
Direct Numerical Simulations of Turbulence in Python:
Development, Scaling, and Analysis Using Entropy

Measures and Gradient Pattern Analysis Techniques
Daniel A. S. Mendes1, Luan O. Barauna2, Rubens A. Sautter, Reinaldo R. Rosa4

Instituto Nacional de Pesquisas Espaciais - INPE
daniel.mendes@inpe.br1, luanorion1@gmail.com2, reinaldo.rosa@inpe.br4

Abstract
In the context of fluid dynamics, turbulence is characterized by irregular and chaotic fluid flow, with fluctuations in parameters such as velocity and pressure. The Reynolds

number, a dimensionless quantity based on the fluid viscosity, velocity, and characteristic length, plays a critical role in describing this phenomenon. Computationally, turbulence
is commonly addressed using different types of simulations, such as Direct Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes (RANS), and Large Eddy Simulation
(LES). To study the fundamental physics of turbulence, DNS is frequently employed to solve the Navier-Stokes equations directly, capturing all turbulence scales. These algorithms
are extremely computationally expensive, generally implemented in C/C++ or Fortran, and highly parallelized. This work aims to develop a Python-based method capable of
generating high-resolution Direct Numerical Simulations (DNS) for high Reynolds numbers. Utilizing a Pseudo-spectral Galerkin method [1] and leveraging GPUs and/or MPI (via
mpi4py), we create user-friendly code that operates efficiently on cloud platforms like Google Colab and Kaggle, and scales to supercomputers such as Santos Dumont. The focus
is on producing 2D turbulence data from various colored noise initial conditions, which will be analyzed using Gradient Pattern Analysis (GPA) [2] and entropy measures [3] to
investigate potential temporal phase transitions in turbulence.

MOTIVATION AND OBJECTIVES
The main idea is to build user-friendly scalable codes in Python to do Direct Numerical

Simulations (DNS) of turbulence solving the Navier-Stokes equations:

∂u⃗(x⃗, t)

∂t
− u⃗(x⃗, t)× ω⃗ = ν∇2u⃗−∇P,

where u⃗(x⃗, t) is the velocity vector, ω⃗ = ∇ × u⃗ is the vorticity vector, P = p + u⃗ · u⃗/2 is
the modified pressure and ν = 1/Re is the viscosity coefficient, where Re is the Reynolds
number.

Specific Objectives:
• Implement scalable pseudo-spectral Garlekin DNS codes in Python;
• Create super-resolution surrogate models using neural networks algorithms;
• Analyse and characterize data from the simulations with entropy measurements and GPA.

3D Turbulence from Taylor-Green ICs

Figure 1: 3D Turbulence velocity fields. Re = 1600, time step size = 0.05, total physical time
= 20, physical box = [0, 2π], grid size of shape 128× 128× 128, periodic BCs.

Figure 2: Performance tests for the 2D turbulence simulator on Google Colab, a simple desk-
top machine (Intel Core i5, 8gb ram) and on the SDumont supercomputer.

2D Turbulence from Colored Noise

Figure 3: 2D Turbulence vorticity fields. Re = 16000, time step size = 0.005, total physical
time = 200, physical box = [0, 2π], grid size of shape 512× 512, periodic BCs.

RESULTS: Entropies and GPA Moments

Figure 5: Entropy and Gradient Pattern Analysis moments measurements from the colored
noise ICs turbulence vorticity fields.

FURTHER WORKS

Figure 6: Super resolution network trained for predicting high-resolution turbulent flow from
a low-resolution input. Source: NVIDIA Modulus documentation.

Acknowledgements

References
[1] Mikael Mortensen and Hans Petter Langtangen. High performance Python for direct numerical simulations of turbulent flows.

Computer Physics Communications, 203:53–65, June 2016.

[2] Rubens. rsautter/GPA, June 2024. original-date: 2016-09-13T21:19:43Z.

[3] Luan Orion Barauna, Rubens Andreas Sautter, Reinaldo Roberto Rosa, Erico Luiz Rempel, and Alejandro C. Frery. Characterizing
Complex Spatiotemporal Patterns from Entropy Measures. Entropy (Basel, Switzerland), 26(6):508, June 2024.

WORCAP 2024, Workshop em Computação Aplicada, Setembro de 2024, São José dos Campos, Brasil


