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Abstract. In climate changes context Remote Sensing tools are widely used and
widespread in research. In this sense, Artificial Intelligence rises offering possi-
ble improves for environmental monitoring applications using techniques such
as Machine Learning for Anomaly Detection applied to Remote Sensing im-
agery to identify the spatio-temporal changes over the Earth’s surface. This
approach is explored in three high dynamic regions in Brazil assessing defor-
estation, fires and technological disaster areas using One-Class SVM and Iso-
lation Forest methods over MODIS, Landsat and Sentinel images.

1. Introduction

One of the biggest global challenges is breaking issues like greenhouse gases emis-
sion, deforestation, and other disasters impulsed by unstoppable consumption of nat-
ural resources [Steffen et al. 2015]. In this sense, the “United Nations 2030 Agenda”
provides a multidimensional and holistic vision of this subject, where sustainable de-
velopment goals rule how to combine human well-being with economic prosperity and
environmental protection to guide public policies to mitigate impacts on the environment
[Pradhan et al. 2017]. Unfortunately, Brazil lies at the center of debates regarding envi-
ronmental questions, since it has the largest tropical forest in the world.

The impacts of climate changes are a painful question in the country, once Brazil
had the largest area of deforestation between 2010 and 2015 [MacDicken et al. 2016].
The Amazon Forest previously mentioned is influenced by atmospheric and meteoro-
logical factors, such El Nino and La Nina whose intensification, combined with human
interactions, caused extreme events in past years [Jimenez et al. 2019]. Thus, the biodi-
versity found in unique biomes such Pantanal is at the mercy of threats caused by land
use changes and climate dynamics related with atmospherical air moves from Amazon
[Marengo et al. 2021].

In addition, technological disasters are a significant cause of surface dynamics
in Brazil. The reason of this approach comes from the recent technological disasters
caused by the failures on mining dams in Mariana [do Carmo et al. 2017] and Brumad-
inho [Rotta et al. 2020], which resulted in the death of hundreds of people in addition to
significant environmental impacts. Face to these events, the development of strategies and
tools to analyze and monitor mining dams has demanded attention.

In this scenario, Remote Sensing technology rises as a convenient tool for observ-
ing and analyzing the Earth’s surface. Beyond allowing register the information in differ-
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ent spectral wavelengths, the remote sensors also allow wide spatial and temporal analysis
[Jensen 2009]. Additionally to Remote Sensing data, the Machine Learning techniques
encompass the construction of algorithms able to identify and extract information from
large bases of data, which includes diverse studies and applications with Remote Sensing
data [Lary et al. 2016]. Anomaly Detection comprises a kind of unsupervised Machine
Learning technique that may be applied in Remote Sensing data to automatically identify
the temporal changes and dynamics over the Earth’s surface [Guo et al. 2016].

In the light of the presented discussions, this study addresses the use of Anomaly
Detection and Remote Sensing data to identify regions with high spectral-temporal dy-
namics. Furthermore, this research proposes and implements a prototype of an “anomaly
monitoring and warning system” fed by images acquired by the MODIS, Sentinel and
Landsat programs/satellites. Functionalities of the Google Earth Engine platform support
such implementation. A study case focuses on analyzing the regions at the center of en-
vironmental debate such the city of Altamira, Para, in Amazon Forest and areas affected
by the dams collapse in Mariana and Brumadinho.

2. Theory background
2.1. Anomaly Detection

Among the different techniques that permeate Machine Learning, Anomaly Detection
identifies events/elements with significantly distinct behavior compared to other observa-
tions. Usually, such techniques have been used in the identification of bank fraud, check-
ing for intruders in security systems, and in supporting medical analysis [Gu et al. 2019].
In addition to these applications, anomaly detection techniques are highlighted as a po-
tential tool for the environmental monitoring [Dereszynski and Dietterich 2011].

The Breaks For Additive Season and Trend (BFAST) [Lambert et al. 2013], Local
Outlier Factor (LOF) [Ma et al. 2013], Elliptic Envelope [Hoyle et al. 2015] and One-
Class Support Vector Machine (OC-SVM) [Chen et al. 2001] and Isolation Forest (IF)
[Liu et al. 2008] are example of Anomaly Detection methods found in the literature. In
special, the two latter mentioned methods have been successfully employed in remote
sensing studies [Rembold et al. 2013, Holloway and Mengersen 2018].

