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Abstract. In this work, we propose an open source and automated workflow for
semantic segmentation of remote sensing images. Even though it can be used
in other sensors, to evaluate this workflow, a case study has been conducted
applying a deep learning algorithm for segmenting clouds in images from WFI
sensor, onboard CBERS-4A satellite. Since WFI does not have a tailor-made
cloud segmentation algorithm, we customized our workflow based on the U-
net neural network to fulfill this gap. Our results are promising according to
our tests, although some problems were identified, like false positives over high
albedo targets. These problems suggest improvements that could be tackled in
the future.
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1. Introduction

A step to quantify and identify deforestation in remote sensing images is identi-
fying clouds. On average, the cloud cover on Earth’s surface is between 58%
[Rossow and Schiffer 1999] and 66% [Zhang et al. 2004]. When the object of analysis
of a remote sensing image is on Earth surface, like forests and cities, the clouds become
obstacles between the remote sensor and the object. Thus, detecting and removing clouds
are essential steps in remote sensing image analysis [Zhu and Woodcock 2012].

When monitoring large regions, handling data for segmenting clouds is a chal-
lenge. This is due to the great number of scenes that need to be processed to form a
mosaic covering a region. Each scene is composed by multispectral images, each one
containing data from specific spectral bands. Thus, a unique scene implies processing
one gigabyte of data. Additionally, each scene has metadata that must be preserved dur-
ing segmentation process.

In this context, this work develops a deep learning cloud segmentation workflow,
which can run on personal computers due to its reduced computational requirements. To
accomplish this, scenes are cropped in batches and loaded into memory at the training
step, preserving its spatial metadata. This workflow can deal with images from several re-
mote sensors with different characteristics. The only requirement is that input data should
be provided in the GeoTIFF file format. Thus, the problem solved in this study is to au-
tomatically handle geolocalized images for performing semantic segmentation tasks, al-
lowing the development of novel machine learning-based cloud segmentation algorithms.

The semantic segmentation problem is defined as follows: given an image I, for
each pixel X present in the image, determine to which class the pixel belongs. Where i is
the image row index, N is the image height, j is the image column index, M is the image
width, k is the image band index, and L is the number of the image’s channels. Formally,
let I be a remote sensing image so that [ = {Xijkli = 1,..N,j = 1,.. M,k =1,..L},
the semantic segmentation problem is to determine whether the pixel Xij belongs to a
determinate class.

In order to evaluate the workflow, this work also conducted a case study. A collec-
tion of results obtained from an U-net neural network architecture applied to CBERS-4A
WFI remote images is discussed with the goal of evaluating the proposed workflow in
cloud segmentation tasks. Images from CBERS-4A Wide Field Camera (WFI) sensor
were chosen because they are designed to monitor Amazon rain forest [Souza et al. 2019]
and track back deforestation and forest fires. CBERS-4A is capable of making revisits
within five days to a certain area [Epiphanio 2011]. This feature makes it a good choice
for deforestation monitoring tasks.

There are some systems to quantify and identify deforestation using WFI im-
ages, like PRODES and DETER [Souza et al. 2019]. However, even disclosing its data,
CBERS-4A, a satellite designed by Brazil and China, does not have its own algorithm
for cloud semantic segmentation. Currently, INPE uses an algorithm called Cmask
[Qiu et al. 2020] to segment clouds [Ferreira et al. 2020]. Nevertheless, Cmask has been
originally developed for processing Landsat images and it is not implemented to any re-
mote sensor onboard CBERS-4A. Because of that, the algorithm underperforms. This
fact may imply that many images are useless in the processes of forest monitoring.
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The rest of this work is organized as follows. Section 2 describes two different
branches of the state-of-the-art semantic cloud segmentation and related work. Section
3 presents the methodology, including each step of the proposed workflow, justifying the
way they are prepared. Section 4 shows the results of the presented tool applied to a
cloud segmentation task. Finally, section 5 presents the conclusion and future work to
complement the tool.

2. Related Work

Cloud segmentation could be divided into two large categories: physical - based algo-
rithms and machine learning algorithms. The physical based algorithms use rules based
on physical properties, like, for example, the relative angle of sensors to clouds and the
angle from the sun, to extract a potential cloud layer and a potential cloud shadow layer
[Foga et al. 2017]. This approach also has some disadvantages. First, there are several
different remote sensors, with their own spectral bands and resolutions. As a conse-
quence, their physical characteristics are inherent to each sensor and the algorithms can
rarely be generalized to more than one sensor. Second, each image goes through the
entire algorithm whenever it is segmented, therefore, a physical algorithm, like Fmask
[Zhu and Woodcock 2012], can take 0.5 to 6 min to segment a scene on an 8 core Linux
server. This makes semantic segmentation a time-consuming task to perform.

