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“In theory, there is no difference between theory and practice. In
practice, there is”.

Benjamin Brewster, 1882
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ABSTRACT

Collective behaviors emerge from interactions among living beings. Similarly, en-
gineering applications with mobile robots might employ bio-inspired strategies to
reach desired group configurations. This thesis proposes strategies that exploit com-
munication among close agents to obtain the desired behavior. Firstly, a reactive
model of agents that group into a certain neighborhood and follow a mobile refer-
ence is presented. The adopted parameters are achieved via heuristics that target
specific formation topologies. Each agent has a sensory region around itself that
allows perceiving neighbors that come close. Furthermore, the group follows the so-
called virtual agent (VA), a non-real agent that dictates the trajectory to be chased.
The second part of the thesis is devoted to a first-order model of particles with cou-
pled oscillator dynamics, focusing on the specific case of particles moving in circular
trajectories and reaching clusters of the same size that are symmetrically distributed
along the trajectory. The study starts with an investigation of the control parame-
ters space in order to find regions where particles reach desired formations regardless
of initial conditions. After that, the effects of adding and removing particles from
already stable ensembles are explored. Simulations show that some particles never
join clusters when the number of new elements is smaller than a certain critical
value. In a similar fashion, clusters start to break only after a critical number of
removed elements. Additionally, a strategy is proposed to change from one cluster
configuration to another. Finally, the so-called Switching System is proposed, allow-
ing for symmetric circular formations with time-periodic and chaotic dynamics. The
model for obtaining cluster configurations is implemented in a simulator of mobile
robots as a proof of concept.

Keywords: Reactive models. Nonlinear dynamics. Collective motion. Symmetric cir-
cular formation. Kilobots.
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CONTROLANDO COMPORTAMENTOS COLETIVOS E AGENTES
MÓVEIS AUTÔNOMOS

RESUMO

Comportamentos coletivos complexos emergem de interações entre seres vivos. Da
mesma forma, aplicações de engenharia com robôs móveis podem empregar estra-
tégias bio-inspiradas para obtenção de configurações de grupo desejadas. Esta tese
propõe estratégias que exploram comunicação entre agentes próximos para obter o
comportamento almejado. Inicialmente, apresenta-se um modelo reativo de agentes
que se agrupam em uma dada vizinhança e seguem uma referência móvel. Os parâme-
tros adotados são provenientes de heurísticas que objetivam topologias de formação
específicas. Cada agente possui uma região sensorial que o permite se comunicar
com agentes próximos. Ainda, o grupo segue o chamado agente virtual, um agente
fictício que indica a trajetória a ser seguida. A segunda parte da tese se concentra
em um modelo de primeira ordem de partículas com dinâmica de osciladores de fase
acoplados. Trata-se do caso específico de partículas se movendo em trajetórias circu-
lares e subdividindo-se em clusters de mesmo tamanho e distribuídos simetricamente
pela trajetória. O estudo inicia-se com a investigação do espaço dos parâmetros de
controle a fim de encontrar regiões onde as partículas atingem as formações dese-
jadas, independentemente das condições iniciais. Em seguida, explora-se os efeitos
da adição e remoção de partículas em arranjos já estáveis. Simulações mostram que
algumas partículas nunca integram clusters quando o número de novos elementos é
menor do que um valor crítico. Do mesmo modo, os clusters começam a se quebrar
apenas a partir de um certo número crítico de partículas removidas do arranjo. Além
disso, propõe-se uma estratégia para realizar transições entre uma formação de clus-
ters para outra. Por fim, apresenta-se o chamado “Switching system”, que permite
formações circulares simétricas com partículas que não se sobrepõem e trajetórias
caóticas. O modelo para obtenção das configurações de clusters é implementado em
um simulador de robôs móveis como uma prova de conceito.

Palavras-chave: Modelos reativos. Dinâmica não-linear. Movimento coletivo. For-
mações circulares simétricas. Kilobots.
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1 INTRODUCTION

Living beings such as bacteria, insects, fish schools and flocks of birds exhibit collec-
tive behaviors (VICSEK; ZAFEIRIS, 2012) that emerge when they are escaping from
a predator, seeking for food, building a shelter, etc.

