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Motivation

There has been extensive research regarding how to leverage temporal as well as spa-
tial features for recognition tasks in Remote Sensing. Most approaches employ a pixel-by-
pixel analysis when dealing with temporal data, which does not account for relationships
between neighbouring pixels; while spatial features extraction already enjoys a number of
well-stablished methods, but it does not take into account pixel value change through time.

A variety of methods have been proposed to handle spatiotemporal data, but most rely
on adptations of Recurrent Neural Networks, which might not be the best as it handles spa-
tiotemporal data as first spatial, and then temporal, effectively decoupling both dimensions.
3D convolutions can be an effective tool as it traverses the space and time dimensions at the
same time.

Objective

This work evaluates the effectiveness of 3D-Convolutional Neural Networks (3DCNNSs) for
scene classification from high-resolution remote sensing images, specifically mining sites.
The following actvities were carried out to achieve this objective:

» Create a dataset for scene classification of mining sites from Planet imagery and Map-
biomas classification;

* Train, validate and test a 3D-CNN on the newly created dataset;
» Train, validate and test a traditional CNN using a single "slice” t of the dataset;

« Compare the 3D-CNN model’s performance with that of the (2D) CNN to evaluate the im-
pact of incorporating temporal information, specifically for mining sites.

Methodology

A dataset containing 264,000 scenes from Planet imagery, covering the period between
September 2020 and May 2024, was built. This imagery was labeled using Mapbiomas prod-
ucts [2] to create ground-truth data of mining sites. Two neural networks were developed: a
(2D) CNN that processes a single image and a 3DCNN that captures spatial and temporal
features from a datacube. Both models were evaluated using accuracy, precision, and recall.

The creation of the dataset involved developing a plugin for QGis, which generated the
frames later used to clip imagery into scenes.

For a better understanding of the difference between a 2D and a 3D convolution, see
Figure 1. While a 2D convolution (using sliding window) always results in a matrix, a 3D
convolution preserves volume if we are dealing with a datacube, effectively preserving the
temporal dimension.
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Figure 1: Difference between a 2D and a 3D convolution operation [1].

The overall architecture of both neural networks can be seen in 2. It follows the clas-
sic structure of features extraction and then classification. The classification step is a fully
connected network of 3 layers with 4096, 4096 and 1 neurons, respectively, where the last
neuron has a sigmoid activation function (for binary classification). The main difference be-
tween the (2D) CNN and the 3DCNN models rests in the features extraction phase: the
kernel dimensions are 3x3 and 3x3x3, respectively. This way we asserted that any difference
in performance could be attributed solemnly to the addition of the temporal dimension.
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Figure 2: Overall architecture for both (2D)CNN and SDCNN [3].
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For training we did not utilized all samples due to technical limitations. We trained both
models for 10 epochs each, using the Adam optimizer with learning rate of 0.001, beta val-
ues 0.9 and 0.999, epsilon 1e-08 and no weight decay.

We utilized the PyTorch framework for implementation of the model and training routine,
using t4 GPUs available through Colab.

Results

Due to some technical limitation, we could not use every sample from the dataset nor train
the model for many iteration, restricting it's potential.

The experiments described in this study were executed using a set of 500 samples per
class for training and 100 samples for test, randomly selected. The number of epochs was
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set to 10, and the threshold used was 0,9, i.e., outputs bigger than 0,9 were considered
"mining”.

As we can see in Figure 3, the training loss decreases smoothly until reaching a minimum
in 10 epochs. This shows that the CNN model is learning well from the train set, being able
to use it's knowledge for inference in the test set as well.
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Figure 3: Error and precision metrics through each training iteration for the CNN model.

Curiously, the 3DCNN converged faster than the 2DCNN, as we can see in figure 4, but
it seems to start overfitting as it reaches 10 plus epochs (the loss reaches a minimum while
the performance metrics start to deviate).
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Figure 4: Error and precision metrics through each training iteration for the 3DCNN model.

The 2D CNN, which used only spatial information, achieved an accuracy of 86%, a re-
call of 94%, and a precision of 81%. The 3D-CNN, incorporating temporal data, achieved a
slightly lower accuracy of 85% but a significantly higher precision of 90%, indicating that the
model was more confident in its predictions. Although the 3D-CNN had a lower recall (74%),
it demonstrated the advantage of temporal data for detecting subtle changes in mining activ-
ities.

Conclusions

According to the results for each model, the fact that the 3DCNN achieved better precision
indicates that it’s inference can be more reliable than that of the (2D) CNN model, even if their
overall accuracy were very similar. In contrast, the CNN'’s recall outperformed it's counterpart,
which indicates that it mislabeled more but let fewer mining sites scenes pass undetected,
which can be more desired for illegal mining sites prevention efforts, for example.

For future work, several directions promise to further improve the analysis and interpre-
tation of remote sensing data. Compared to classical approaches such as pixel-by-pixel
temporal analysis, there is potential for significant advances by integrating more sophisti-
cated and detailed methods. Further analysis of the structured dataset can reveal additional
patterns and insights, particularly in differentiating between mining and industrial mining, and
In understanding the temporal progression of mining sites.
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