Fmask is one of the most used algorithms to segment clouds in Landsat TM images
[Zhu and Woodcock 2012]. Currently, it is common to use it for benchmarking other
algorithms. It is employed, for example, to evaluate another implementation of Fmask,
called CFMask, comparing its performance with ”Automated Cloud Cover Assessment”
(ACCA) system [Foga et al. 2017].

The Sen2cor algorithm also is a physics-based algorithm, that can classify clouds
using just physical data presented in each spectral band [Louis et al. 2016]. This algo-
rithm is created for Sentinel-2 Level-1C products. Cmask, Fmask, and sen2cor algorithms
provide evidences on the relationship between physical based algorithms and remote sen-
sor, in a way that the major part of algorithms difficultly adapt to different sensors.

A neural network architecture has been developed allowing the input of
remote sensing images of different dimensions, the model is called CloudFCN
[Francis et al. 2019]. The mechanism of receive different input images is very useful to al-
low entering data from more than one remote sensor, thus making the model more generic.
Using the Biome dataset [Foga et al. 2017] the model showed an accuracy of 82.81% for
RGB scenes and 91.00% with all spectral information versus CFmask [Foga et al. 2017]
with 65.69% using all spectral bands available. The lack of spectral bands, using only
RGB bands, made it difficult to the model to predict some cases of snow, sand (when it is
used remote sensor of high resolution) and other objects that present high albedo.

A new approach for detecting clouds even with hardly distinguishable scenery has
been created [Jeppesen et al. 2019]. The model is a neural network built from U-Net and
got meaningful results. The ”Biome” and “’Sparcs” datasets [Foga et al. 2017] were used
to evaluate the model divided it into three situations. First, the model is trained with the
Biome dataset and evaluated with Sparcs, and vice versa. Second, the Fmask algorithm
generates the groundtruth masks. Finally, the model is trained and tested on the same
dataset using image-based cross-validation, where the training data are the groundtruth

194



Proceedings XXIII GEOINFO, November 28 to 30, 2022, Sao José dos Campos, SP, Brazil.

cloud masks. The model improves the FMask even when using just RGB bands in all
the three cited cases of evaluation. This case study has shown that, even with images
extracted from a remote sensor with few spectral bands, like CBERS-4A WFI, a deep
learning model can produce trustworthy cloud masks.

Currently, the algorithms for semantic segmentation on remote sensing images
mainly use deep learning strategies [Yuan et al. 2021]. This occurs because in the
last decade, more and more deep learning algorithms have demonstrated good perfor-
mance in tasks as object classification, performing better than humans in some cases
[Lee et al. 2017].

3. Workflows for Cloud Segmentation with Deep Learning Algorithms

The workflow is divided into two main components: model calibration and production
model. Workflow components are decoupled from each other. These steps are called in
two Jupyter notebook files [Kluyver et al. 2016]. Each notebook implements the main
control flow of each component, one for model calibration and another for the produc-
tion model. The notebook files act as an interface for the user, in which the user may
script the workflow in Python programming language [vanRossum 1995], configuring,
and connecting steps.

Model Calibration Production Model

Original
Scene

Original
Scene

Normalization

Mormalization

Subscenes

Run model
segmentation

Configure and
train the model

|

Model evaluation

L B L L Output
oo oy
Figure 1. Schema of the proposed workflow. The model calibration (left) is meant

to pre-processing the dataset and train the model. The production model
(right) is meant to apply new images to be segmented.
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The model calibration workflow component consists of several steps: pre-
processing remote sensing images (normalization and crop), configuring and training a
deep learning model, and compute metrics to evaluate the trained model.

Each step is implemented as a Python function based on the Keras [Ketkar 2017]
library that provides features for deep learning model development. The GDAL
[Warmerdam 2008] and NumPy [Oliphant 2006] libraries have been used to handle re-
mote sensing images without losing the georeferencing and “no data values” metadata.

3.1. Dataset

Clouds are particularly different entities from objects traditionally segmented in deep
learning tasks: the center of a cloud can be dense, with high albedo. However,
the border of a cloud can be fuzzy, and can be confused with the background
[Dowling and Radke 1990].

In this work, the Cmask algorithm is employed to produce a dataset of segmented
images. This strategy allow us to focus on the workflow development. The current dataset
is composed by 4 images from WFI remote sensor, that are divided into smaller images,
as shown in the figure 2, of 256x256x4 pixels, totaling more than 10.760 images with
its respective masks. Since the masks are obtained by applying the Cmask algorithm
[Qiu et al. 2020] to each image, they have errors associated and do not correctly represent
the ground-truth.

The first step in handling the dataset is to build a directory hierarchy that is divided
into the following:

* Original scene folder, to be filled with the original scenes (with all bands);

» normalized scene folder, to be filled with the respective normalized scenes;

* Cropped production folder, to be filled with subscenes from the normalized
scenes;

* Cropped production mask folder, to be filled with output masks estimated by the
model for each subscene.