As a variant of the well-known and attractive Support Vector Machine (SVM)
method, the OC-SVM [Chen et al. 2001] deals with quantile estimation and anomaly de-
tection problems. Conceptually, starting from a set of observations Z, the OC-SVM
method provides a model capable of classifying the objects as part of a set of non-
anomalous elements according to a probability v of false-positive occurrence.

It is worth noting that the OC-SVM is parameterized by v € [0, 1] and other
parameters related to the adopted kernel function. Further details on kernel functions are
discussed in [Shawe-Taylor et al. 2004].

The Isolation Forest (IF) [Liu et al. 2008] comprises a low-computational cost
method able to overcome the difficulties when dealing with large databases. This method
has been used in Remote Sensing studies [Li et al. 2019] and other analyses involving
digital image processing [Alonso-Sarria et al. 2019].

In summary, the IF embodies an ensemble of decision trees, in this case, called
“isolated tree” (IT). According to the conceptual idea behind this method, when the

100



Proceedings XXIII GEOINFO, November 28 to 30, 2022, Sao José dos Campos, SP, Brazil.

data/objects are submitted to classification in a decision tree scheme, the anomalies tend
to present a short path to the root node. The expected length of this path is strictly
dependent on the number of decision trees in the ensemble and the size of the dataset
[Lesouple et al. 2021].

The definition of an IT starts from a sample set {x;,...,X,,}, where x; =
[zi1,...,74)7 € R? with components express a specific attribute in m observations.
This dataset may also be represented as a matrix X whose columns are the vectors x;,
for i = 1,...,m. The nodes of a IT may be either internal or external. While the earlier
have two descendants, the external node has no descendent and are called “leaf”. Based
in this structure, the IT sequentially randomly select a value p in the ¢-th attribute to split
X into two descendants. After recursively perform this process, the IT is defined. As stop
criterion for the IT expansion, is assumed: (i) the IT reaches its length limit; (ii) |X| =1;
or (iii) all the columns of X are equal.

Regarding the IT structure, the Anomaly Detection process is performed by scores
assigned to each x; according to the root-to-leaf path length that such vector pass-through
the IT, represented by h(x;). The average estimate of h(x;) for the external nodes is the
same as an unsuccessful search in a Binary Search Tree, expressed as:

2(m —1)

c¢m)=2H(m —1) — -

)
where H (i) = In(i) + 0.5772156649 is a harmonic number [Havil 2003] and ¢(m) is the
average estimate of A (-) considering the m observations. In turn, the anomaly score is:

_(E((xy))
s(Xi7m):2 ( C(T::)Z )
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where F(h(x;)) = %1 7 | h(x;) is the mean of h(x;) from a collection of ITs.

Therefore, it can be inferred that if F(h(x;)) tends to zero, the score tends to 1,
representing then an anomaly. On the other hand, when h(x;) tends to m — 1, s tends to
0, showing very likely regular data. Furthermore, when E/(h(x;)) tends to c(m), s(x;, m)
tends to 0.5 and then there is no anomaly distinction.

2.2. Spectral Indices

A spectral index comprises a combination of two or more spectral bands to provide a
particular representation of the Earth’s surface. Among a plethora of spectral indices
proposed in the literature, the vegetation indices take into account the spectral response
of chlorophyll targets concerning electromagnetic radiation from the Sun [Moreira 2000].

One of the most used vegetation indices for canopy characterization is the Nor-
malized Difference Vegetation Index (NDVI) [Rouse et al. 1974], which uses the red and
infrared bands as input data. This index has various application purposes, for example,
monitoring and mapping crops, droughts, pest damage, agricultural productivity, hydro-
logical modeling, and others [Xue and Su 2017].

The Normalized Difference Water Index (NDWI) [Gao 1996] comprises a spectral
index based on the region of electromagnetic spectrum sensitive to water presence. Its use
allows detecting particulate matter and suspended sediments in water columns.
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Let consider Z(s) = x where the components Z¢reen, Treqa and x g stands for

the radiometric response at the green, red and near-infrared wavelengths. The NDVI
IR — LRed and LGreen — TNIR

and NDWI values at the position s is computed by N ,
. TNIR T ZRed TGreen T TNIR
respectively.