The word “flock” is the collective noun for a group of birds, but also used by the
research community as synonym of the coordinated ordered motion of a group of
individuals. On the other hand, when the motion is disordered the collective noun
of insects takes place: swarm (ALGAR et al., 2019).

Czirók et al. (1996) studied the simpler beings that behave collectively: the bacteria.
They observed spiral formations and cluster migration, which inspired a model of
self-propelled particles.

Sumpter (2006) points out that in an ants colony, the sum of individual contributions
is less than the teamwork capacity. The short explanation is that when an ant finds
a food source, it creates a pheromone trail that is used by the others to recover the
path to the food. Also, the trail is reinforced every time an ant passes over. Without
this communication mechanism, each ant would have to find food alone and the
total amount of collected resources would probably be smaller.

Some studies with fish evidence that a natural control parameter for them is the
shoal density (BECCO et al., 2006;MAKRIS et al., 2009). Herbert-Read et al. (2011) and
Katz et al. (2011) analyzed shoals trajectories and observed attraction and repulsion
rules in their interactions, and speed adjustments based on neighbors distance.

Interestingly, Potts (1984) and Ballerini et al. (2008) found the emergency of leader-
ship behaviors and communication limitations in some bird species. More specifically,
Ballerini et al. (2008) realized that Starling birds normally interact with their 6 or
7 closest conspecifics and not with all nearby neighbors.

The aforementioned results serve as inspiration for the development of autonomous
mobile agents strategies for formation emergence (REYNOLDS, 1987; VICSEK et al.,
1995; COUZIN et al., 2002; CUCKER; SMALE, 2007; FREITAS; MACAU, 2017b; FREITAS

et al., 2018; BALAZS; VÁSÁRHELYI, 2018; VÁSÁRHELYI et al., 2018). The aim here is
not to reproduce the animal world behaviors, but to learn from them and design
strategies to obtain desired formations. These strategies can be thought in terms of
alignment, attraction and repulsion rules, for example.
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A common problem of those models is that the rules are usually employed simul-
taneously and one should design coefficients to weight their contributions in order
to properly lead the agents to desired formations. When only the alignment rule is
considered, the agents are able to reach consensus, moving to the same direction.
However, this is not enough to prevent them to collide or to keep a tight forma-
tion. Rules should be combined, and the task to find proper weights that balance
their contributions towards the desired formation is of great importance (FREITAS;

MACAU, 2017b; FREITAS et al., 2018).

Chapter 4 displays some results on this matter with a model of agents that follow a
mobile reference. An optimization problem is formulated to find proper coefficients
to ponder interaction rules that drive the agents to desired formations (FREITAS et

al., 2018).

Another approach is to create artificial network-based controls that abstracts the
interaction rules. Some examples can be seen in Dierks et al. (2013), that defined
a model with a leader-follower scheme; Li et al. (2014) worked with quadruped
robots; Habibi et al. (2015) focused on the problem of moving an object with the
cooperative work of multiple robots and; Duarte et al. (2016) developed controls
for aquatic robots from neural networks generated with the Neuroevolution of Aug-
menting Topologies (NEAT) algorithm (STANLEY; MIIKKULAINEN, 2002).

We also explored this approach to design a model of agents following a mobile
reference (FREITAS et al., 2017b) with the NEAT algorithm for network generation
as in Duarte et al. (2016). The network inputs are the robots’ sensors measurements
like distance until the nearest neighbor in each quadrant and the coordinates of the
mobile reference. The output is the angular velocity and speed.

Other design strategy for mobile agents in formation is the framework of phase-
coupled oscillators, whereupon each vehicle dynamics is described by an oscillator.
Their coupling is mediated by the information exchange between neighboring agents.
One of the most famous models for synchronization of phase oscillators is the Ku-
ramoto model (KURAMOTO, 1984; ACEBRÓN et al., 2005), in which the coupling is a
sinusoidal function. This model opened possibilities for the study of synchronization
in myriad areas (ACEBRÓN et al., 2005; VLASOV et al., 2014; VLASOV et al., 2015;
FREITAS et al., 2015a; FREITAS et al., 2015b; PETER et al., 2019). Many collective
motion models (SEPULCHRE et al., 2007; SEPULCHRE et al., 2008; LEONARD et al.,
2007; JAIN; GHOSE, 2018; FREITAS; MACAU, 2018; FREITAS et al., 2019, Submitted)
derive from the Kuramoto’s and the physical meaning of the phase might be the
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heading direction of the agent. In this sense, synchronized agents move in parallel
and consensus is directly connected with the concept of synchronization.