In sequence, each scene goes through a Min-Max normalization step, which uses
a linear operation to transform the pixel’s values [Saranya and Manikandan 2013]. Here,
the original pixel’s values ranging from 0 to 10.000 are mapped to new values between 0
and 1. The purpose of the normalization step is to transform the image’s pixels in a way
that each image presents a similar distribution of its pixel values, which helps the neural
network optimize its parameters.

Figure 2. Demonstration of the image cropping step. On the left is the raw scene,
in the center is the raw scene with the subscenes in red, on the right is the
resulting subscene.
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3.2. Deep Learning Model

The chosen neural network has an U-net architecture [Ronneberger et al. 2015], due to its
performance and presence in the state-of-the-art. Its architecture is built in two parts. The
former is called encoder, and the latter a decoder. The encoder step consists of applying
convolutional operations followed by a maxpool downsampling to encode the input im-
age into feature representations at multiple different levels. The decoder step consists of
reconstructing the image through upsampling and concatenation at each layer level using
the features learned in the encoder step. The enconder-decoder strategy is what makes U-
nets good options for the segmentation task, extracting and mapping characteristics from
an image.

The tensor representing the subscene can be divided into several dimensions de-
pending on the available memory and the number of bands of the remote sensor. In this
study case, each tensor is an image with (256 pixels x 256 pixels x 4 bands). We have cho-
sen a U-net implementation from GitHub with configurable input dimensions [Zak 2021],
so that, the resulting workflow can also be configured.

The Keras library contains many metrics available to interpret the confidence of
a neural network output, except the F1-Score metric, so it is implemented. It is expected
that the user defines a loss function to finish the neural network model. All the loss
functions implemented in Keras library are allowed to be used as inputs at this step.

3.3. Training and Test Step

In the learning stage, the model must receive subscenes as input. The set of subscenes are
called batches. To load the batches and not use all the machine’s memory, a mechanism
called “generator” is built to iterate among the images, loading a batch and, after training,
reallocating memory to a new batch. In this way, the generator expects the batch size
hyperparameter as the input.

After the model consumes the input images and output their respective estimated
cloud masks, the ground truth masks will be compared to them. The metrics configured in
the previous step are then computed and stored in each pair estimated-ground truth masks.

3.4. Production Model

The first step in handling the dataset is to build a directory hierarchy. The directory folders
are divided into the following:

 Production scene folder, to be filled with the original scenes;

» Normalized scene folder, to be filled with the respective normalized scenes;

* Cropped production folder, to be filled with subscenes from the normalized
scenes;

* Cropped production mask folder, to be filled with output masks estimated by the
model for each subscene;

* Segmented mask folder, to be filled with the entire reconstructed mask.

If there are several scenes in the input dataset, the production model will create an
entire directory hierarchy for each scene.

The next step after building the directory hierarchy is to normalize and crop the
scenes, a process that is identical to the step in the Model Calibration component.
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In the next step, the subscenes are inputted into the pre-trained neural network and
the outputs are collected to build a mosaic using the "WARP” function present on GDAL
library.

4. Results

The workflow is entirely developed in the Python language and it is executed a 2.60GHz
Intel Core i7-9750H machine, with 8 gigabytes of RAM in the Windows 10 operating
system. The main employed libraries are Keras, for model implementation; GDAL, to
manipulate the georeferenced images; and NumPy, for handle tensors. The following
hyperparameters are used:

Table 1. Case study hyperparameter table

Hyperparameter

Dimension 256

Bands 4

Loss Function Binary cross-entrophy
Optmizer Adam

Metric Fl-score

Patience 5

Epochs 20

In the case study conducted to evaluate the workflow, it is used a dataset com-
posed by images from CBERS-4A WFI. These images have four spectral bands, Red,
Blue, Green and near infra-red. Each scene presented in the training step, must have
a ground-truth mask. Cmask algorithm extracted the masks used in this case study
[Foga et al. 2017].

In the case study, each subscene is 256x256x4 pixels, being 256 pixels in width
and height and 4 layers for red, green, blue, and near infrared spectral bands. The genera-
tor mechanism allows the pipeline to work using several images up to 2 gigabytes in size,
even with a machine with only 8 gigabytes of RAM.

To choose the loss function parameter the scope of problem must be analyzed.
Here, each existent pixel should be classified into two classes: “cloud” or ’background.”
This is a classic case of binary classification, where each pixel in an image either belongs
or not to a class. To this scope of problem, the binary cross-entropy, which is based on
Bernoulli’s formula, is suitable [Ruby and Yendapalli 2020].