3. Proposal of multitemporal anomaly detection

3.1. Conceptual formalization

Figure 1 depicts a general overview of the proposed method for multitemporal anomaly
detection.
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Figure 1. Overview of the proposed method.

Accordingly to this structure, as an initial step, it is defined the period of analy-
sis, the region of interest, a cloud cover threshold, and a remote sensor as a data source.
The anomaly detection method is also defined in the initial step. Such configuration (ex-
cept the anomaly detection model) is submitted as a request to the Google Earth Engine
(GEE), which consequently returns a collection of images that gives place to a multi-
temporal image series. A median image and cloud/shadow cover masks are determined
from such image series as support data for posterior use. In a second stage, the NDVI
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and NDWI are computed at each instant and then subtracted from the median image of
period for that study area to translate all the data around a common central tendency (i.e.,
the zero). Moreover, information from areas affected by cloud and shadow occurrences
are disregarded after applying the previously defined masks. After, the NDVI and NDWI
translated values in [—ao, +ac]| are used to train an anomaly detection model F' and
classify the complete dataset. The o is the dataset standard deviation and o € R is an
adopted scale factor. Lastly, a map about the multitemporal dynamics is produced accord-
ing to an anomaly counting over the analyzed period. Also, a map of p-value based on
the “run test of randomness” [Siegel and Castellan 1988] allows identifying regions with
high confidence regarding the occurrence of the changes.

3.2. Implementation details

The Python 3.8 was the programming language adopted to implement the proposed
method, as the monitoring prototype. Additionally, the Scikit-Learn library was used
to apply the Anomaly Detection methods. Moreover, the Pandas library was employed to
organize the information.

The Anomaly detection models are trained with basis on observed values of a
previously defined spectral index (i.e., NDVI or NDWI) in [—ao, +ac], where o is the
standard deviation of considered spectral index and o = 0.5 is a constant adopted to
control the training set regularity.

Lastly, the Google Earth Engine (GEE) Application Programming Interface (API)
is used to access the Remote Sensing image catalogs and obtain the multitemporal image
series according to the defined period, region, and sensor, based in Python. Landsat and
Sentinel data are considered in this study. The cloud occurrence threshold of 20% inside
the region of analysis is admitted to disregarding useless scenes.

4. Experiments

4.1. Synthetic data

To validate the purpose and optimize previously mentioned Anomaly Detection methods
from Remote Sensing applications, this project is assessed using 100 synthetic images
segmented into six degrees of anomaly probability for equal areas.

Once defined the image series, different parameter configurations were tested by
a grid-search procedure with 10-fold cross-validation and the respective results were as-
sessed in terms of F1-Score [Rijsbergen 1979] measure by considering six “classes of dy-
namic”. Such classes stands form “no anomalies”, “very low”, “low”, “medium”, “high”
and “very high” when the anomaly frequencies are 0%, 1-20%, 21-40%, 41-60%, 61—

80% and 81-100%, respectively.

4.2. Study area and Remote Sensing data

In order to assess the method proposed and discussed at Section 3, it is carried a practical
application regarding the analysis of temporal dynamics in regions divided into 2 groups:
Mariana-MG and Brumadinho-MG affected after the respective dam collapses; Altamira-
PA one of largests cities of Brazil in territorial area whose vegetation are threat by human
exploration and climate changes. Figure 2 shows the area locations.
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Figure 2. Spatial location of study areas.
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It is worth highlighting that the Mariana (Fundao) and Brumadinho (Cérrego do
Feijao Mine I) dams are located in Minas Gerais (MG). These areas are considered strate-
gic for the development of mining activity in Brazil, a sector responsible for 4% of the
national GDP and the generation of more than 2 million indirect jobs [IBRAM 2020]. The
disruption of these structures impacted the surrounding landscape, initially surrounded by
vegetation characteristic of the Atlantic Forest biome. Moreover, these dams were built
following the upstream heightening, which is less costly but with the greater risk of dis-
ruptions [Thomé and Passini 2018].

In turn, Altamira is located in the state of Para, north region of Brazil, inside Ama-
zon Forest. Based in Brazilian Amazon Deforestation Monitoring Program (PRODES)
data, since 2015 the deforestation rate increases in Amazon biome caused by many factors
that reach that region, such agricultural frontier dynamics, land grabbing activity and ille-
gal mining, being a key point to climate changes intensification [Silva Junior et al. 2021].