The coupling among oscillators (interaction) can be mediated via fixed or dynamic
topology networks. Fixed topologies mean that every oscillator communicates with
the same neighbors. Oppositely, dynamic networks are usually employed when the
vehicles have sensory limitations or preferences, exchanging information only with
the neighbors inside their sensory region. This results in a network whose connections
continuously modify as the agents get in touch to each other or move away.

Stradner et al. (2013) distinguish among different levels of coupling: weak, medium
and strong. Weak is usually observed in systems whose information exchange be-
tween a pair of agents does not happen during a long time, such as particles diffusion,
in which two particles occasionally meet and them separate. Medium level refers to
systems where neighbor agents communicate for a long time frame, as in a flocking.
Lastly, strong couple relates to agents that have a static and constant communica-
tion framework, like crystals, solid bodies, cells of an organism. This thesis explores
medium and strong couplings in Chapters 4 and 5, respectively.

1.1 Main research questions

Following are the main research questions we address with a phenomenological model
of reactive agents that follow a mobile reference:

• How do we model the interactions among close neighbors in order to build
a formation that follows a given trajectory?

• What are the proper parameters to weight the interaction rules’ contribu-
tions?

Secondly, we study a model of symmetric circular formations, for which we ask the
following questions:

• What are the conditions for the emergence of symmetric circular forma-
tions?

• What is the effect of adding and removing agents to/from already stable
formations?

• Is it possible to simply tune the parameters to exchange from one formation
to another?
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• How could clusters with non-overlapping particles be formed?

• Is it possible to generate chaotic circular-like trajectories?

• Do time delayed interactions play any role?

1.2 Contents and main findings

The terms particles, mobile agents and agents are used interchangeably in this doc-
ument, referring to elements that move and interact to each other.

The main findings we present start with a phenomenological reactive model of par-
ticles following a mobile reference (FREITAS et al., 2018). We employ the sensory re-
gions defined in Couzin et al. (2002), whose subdivisions have inspiration in schools
of fish. It accounts for agents’ interaction rules depending on the distances between
close neighbors. Too close neighbors avoid collisions, medium range interactions lead
to alignment, and attraction rises in long range neighborhoods.

Besides, we introduce a speed regulation to allow distant agents to catch up the group
so that the formation emerges around the mobile reference. This is an interesting
feature since most models consider unitary speed and an interaction area in the
2D plane with periodic boundary conditions. This means that agents that reach
a border, appear at the diametrically opposite border. In real-world scenarios, the
agents might reach very far places and eventually go to infinity.

We model the system without the aforementioned constraint and use the mobile
reference as a meeting point for the group. This along with the speed regulation
guarantee the group not to disperse to infinity and uniformly distribute around the
reference so to better occupy the so-called Formation Region (FR), centered at the
reference.

One important result is the definition of optimal weights for the interaction rules
through heuristics that drive the system towards the minimum of some objective
functions. Formations must happen as fast as possible with agents uniformly dis-
tributed inside the FR.

The second part of the thesis is devoted to the study of a model of particles with
phase-coupled oscillator dynamics (SEPULCHRE et al., 2007; PALEY, 2007) that move
with unitary speed in the plane. Their heading angles are abstracted as oscillators’
phases that synchronize or distribute into groups of same size. Their dynamics is
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driven by potentials whose minima correspond to concentric circular trajectories of
particles that converge to a chosen number of groups, that we call clusters. Each
cluster has the same number of participants and is symmetrically positioned along
the trajectory.

Driven by potential applications with mobile robots we conducted several tests to
assess the model response to realistic problems (FREITAS et al., 2019, Submitted),
such as failure and addition of new robots, in which a phase transition is observed.
Some particles join clusters only if the number of new members being added is higher
than a certain critical value, that depends on the total number of agents already
in the formation. The inverse situation also happens when removing particles from
already stable formations.