The optimizer parameter is a function responsible for minimizing the loss
[Géron 2019]. Adam optimizer is one of the most popular and famous gradient descent
optimization algorithms [Bock and Weil3 2019]. It is a method that computes adaptive
learning rates for each parameter. It stores both the decaying average of the past gra-
dients, similar to momentum and the decaying average of the past squared gradients,
similar to RMS-Prop and Adadelta. Thus, it combines the advantages of both methods
[Kingma and Ba 2014].

Finally, as the case study has no weight distinction for false positives and false
negatives, we chose the F1-score metric to monitor the model learning.
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4.1. Performance metrics

The first information generated by the workflow is the history graph represented on the
Figure 3.

Training and Validation F1-Score
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Figure 3. Evolution of the model along the training step.

With this image, it is possible to see metrics in each interaction during the training
step, with the F1-score and loss being represented in each epoch. It is possible to observe
that, during the training, the model improves at each interaction (Training F1-score) and
that it shows a convergence after fifteen interactions. However, not always the validation
metrics at the training phase confirm the model performance.

Below, Figure 4 shows some masks from the tested subscenes. The input sub-
scenes appear in the left column, the input masks in the middle column, and the predicted
mask in the right column.

Input Image Input Mask Predicted Mask

Cloud Background

Figure 4. Some input data with the respective predicted masks for the U-net
model. Yellow means a high level of probability that the pixel is a cloud.
Blue means that there is a low probability that the pixel is a cloud.

The resulting masks present a color gradient between the background color (pur-
ple) and the cloud color (yellow), according to the confidence level of the model in
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the classification. To make a binary mask, another hyperparameter must be defined, a
confidence-level threshold. If the threshold is set to an arbitrarily chosen value such as
0.97, only pixels with 97% confidence will be colored in yellow as clouds. Everything
else will be purple. Therefore, it is important to find a threshold value that best avoids
wrong coloring. We avoid arbitrarily choosing a threshold value in our case study, pre-
serving the level of confidence analysis.

Input Image CMask Predicted Mask

Cloud Background

Figure 5. Some input data with the respective predicted mask that present a case
of false positive cloudy pixels. Yellow means a high level of probability that
the pixel is a cloud. Blue means that there is a low probability that the pixel
is a cloud.

As shown in Figure 5, exposed soil has a high albedo compared with vegetation,
causing the algorithm to missclassify.

The next step is to assess how the workflow works in a production scenario. After
entering the scene in the workflow, the entire scene is segmented and its output mask is
reconstructed and saved in the "Merged Files” directory.

Figure 6. Raw Scene. Figure 7. Mosaic mask.

Figure 7 shows a raw image from CBERS-4A dataset on the left, which the deep
learning model has never seen. On the right side, it shows the mosaic of the output-
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segmented masks. The mosaic image does not have a defined threshold for pixel confi-
dence levels. In this way, the pixel values are a gradient of values between 0 and 1. By
applying a threshold, it is possible to select only pixels where the model has been seg-
mented with high confidence. In Figure 8 no threshold is set, and the Figure 9 a 97%
confidence limit is used.

Figure 9. Mosaic mask
Figure 8. Mosaic mask. with threshold.

The two last Figures show the importance of defining a threshold for classify-
ing pixels. This process is called threshold tuning and it requires balancing the recall-
precision trade-off [Buckland and Gey 1994]. There are strategies for defining a threshold
in segmentation masks, but they are not addressed in this study.

5. Conclusion

This work developed and evaluated a workflow for semantic segmentation of remote
sensing images. The proposed workflow handles the dataset automatically, requiring
only hyperparameter inputs. The workflow is distributed as a free and open source soft-
ware, under the LGPL GNU license. Its source code can be found in the repository:
https://gitlab.com/ufopterralab/projeto-segmentacao-semanticas-cbers-4a-wfi.

The workflow can be configured for a more powerful machine (increasing sub-
scene size and batch size) or running on a personal computer, with less computing power.
Even with only 8 gigabytes of RAM, the workflow can train a deep learning model with
several images of more than 2 gigabytes each one. The choice of a threshold is excluded
from scope of this project, but is left open for future work.

The initial idea of building this workflow was to improve semantic segmentation
for the CBERS-4A remote sensor, but in the process of building the dataset and work-
flow, it became clear that the workflow itself could be a project that would help scientists
working with semantic segmentation of remote sensing images, requiring only the hyper-
parameterization of the model to obtain an initial result.

In the process of building the case study dataset, we identified a scientific and tech-
nological gap in cloud removal algorithms for the CBERS-4A WFI remote sensor. Se-
mantic segmentation algorithms that use deep learning appear able to outperform Cmask,
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which is currently used by INPE. Additionally, a groundtruth dataset is missing for this
remote sensor, limiting the attempts to implement and evaluate other machine learning
models to segment could in CBERS-4A WFI images.
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