In this sense, Remote Sensing data used in this framework considered the area
of dams structure and detailing capability given by each sensor: MODIS, Landsat-8 OLI
and Sentinel MSI. Table 4.2 show the sensor used for each study area, the period of
analysis and the number of images collected in GEE API considering a threshold in cloud
occurrence of 10% for each instant.

Area Sensor Resolution [m] Period Images
Altamira MODIS 250 2010-2021 278
Brumadinho | Sentinel MSI 10 2016-2021 67
Mariana Landsat-8 OLI 30 2013-2021 79

Table 1. Data information from each study area.
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4.3. Results and discussion

Using synthetic data, Figure 3(b) displays the f1-scores comparison assessed to define the
Anomaly Detection Methods parameters and table 2 shows them.
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(a) The conceptual image structure. The (b) Fl-score values observed for OC-SVM v = 0.05 and Iso-
regions R1,R2,R3, R4, R5,R5 are rep-  lation Forest estimators. The color of each line assign the
resented in red, green, blue, orange, cyan  selected parameters to Anomaly Detection methods.

and magenta, respectively.

Figure 3. Synthetic data composition and parameter optimization.

OC-SVM Isolation Forest
Parameter Value | Parameter Value
kernel rbf number of estimators 40
kernel coefficient (vy) auto | MAX samples, contamination, | 4 . o

bootstrap, verbose, warm start
upper bound on the fraction of
training errors (v)

tolerance, shrinking, cache
size, verbose, max iterations

0.05

default

Table 2. Anomaly Detection Methods parameters.

Figures 4, 5 and 7 depicts a bi-temporal comparison using color compositions and
the respective multitemporal dynamic maps in terms of “anomaly detection counting” and
“p-value”. The first one was obtained by percentage discretization of anomaly detection
data, where the lowest 20% represents “Very low” label, and so on. The NDVI and NDWI
values are considered to obtain the results for Brumadinho, Altamira and Mariana areas,
respectively.

To validate and comparate the results generated by the proposed method, reference
samples collected from change maps of moments before and after dam failures were di-
vided into (i) No change areas; (ii) Change areas. These samples were applied at Anomaly
Detection maps, which can be observed in the histograms highlighted by Figure 6, whose
expected results were the decrease of “No changes” bars as they increase “Changes” bars
along anomaly count axis.
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Figure 4. Results using NDWI for Brumadinho dam area.
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Figure 5. Results using NDVI for Mariana dam area.

Concerning that results, the validation is closed with a build of confusion matrix
where x axis is represented by changed and unchanged regions in time series, in turn in
the y axis represents the samples of changes and no changes. The anomaly count data,
exposed in five labels, was clustered in a binary classification, were ‘Medium’ count of
anomalies was interpreted as transition areas. *Very Low’ and "Low’ labels were grouped
as "Unchanged’ while "High’ and *Very High’ labels as *Changed’. Table 3 shows the
validation metrics Kappa Score and Accuracy.

For assessing Altamira results, PRODES deforestation data between 2010 and
2021 was considered and overlayed under anomaly detection counting maps by three
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Figure 6. Anomaly count for reference samples and change map comparison.

Study area | Index | Method | Accuracy | Kappa

. 1F 0.849 0.747
Brumadinho | NDWI 0C-SVM 0.651 0316
1F 0.867 0.775

Mariana NDVI

OC-SVM 0.943 0.888

Table 3. Validation metrics for each method and study area

year periods through previously mentioned dates. Figure 7 shows the Anomaly Detection
maps and validation with PRODES data.

Focusing on the “anomaly detection counting” maps, it is possible to observe that
while the IF method delivers more consistent results, OC-SVM tends to overestimate the
frequency of anomaly occurrence, evidenced in validation of dam areas and in agricul-
tural fields in Altamira. Low-dynamic regions, like vegetation and exposed soil, are also
highlighted when the proposed method is equipped with the IF model.

Regarding the p-value maps, under a 5% significance, the pixels in black rep-
resents regions with not random behavior in terms of anomaly/regular occurrence over
time. Consequently, such regions demand attention when analyzing the obtained maps.
Among the possible causes are seasonal changes showed by targets like water bodies and
vegetation. In general, the p-value mapping results achieved with the IF model are more
consistent than those using the OC-SVM.