Another issue of the Sepulchre et al. (2007) model is to exchange from one cluster
configuration to another. Some configurations are local minimum of others and the
transition may never happen. We then include a new term into the potentials to
suppress the previous formation.

Furthermore, we introduce the so-called Switching System, that allows for the
emergence of clusters with non-overlapping particles and the generation of chaotic
circular-like formations.

Some tests with time delay in the inter-agents communication are conducted. We
observe that delay plays the role of a control parameter as well and solutions reappear
with increasing delay.

Finally, we present some results with an implementation of the model in a mobile
robot simulator, the ARGoS (PINCIROLI et al., 2012). We use an emulator (PINCIROLI

et al., 2018) for both the Kilobot platform (RUBENSTEIN et al., 2014) and the tracking
system Augmented Reality for Kilobots (ARK) (REINA et al., 2017).

The investigated strategies must account for real-world aspects like noise from sen-
sors and communication delay. The latter may occur due to large distances between
agents and hardware limitations, like in satellites in formation fly (SCHETTER et al.,
2003; NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - NASA, 2017; CHUNG

et al., 2016; BAKER, J. et al., 2019; YAO et al., 2019)

Some systems, like the Robot Soccer (KITANO et al., 1997; ROBOCUP FEDERATION,
2016), use a centralized control strategy that distributes tasks among the robots.
This works well for a small number of agents, but this has impact in the system
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scalability due to processing and communication limitations. The control strategies
presented in this thesis are designed for autonomous agents that are able to perceive
the environment and change direction by themselves.

We aim to present and discuss control strategies for autonomous mobile agents based
on interaction rules and phase-coupled oscillators synchronization. The problem of
delayed communication is also addressed for the latter. The main applications are
data collection systems, surveillance and monitoring (LEONARD et al., 2007; DUARTE

et al., 2016), tasks that demand autonomous vehicles to interact and maintain their
formations.

The motivation behind the study of systems with circular motions are formations
with vehicles such as satellites, drones and others that perform data collection and
patrol with the desired spatial and temporal separation.

The subsequent publications were issued as part of the development of this thesis:
Freitas and Macau (2017a), Freitas et al. (2017b), Freitas et al. (2018), Freitas and
Macau (2018), Noetel et al. (2018a), Noetel et al. (2018b), Freitas et al. (2019,
Submitted).

Other publications from this period, but not directly related to the thesis content
are: Freitas et al. (2017), Freitas et al. (2019).

1.3 Thesis organization

The thesis is organized as follows: Chapter 2 introduces some theoretical definitions
about dynamical systems, oscillators, synchronization, numerical integration and
evolutionary optimization. Some introductory material is presented in Chapter 3
about collective motion systems, in which we introduce and discuss aspects of the
phenomenological reactive model and the model of particles with coupled-oscillator
dynamics. In the first case, particles follow bio-inspired interaction rules and non-
unitary speed. The second model is focused on the specific case of particles moving
in circular trajectories and grouping in symmetric clusters. After this theoretical-
based chapters, we present in Chapter 4 the first part of our results: a reactive model
for autonomous vehicles formation following a mobile reference with corresponding
simulations and control strategies. Chapter 5 is devoted to the study of the model
of particles with coupled-oscillator dynamics. Finally, robot simulations are shown
in Chapter 6 with the model of symmetric circular formations, followed by the
Conclusions in Chapter 7.
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2 DYNAMICAL SYSTEMS, SYNCHRONIZATION AND EVOLU-
TIONARY OPTIMIZATION

This Chapter aims to present and discuss some aspects of the theory of dynamical
systems, phase-coupled oscillators, and synchronization, which are the grounding
for the thesis understanding. Furthermore, we present Evolutionary optimization
techniques that are used in due course.

Systems composed of phase-coupled oscillators are nonlinear and with a high number
of variables. This class of problem was considered a great challenge in the last two
decades (STROGATZ, 1994) and is a trend nowadays (FREITAS et al., 2015b; O’KEEFFE

et al., 2017; PETER; PIKOVSKY, 2018; JAIN; GHOSE, 2018; PETER et al., 2019)

Before diving into coupled oscillators, let us start with some dynamical system
definitions. Consider the system of ordinary differential equations (ODE):

ẋ = f(x) (2.1)

with f : Ω ⊆ Rm → Rm, Ω open, f ∈ C1(Ω).
Theorem 1. (Lyapunov Stability) Let x∗ be an equilibrium point for (2.1). Let
V : O → R be a differentiable function defined on an open set O containing x∗.
Suppose further that

a) V (x∗) = 0 and V (x) > 0 if x 6= x∗;

b) V̇ ≤ 0 in O − x∗.

