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Abstract. We build mobility networks from Chinese commuting data and track
network metrics for the two months before the WHO pandemic announcement.
The Wuhan travel ban on 23 January imposed changes to the level of importance
of some central cities in the commuting patterns. While Beijing was the most
important city in both the inflows and outflows, Wuhan and other cities became
more relevant after the transition.

1. Introduction

The World Health Organization (WHO) declared the COVID-19 pandemic on 11 March
2020, after the cases of the new Coronavirus increased about 13-fold outside China
[Cucinotta and Vanelli 2020, Li et al. 2020]. Wuhan (province of Hubei) is the city of
patient zero, whose notification date back to 11 January 2020, followed by cases in Bei-
jing, Shenzhen, and Shanghai in the following days. As of 10 September 2022, China had
confirmed about 2,615,600 cases and 15,000 deaths [Dong et al. 2020].

Evidences suggest that the people commuting patterns are behind the spread of
viral diseases [Freitas et al. 2020a, Kraemer et al. 2020], and the outbreaks might trigger
individual and governmental-induced mobility restrictions [Freitas et al. 2020b]. It is of
paramount importance to quantify and qualify the changes in mobility patterns during
such events.

The Complex Network approach emerges as a natural mechanism to handle mo-
bility data, taking areas as nodes and movements between origins and destinations as
edges [Santos et al. 2019]. A Complex Network is a graph, a set of nodes (elements)
and edges (relations between elements) representing a Complex System: a system with
several elements with non-trivial relations.
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In this paper', we build several networks with the commuting of each day between
01 January 2020 and 29 February 2020. We monitor how their topological indexes change
over time, emphasizing four important dates: the beginning of the Spring festival travel
rush (Chunyun - 10 January), the Wuhan travel ban (23 January), the Lunar new year (25
January), and the end of the Spring Festival travel rush (18 February) [Tan et al. 2021].

Our results show that the travel ban imposed changes in Chinese commuting pat-
terns. While before the restrictions Beijing was the most important in both the in and
outflows of people between cities, Wuhan and other central cities assumed an important
role in the following days. We also observe this transition from shortest paths-based net-
work metrics.

This paper is organized as follows: Section 2 presents the methodology, followed
by the results and discussion of Section 3. The conclusions are in Section 4.

2. Methodology
2.1. Mobility and geographical data

We use the Baidu Mobility Data [China Data Lab 2020, Hu et al. 2020] from Jan 1 to Feb
29, 2020, two months prior to the WHO pandemic announcement. The dataset contains
the daily inflows and outflows of people between origins and destinations within 340
Chinese cities. The inflows and outflows compose two separate adjacency matrices. The
former presents the percentage of people that moves from ¢ to j, concerning 7. Node
j tracks the relative inflows from every other node and its inflows sum up to one. The
outflows behave similarly, but with the distribution of outflows concerning j. Moreover,
each node has at most 100 neighbors.

As a preprocessing step, we remove from the analysis the cities with unavailable
city codes and geographical coordinates [China Data Lab 2020, Lab 2020] and end up
with the daily flows between 303 cities over the aforementioned 60 days.

2.2. Network analysis

Based on mobility data, we build 60 networks, where nodes are places and connections
are flows of people commuting from one place to another within a day.

A network is a graph G(V, E)) with N = |V| nodes and L = |E| links. We use
here weighted networks, whose link weights I¥;; between pairs of nodes 7 and j are the
flows [Barabasi and Pésfai 2016].

We characterize the networks through their average weighted betweenness b,
weighted closeness c¢,,, and diameter [,

Since the flows of people are the weights in the network representation, the con-
cept of distance when computing the shortest paths must have a different interpretation:
the higher the weights between two nodes, the closer they are. Thus, we use the inverse
of link weights to compute the shortest path lengths /;;.

The weighted betweenness quantifies the node’s importance in the shortest paths
of the network. The higher its value, the more shortest paths pass through it. The weighted

'Data and source code are available at: https://github.com/vanderfreitas/chinese_
commuting patterns
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closeness states how close a node is to the others. Mathematically, it is the inverse of the
average shortest path lengths between ¢ and the other nodes. The network diameter is
the highest shortest path, or simply the highest possible distance (geodesic) between any
pairs of nodes.

3. Results and discussion

Figure 1 shows the mobility networks with the inflows and outflows of 2 January 2020
and 2 February 2020. The node colors correspond to the weighted betweenness and edge
colors represent the weights (flows). Note that the weights are in terms of percentages and
have comparable magnitudes in the four subfigures. What changes from one subfigure to
another is their disposition. Thus, one cannot infer the number of travelers, but the rates
of incoming/outgoing people from/to point A to/from point B.

Regarding the inflow networks, the higher betweenness centralities emerge in
cities that contribute more by sending people to other places, since they monopolize the
percentages and serve as a distribution hub. On the other hand, those with higher b,, in
the outflow networks are preferred destinations, because they receive a higher percentage
of people that leaves other cities.

Figure 1a and 1b shows that Beijing fits the role of a node that is important in the
shortest paths for distributing and receiving flows of people, before the travel ban. The
situation changes after the travel ban, with Wuhan becoming an important local bridge
within the Hubei province. About 11 cities from the same province received more than
20% of their incoming flow from Wuhan in the period. It does not mean that more people
commuted from Wuhan, but that most travelers that reached the mentioned cities came
from Wuhan.