The whole process involved considerable computational costs. The reference ma-
chine was a desktop with 16 GB RAM and 500 GB of SSD memory. Generally, the time
of image processing and application of Anomaly Detection Methods can vary between
1.5 and 3 hours depending on spatial resolution of Remote Sensing data and study area
dimensions.
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(a) Results using NDVI for Altamira area. (b) Anomaly probability from PRODES deforesta-
tion areas in Altamira.

Figure 7. Anomaly Detection results and PRODES overlay from Altamira region.

5. Conclusions

Based on the presented results, it is possible to verify that the proposed method, viewed as
an environmental monitoring system prototype, could identify anomalies that correspond
to targets with high spectral-temporal dynamics.

It is noteworthy that the assessed Anomaly Detection models have different pre-
cision. The IF method was able to distinguish with better contrast the regions of anoma-
lies and regular and provide more consistent p-value maps (useful to identify seasonal
changes). OC-SVM method, in turn, was more sensible to change detection often classi-
fying unchanged regions as anomalies.

In future works could be addressed the suppression of seasonal trends and the
combination of multiple spectral indices to improve the proposed prototype. Furthermore,
the expansion of study areas and availability of this approach and availability of results
for the general public in easy visualization and manipulation tools could be explored.

Acknowledgments

The authors thank FAPESP (grant 2018/01033-3, 2020/14664-1 and 2021/01305-6) and
CNPq for their financial support of this research.

References

Alonso-Sarria, F., Valdivieso-Ros, C., and Gomariz-Castillo, F. (2019). Isolation forests
to evaluate class separability and the representativeness of training and validation areas
in land cover classification. Remote Sensing, 11(24):3000.

Chen, Y., Zhou, X. S., and Huang, T. S. (2001). One-class svm for learning in image
retrieval. In Proceedings 2001 International Conference on Image Processing (Cat.
No. 01CH37205), volume 1, pages 34-37. IEEE.

Dereszynski, E. W. and Dietterich, T. G. (2011). Spatiotemporal models for data-anomaly
detection in dynamic environmental monitoring campaigns. ACM Transactions on
Sensor Networks (TOSN), 8(1):1-36.

108



Proceedings XXIII GEOINFO, November 28 to 30, 2022, Sao José dos Campos, SP, Brazil.

do Carmo, F. F., Kamino, L. H. Y., Junior, R. T., de Campos, I. C., do Carmo, F. F.,
Silvino, G., Mauro, M. L., Rodrigues, N. U. A., de Souza Miranda, M. P., Pinto, C.
E. F, etal. (2017). Fundio tailings dam failures: the environment tragedy of the largest
technological disaster of brazilian mining in global context. Perspectives in ecology
and conservation, 15(3):145-151.

Gao, B.-C. (1996). NDWI — A normalized difference water index for remote sensing of
vegetation liquid water from space. Remote sensing of environment, 58(3):257-266.

Gu, J., Wang, L., Wang, H., and Wang, S. (2019). A novel approach to intrusion detection
using svm ensemble with feature augmentation. Computers & Security, 86:53-62.

Guo, Q., Pu, R,, and Cheng, J. (2016). Anomaly detection from hyperspectral remote
sensing imagery. Geosciences, 6(4):56.

Havil, J. (2003). Gamma: exploring euler’s constant. The Australian Mathematical Soci-
ety, page 250.

Holloway, J. and Mengersen, K. (2018). Statistical machine learning methods and remote
sensing for sustainable development goals: A review. Remote Sensing, 10(9):1365.

Hoyle, B., Rau, M. M., Paech, K., Bonnett, C., Seitz, S., and Weller, J. (2015). Anomaly
detection for machine learning redshifts applied to sdss galaxies. Monthly Notices of
the Royal Astronomical Society, 452(4):4183-4194.

IBRAM (2020). Informacdes sobre a economia mineral brasileira 2020. Technical report,
Instituto Brasileiro de Mineragao.

Jensen, J. R. (2009). Remote sensing of the environment: An earth resource perspective.
Pearson Education India, 2 edition.

Jimenez, J. C., Marengo, J. A., Alves, L. M., Sulca, J. C., Takahashi, K., Ferrett, S., and
Collins, M. (2019). The role of enso flavours and tna on recent droughts over amazon
forests and the northeast brazil region. International Journal of Climatology.