Then x∗ is stable. Furthermore, if V also satisfies:

c) V̇ < 0 in O − x∗,

then x∗ is asymptotically stable.

A function V satisfying (a) and (b) is called a Lyapunov function for x∗. If (c) also
holds, we call V a strict Lyapunov function (HIRSCH et al., 2004).

There is no technique for Lyapunov function generation for a given system, but some
kinds of functions are natural candidates, like potentials. The model of particles with
coupled-oscillator dynamics of Section 3.3 is built from potential functions and its
stability is guaranteed from their analysis.
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2.1 Gradient systems

This section briefly presents the Theory of Gradient Systems that is used in the rest
of this chapter1. Gradient systems are differential equations that have the form

ẋ = dx

dt
= −∂V (x)

∂x
(2.2)

with V : Rn → R a C∞ function, and

∂V

∂x
=
(
∂V

∂x1
, · · · , ∂V

∂xn

)
. (2.3)

Let the system with x(0) = x0 have solution x(t) and V̇ : Rn → R be the derivative
of V along x(t), so that

V̇ (x) = d

dt
V (x(t)). (2.4)

Proposition: The function V is a Lyapunov function for the system ẋ = −∂V/∂x.
Moreover, V̇ = 0 if and only if x is an equilibrium point.

Proof :

.

V̇ (x) = dV (x)
dt

= ∂V (x)
∂x

(−dx
dt

) = −
∣∣∣∣∣∂V∂x

∣∣∣∣∣
2

≤ 0. (2.5)

In particular, V̇ (x) = 0 if and only if V (x) = 0.

Thus, V decreases towards zero and converges to the equilibrium point at ẋ = 0.

In summary, if one can build a Lyapunov function to a system, it is possible to
lead it to equilibrium through the Theory of Gradient Systems. The next section
presents the so-called Phase-coupled oscillators and we show that certain models
have a Gradient structure.

1For a more detailed description, please refer to Hirsch et al. (2004, p. 203) and Strogatz (1994,
p. 30)
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2.2 Phase-coupled oscillators

Christiaan Huygens, physicist and inventor of the pendulum clock, observed the
synchronization phenomena involving two suspended clocks on the wall, in the 17th
century. After some transient, they showed the same motion that remained stable
even under small perturbations. Huygens then started to perform a series of experi-
ments that resulted in the beginning of the Theory of coupled oscillators (STROGATZ;

STEWART, 1993).

In southeast Asia, one can find male fireflies flashing on and off in unison in an at-
tempt to attract females (STROGATZ, 1994). Other examples are the synchronization
of menstrual cycles due to some interpersonal physiological process, hand clapping
in a crowd and neurons of a Parkinsonian patient.

From the engineering perspective, a well-known case is the swaying of the Millennium
bridge during its opening due to the large number of pedestrians that somehow
synchronized their gaits (STROGATZ et al., 2005). In Neuroscience, scientists are
working on strategies to control the onset and breakage of synchronization in specific
brain regions to deal with epileptic seizures, Parkinson disease and to improve some
cognition processes (JIRUSKA et al., 2013; PROTACHEVICZ et al., 2019).

In the late sixties, Winfree started to work with the theory of nonlinear oscillators
in biology (WINFREE, 1967). In the eighties, Kuramoto (1984) formalized the theory
of coupled-oscillators that is nowadays used as a paradigm of coupled dynamical
systems, with the famous Kuramoto model.

The interplay among oscillators has a parallel with the spring-mass system. When
the spring is not at its resting position, the (deformation) force Fd drives the spring
towards a stretched or contracted form. When the spring is released from this point,
it right away moves to the opposite direction, under a restoring force F , toward the
equilibrium.

Intuitively, one can tell that the further away a spring is stretched (or squeezed)
the higher is the associated energy. This is the so-called potential energy U(x), that
can be associated with the deformation distance x, with U(0) = 0 and U(x) > 0 for
|x| > 0.