Figure 2 presents the time series of a few selected network metrics: weighted
betweenness b,,,, weighted closeness c¢,,, and diameter /,,,,... The latter is inherently global
whilst the others are node-wise, which justifies showing their average. We decided to use
only weighted network metrics and, although others present transitions in the period of
the travel ban, their amplitudes are comparable and not worth showing.

All metrics present a transition between the Wuhan travel ban on 23 January, and
the Lunar new year, on the 25th, especially in the inflow networks. Recall the differences
between nodes of Figure la and Ic, that correspond to the inflow networks of before
and after the travel ban. The nodes of the first seem to have similar importance in the
shortest paths (Beijing is an exception with higher b,, than the others). In contrast, in the
second network one sees more nodes with higher importance (redder colors), increasing
the average. Interestingly, Beijing is not in the top three anymore, in agreement with
[Tan et al. 2021], that states that the outflow from the big cities decreased faster than
others in the transition. The weighted closeness has a similar behavior as observed with
b,, and the diameter follows the trends observed in b,, and c,,, although in a more wiggling
fashion.

4. Conclusions

We discuss the changes in the Chinese commuting network during the first two months of
2020, before the COVID-19 announcement by the World Health Organization. The data
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Figure 1. Mobility networks for: a) inflows and b) outflows of 2 January 2020; c)
inflows and d) outflows of 2 February 2020. Points represent cities’ cen-
troids, and edges represent the flow of people between cities. Edge colors
and widths are the flow intensities. Node colors are the weighted between-
ness. Higher values are in red and lower in green.
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Figure 2. Time series of normalized network metrics for the a) inflow and b)
outflow data. Their values lies within the following intervals a) 1,326.5 <
by < 2,151.0, 0.82 < ¢ < 0.99, 3.13 < e < 7.78; b) 1,434.12 < b, <
2,225.57, 0.74 < ¢y < 0.98, 3.36 < linae < 11.28.

we use consists of two matrices for each day, one with the normalized inflow and another
with the outflow between cities. Of all the people that arrive in a city (inflow), the data
maps the contribution of all other cities in relative numbers (percentage). The same is
valid for the people that leaves the city (outflow).

We show that the Wuhan travel ban on 23 January imposed changes to the level
of importance of some central cities in the commuting patterns. While Beijing was the
most important city in both the inflows and outflows, Wuhan and other cities became more
relevant in the following days.

As future work, we intend to quantify correlations between the cities that are more
central in the networks with the pandemic numbers.

5. Acknowledgement

The authors thank the Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico,
CNPq, Brazil (process: 441016/2020-0) and Coordenagdo de Aperfeicoamento de Pessoal
de Nivel Superior, CAPES, Brazil (process: 88887.506931/2020-00).

321



Proceedings XXIII GEOINFO, November 28 to 30, 2022, Sao José dos Campos, SP, Brazil.

References

Barabasi, A.-L. and Pésfai, M. (2016). Network science. Cambridge University Press,
Cambridge.

China Data Lab (2020). Baidu Mobility Data.
Cucinotta, D. and Vanelli, M. (2020). Who declares covid-19 a pandemic.

Dong, E., Du, H., and Gardner, L. (2020). An interactive web-based dashboard to track
covid-19 in real time.

Freitas, V. L. D. S., Konstantyner, T. C. R. D. O., Mendes, J. F., Sepetauskas, C. S.
D. N,, and Santos, L. B. L. (2020a). The correspondence between the structure of
the terrestrial mobility network and the spreading of covid-19 in brazil. Cadernos de
Saude Publica, 36:1-12.

Freitas, V. L. D. S., Moreira, G., and Santos, L. B. L. (2020b). Robustness analysis in
an inter-cities mobility network: modeling municipal, state and federal initiatives as
failures and attacks toward sars-cov-2 containment. PeerJ, page ¢10287.

Hu, T., Guan, W. W., Zhu, X., Shao, Y., Liu, L., Du, J., Liu, H., Zhou, H., Wang, J., She,
B., Zhang, L., Li, Z., Wang, P., Tang, Y., Hou, R., Li, Y., Sha, D., Yang, Y., Lewis, B.,
Kakkar, D., and Bao, S. (2020). Building an open resources repository for covid-19
research. Data and Information Management, 4(3):130-147.

Kraemer, M. U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B., Pigott, D. M., null
null, du Plessis, L., Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M.,
Vespignani, A., Tian, H., Dye, C., Pybus, O. G., and Scarpino, S. V. (2020). The effect
of human mobility and control measures on the covid-19 epidemic in china. Science,
368(6490):493-497.

Lab, C. D. (2020). China COVID-19 Daily Cases with Basemap.

Li, Q., Guan, X., Wu, P, Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S., Lau, E. H.,
Wong, J. Y., et al. (2020). Early transmission dynamics in wuhan, china, of novel
coronavirus—infected pneumonia. New England Journal of Medicine.

Santos, L. B. L., Carvalho, L. M., Seron, W., Coelho, F. C., Macau, E. E. N., Quiles,
M. G., and Monteiro, A. M. V. (2019). How do urban mobility (geo)graph’s topological
properties fill a map? Applied Network Science, 4(1):91.

Tan, S., Lai, S., Fang, F., Cao, Z., Sai, B., Song, B., Dai, B., Guo, S., Liu, C., Cai, M.,
Wang, T., Wang, M., Li, J., Chen, S., Qin, S., Floyd, J. R., Cao, Z., Tan, J., Sun, X.,
Zhou, T., Zhang, W., Tatem, A. J., Holme, P., Chen, X., and Lu, X. (2021). Mobility
in China, 2020: a tale of four phases. National Science Review, 8(11).

322