Lambert, J., Drenou, C., Denux, J.-P., Balent, G., and Cheret, V. (2013). Monitoring forest
decline through remote sensing time series analysis. GIScience & Remote Sensing,
50(4):437-457.

Lary, D.J., Alavi, A. H., Gandomi, A. H., and Walker, A. L. (2016). Machine learning in
geosciences and remote sensing. Geoscience Frontiers, 7(1):3-10.

Lesouple, J., Baudoin, C., Spigai, M., and Tourneret, J.-Y. (2021). Generalized isolation
forest for anomaly detection. Pattern Recognition Letters, 149:109-119.

Li, S., Zhang, K., Duan, P, and Kang, X. (2019). Hyperspectral anomaly detection
with kernel isolation forest. IEEE Transactions on Geoscience and Remote Sensing,
58(1):319-329.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 eighth ieee
international conference on data mining, pages 413—422. IEEE.

Ma, H., Hu, Y., and Shi, H. (2013). Fault detection and identification based on the neigh-
borhood standardized local outlier factor method. Industrial & Engineering Chemistry
Research, 52(6):2389-2402.

109



Proceedings XXIII GEOINFO, November 28 to 30, 2022, Sao José dos Campos, SP, Brazil.

MacDicken, K., Jonsson, O., Pifia, L., Maulo, S., Contessa, V., Adikari, Y., Garzuglia,
M., Lindquist, E., Reams, G., and DaAnnunzio, R. (2016). Global forest resources
assessment 2015: how are the world’s forests changing?

Marengo, J. A., Cunha, A. P,, Cuartas, L. A., Deusdard Leal, K. R., Broedel, E., Seluchi,
M. E., Michelin, C. M., De Praga Baiao, C. F., Chuchén Angulo, E., Almeida, E. K.,
et al. (2021). Extreme drought in the brazilian pantanal in 2019-2020: Characteriza-
tion, causes, and impacts. Frontiers in Water, 3:13.

Moreira, R. d. C. (2000). Influéncia do posicionamento e da largura de bandas de sensores
remotos e dos efeitos atmosféricos na determinagdo de indices de vegetacdo. Sdo José
dos Campos. 181p. Dissertacdo (Mestrado em Sensoriamento Remoto)-INPE.

Pradhan, P, Costa, L., Rybski, D., Lucht, W., and Kropp, J. P. (2017). A systematic study
of sustainable development goal (sdg) interactions. Earth’s Future, 5(11):1169—-1179.

Rembold, F., Atzberger, C., Savin, 1., and Rojas, O. (2013). Using low resolution satellite
imagery for yield prediction and yield anomaly detection. Remote Sensing, 5(4):1704—
1733.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworth-Heinemann, USA, 2nd
edition.

Rotta, L. H. S., Alcantara, E., Park, E., Negri, R. G., Lin, Y. N., Bernardo, N., Mendes,
T. S. G., and Souza Filho, C. R. (2020). The 2019 brumadinho tailings dam collapse:
Possible cause and impacts of the worst human and environmental disaster in brazil.
International Journal of Applied Earth Observation and Geoinformation, 90:102119.

Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., et al. (1974). Monitoring vegeta-
tion systems in the great plains with erts. NASA special publication, 351(1974):3009.

Shawe-Taylor, J., Cristianini, N., et al. (2004). Kernel methods for pattern analysis.
Cambridge university press.

Siegel, S. and Castellan, N. (1988). Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill international editions statistics series. McGraw-Hill.

Silva Junior, C. H., Pessoa, A., Carvalho, N. S., Reis, J. B., Anderson, L. O., and Aragao,
L. E. (2021). The brazilian amazon deforestation rate in 2020 is the greatest of the
decade. Nature Ecology & Evolution, 5(2):144-145.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., and Ludwig, C. (2015). The trajec-
tory of the anthropocene: the great acceleration. The Anthropocene Review, 2(1):81—
98.

Thomé, R. and Passini, M. L. (2018). Barragens de rejeitos de mineragdo: carac-
teristicas do método de alteamento para montante que fundamentaram a suspensdo de
sua utilizagdo em minas gerais. Ciéncias Sociais Aplicadas em Revista, 18(34):49-65.

Xue, J. and Su, B. (2017). Significant remote sensing vegetation indices: A review of
developments and applications. J. Sensors, 2017:1353691:1-1353691:17.

110



