjuntos de treinamento dosexperimentos com os modelos RF e TempCNN.

		Ra	ndom F	TempCNN							
			Acurácia (%)								
Nº árvores:	100	500	1000	1500	2000						
		Exp	perimen	Experimento 03							
	88,3	88,4	87,9	89,2							
		Exp	perimen	Experimento 04							
	90,7	92,3	90,1	91,4	90,9	93,6					

Figura 7: Classificações de uso e cobertura da Terra para 2019/2020 via RF para Petrolina-PE.

MAPAS DE USO E COBERTURA DA TERRA DO MUNICÍPIO DE PETROLINA - PE

Figura 8: Classificações de uso e cobertura da Terra para 2019/2020 via TempCNN para Petrolina-PE.

16

	AP(%)	AU(%)	AG(%)	Experimento 03				
Experim	ento 01				TC	ТС	ТС	
Classes	RF	RF	RF	Acerola	25	79	94	
Acerola	21	65	93	Agropecuária/Solo exposto	98	100		
Agropecuária/Solo exposto	100	85		Área construída/urbana	100	91		
Área construída/urbana	100	94		Banana	18	61		
Banana	17	62		Сосо	93	69		
Сосо	92	74		Corpos hídricos	100	100		
Corpos hídricos	100	100		Goiaba	42	58		
Goiaba	42	73		Manga	88	64		
Manga	62	85		Outras culturas	NaN	0		
Outras culturas	NaN	0		Uva	51	76		
Uva	54	54		Vegetação arbórea/arbustiva	100	100		
Vegetação arborea/arbustiva	100	100		Experimento 04				
Experim	iento 02	50		Acerola	32	60	93	
Acerola	39	58	92	Agropecuária/Solo exposto	100	91		
Agropecuaria/Solo exposto	100	88		Área construída/urbana	53	100		
Area construïda/urbana	62	94		Banana	19	67		
Banana	11	68		Coco	64	71		
	84	/8		Corpos hídricos	100	100		
Corpos hidricos	100	100		Goiaba	39	56		
Golaba	47	60 75		Manga	90	67		
Manga Outros culturos	45 NoN	/5		Outras culturas	NaN	07		
Outras culturas	INAIN 50	71		Uvo	50	82		
Uva Vogotocão arbáros/arbustivo	59 100	/1		Uva Vogotocão arbáros/arbustivo	100	100		
vegetação arborea/arbustiva	100	100		vegetação arborea/arbustiva	100	100		

Tabela 6. Valor de acurácia das imagens classificadas a partir da técnica de área ponderada.

RF = Random forest, TC = TempCNN, AP = Acurácia do

produtor; AU = Acurácia do usuário, AG = Acurácia global.

	AP(%)	AU(%)	AG(%)	Experimento 03				
Experimento 01					ТС	ТС	ТС	
Classes	RF	RF	RF	Acerola	25	79	94	
Acerola	21	65	93	Agropecuária/Solo exposto	98	100		
Agropecuária/Solo exposto	100	85		Área construída/urbana	100	91		
Área construída/urbana	100	94		Banana	18	61		
Banana	17	62		Сосо	93	69		
Сосо	92	74		Corpos hídricos	100	100		
Corpos hídricos	100	100		Goiaba	42	58		
Goiaba	42	73		Manga	88	64		
Manga	62	85		Outras culturas	NaN	0		
Outras culturas	NaN	0		Uva	51	76		
Uva Varata až a sub áras (aubustina	54 100	54 100		Vegetação arbórea/arbustiva	100	100		
vegetação arborea/arbustiva	100	100		Experimento 04				
Experim	20	50	02	Acerola	32	60	93	
Acerola A gronoguária/Sala avecasta	39 100	58 00	92	Agropecuária/Solo exposto	100	91		
Agropecuaria/Solo exposio	62	00		Área construída/urbana	53	100		
Area construida/urbana	02	94 69		Banana	19	67		
	84	08 78		Сосо	64	71		
Cornos hídricos	100	100		Corpos hídricos	100	100		
Goiaba	47	60		Goiaba	39	56		
Manga	43	75		Manga	90	67		
Outras culturas	NaN	0		Outras culturas	NaN	0		
Uva	59	71		Uva	59	82		
Vegetação arbórea/arbustiva	100	100		Vegetação arbórea/arbustiva	100	100		

Tabela 6. Valor de acurácia das imagens classificadas a partir da técnica de área ponderada.

RF = Random forest, TC = TempCNN, AP = Acurácia do

produtor; AU = Acurácia do usuário, AG = Acurácia global.

	AP(%)	AU(%)	AG(%)	Experimento 03				
Experimento 01					ТС	ТС	ТС	
Classes	RF	RF	RF	Acerola	25	79	94	
Acerola	21	65	93	Agropecuária/Solo exposto	98	100		
Agropecuária/Solo exposto	100	85		Área construída/urbana	100	91		
Área construída/urbana	100	94		Banana	18	61		
Banana	17	62		Сосо	93	69		
Сосо	92	74		Corpos hídricos	100	100		
Corpos hídricos	100	100		Goiaba	42	58		
Goiaba	42	73		Manga	88	64		
Manga	62	85		Outras culturas	NaN	0		
Outras culturas	NaN	0		Uva	51	76		
Uva	54	54		Vegetação arbórea/arbustiva	100	100		
Vegetação arbôrea/arbustiva	100	100		Experimento 04				
Experim	iento 02	= 0		Acerola	32	60	93	
Acerola	39	58	92	Agropecuária/Solo exposto	100	91		
Agropecuária/Solo exposto	100	88		Área construída/urbana	53	100		
Area construída/urbana	62	94		Ranana Banana	10	67		
Banana	11	68		Coco	64	71		
Сосо	84	78		Corros hídricos	100	100		
Corpos hídricos	100	100		Corpos muricos	20	100		
Goiaba	47	60		Golada	39	50		
Manga	43	75		Manga	90	67		
Outras culturas	NaN	0		Outras culturas	NaN	0		
Uva	59	71		Uva	59	82		
Vegetação arbórea/arbustiva	100	100		Vegetação arbórea/arbustiva	100	100		

Tabela 6. Valor de acurácia das imagens classificadas a partir da técnica de área ponderada.

RF = *Random forest*, TC = TempCNN, AP = Acurácia do produtor; AU = Acurácia do usuário, AG = Acurácia global.

	AP(%) AU(%) AG(%)			Experimento 03				
Experim	nento 01				ТС	ТС	ТС	
Classes	RF	RF	RF	Acerola	25	79	94	
Acerola	21	65	93	Agropecuária/Solo exposto	98	100		
Agropecuária/Solo exposto	100	85		Área construída/urbana	100	91		
Área construída/urbana	100	94		Banana	18	61		
Banana	17	62		Сосо	93	69		
Сосо	92	74		Corpos hídricos	100	100		
Corpos hídricos	100	100		Goiaba	42	58		
Golaba	42	73		Manga	88	64		
Manga	62	85		Outras culturas	NaN	0		
Outras culturas	NaN 54	0		Uva	51	76		
Uva Vogoto ožo orbáros (orbustivo	54	54		Vegetação arbórea/arbustiva	100	100		
vegetação arborea/arbustiva	100	100		Experimento 04				
Acorolo	20	58	02	Acerola	32	60	93	
Accioia Agropecuária/Solo exposto	100	20 88	92	Agropecuária/Solo exposto	100	91		
Ároa construída/urbana	62	04		Área construída/urbana	53	100		
Area construita/urbana Banana	11	94 68		Banana	19	67		
	84			Сосо	64	71		
Corpos hídricos	100	100		Corpos hídricos	100	100		
Goiaba	47	60		Goiaba	39	56		
Manga	43	75		Manga	90	67		
Outras culturas	NaN	0		Outras culturas	NaN	0		
Uva	59	71		Uva	59	82		
Vegetação arbórea/arbustiva	100	100		Vegetação arbórea/arbustiva	100	100		

Tabela 6. Valor de acurácia das imagens classificadas a partir da técnica de área ponderada.

RF = *Random forest*, TC = TempCNN, AP = Acurácia do produtor; AU = Acurácia do usuário, AG = Acurácia global.

Conclusão

- A metodologia desenvolvida para integrar cubos de dados de observação da Terra, utilizando bandas e índices espectrais, possibilitou mapear os tipos de classe de uso e cobertura da Terra descritos neste estudo, por meio de SITS e algoritmos de ML, especialmente para os principais cultivos agrícolas no município de Petrolina-PE.
- O desempenho dos modelos em termos de acurácia foi pequena, com uma diferença de apenas 1% entre o RF e o TempCNN.
- A combinação que gerou a melhor classificação dos mapas para as culturas agrícolas foi usando o modelo TempCNN com apenas bandas espectrais (experimento 03).
- Este estudo pode contribuir para o avanço do mapeamento agrícola, fornecendo informações essenciais para a gestão sustentável dos recursos naturais no município de Petrolina-PE.
- Como trabalho futuro, serão realizados testes combinando bandas e índices espectrais com outros tipos de dados, como variáveis meteorológicas.

Referência

K. Ferreira, G. Queiroz, L. Vinhas, R. Marujo, and et al. Earth observation data cubes for brazil: Requirements, methodology and products. Remote Sensing, 12(24):4033, 2020.

M. Chaves, M. Picoli, and I. Sanches. Recent applications of landsat 8/OLI and sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18):3062, 2020.

Pelletier, C., Valero, S., Inglada, J., Champion, N., & Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156-168.

Pelletier, C., Webb, G. I., & Petitjean, F. (2019). Temporal convolutional neural network for the classification of satellite image time series. Remote Sensing, 11(5), 523.

R. Simoes, G. Camara, G. Queiroz, and et al. Satellite image time series analysis for big earth observation data. Remote Sensing, 13(13):2428, 2021.

L. Santos, K. Ferreira, and et al. Quality control and class noise reduction of satellite image time series. ISPRS Journal of Photogrammetry and Remote Sensing, 177:75–88, 2021.

Muito Obrigado!

pedro.brito@inpe.br