If the U(x) is known then
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Fx = −dU
dx

is the force associated with each x. The minus sign represents the spring attempt to
return to its resting position, i.e., the force pushes the object back to lower potential.

The coupled oscillators tend to the equilibrium when proper coupling function and
strength are chosen so that it lowers the associated potential function. It is worth
mentioning that this thesis deals with systems whose vector field is on a circle
θ̇ = f(θ), which is a special case of a vector field on the line. The notation θ ∈ S1

means that θ = θ + 2πn for n ∈ Z.

2.2.1 Two coupled oscillators

Before starting the discussion about many phase-coupled oscillators, let us first
discuss a simple case of two coupled oscillators:

θ̇1 = ω1 +K1 sin(θ2 − θ1) (2.6a)

θ̇2 = ω2 +K2 sin(θ1 − θ2) (2.6b)

with θ1 and θ2 the respective phases, ω1 and ω2 their natural oscillating frequencies
and K1 and K2 the coupling strength. The phase space is the Torus S1 × S1.

Initially, let’s consider the uncoupled case with K1 = K2 = 0, so that

θ̇1 = ω1

θ̇2 = ω2
. (2.7)

Two possibilities may occur:

a) ω1
ω2

= p
q
∈ N: all trajectories are closed, so that θ1 makes q full rotations

and θ2 makes p full rotations to close the orbit.

b) ω1
ω2

is irrational: trajectories never intersect nor close, which means that
they are dense on torus.
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When the system is coupled as in Equation (2.6), one might observe: i) θ̇1 = θ̇2

(phase-locking) i.e. the relative distance between phases is fixed; ii) out of sync so-
lutions. When the frequencies are the same, the phases may synchronize and exhibit
the very same value after some transient of interactions, characterizing the so-called
full synchronization.

2.2.2 N phase-coupled oscillators

The interactions in a system of coupled oscillators are characterized by coupling,
delay and topology (MALLADA; TANG, 2013). Equation (2.8) presents an example

θ̇i(t) = f(θi(t)) + κ
N∑
j=1

AijΓ(θj(t)− θi(t)) (2.8)

where i = 1, · · · , N , κ > 0 is the coupling strength, and A is the adjacency matrix,
such that Aij = 1 if there is a connection between i and j, or Aij = 0 otherwise.
The function f(θi(t)) describes the internal dynamics of each oscillator and Γ is the
coupling function.

The oscillators eventually synchronize when under certain conditions. We under-
stand synchronization as “an adjustment of rhythms of oscillating objects due to
their weak interaction” (PIKOVSKY et al., 2001). For instance, when the coupling
strength is high enough, the oscillators achieve synchronized states (STROGATZ,
2000).

Many works on this field mention that the coupling (interaction) is “weak”. This
comes from the fact that the coupling strength should not be so big that the indi-
vidual behavior of the oscillators is totally suppressed. Otherwise, one could argue
that it is about a unique system, instead of many coupled parts. Still, it means
that one expects the internal dynamics f(θi(t)) not to be irrelevant in view of the
coupling term.

When two oscillators are identical, there are only two kinds of phase synchronization:
in-phase and anti-phase (STROGATZ; STEWART, 1993). The term in-phase refers to
complete synchronization, when phases converge to the same value. Two oscillators
establish an anti-phase synchronization if their derivatives have the same modulus
but different sign: θ̇1 = a e θ̇2 = −a. Thus, their motion are similar but opposite,
similar to two pendulums moving in opposite directions.
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A third possibility is the phase-locking, which happens when oscillators are not
identical. Phases oscillate together at the same pace θ̇i but do not converge to the
same state. They keep fixed relative states.

The Kuramoto model (KURAMOTO, 1984) is described by

θ̇i = ωi + K

N

N∑
j=1

Aij sin(θj − θi). (2.9)

which resembles the form of Equation (2.8).

This system presents various behaviors that depend on the coupling strength K,
synchronizing when K > Kc, for a given critical Kc and an all-to-all type adjacency
matrix (STROGATZ, 2000).

When the coupling function Γij of Equation (2.8) is symmetric and odd, the effect of
oscillator j on i has the same magnitude but opposite sign in contrast to oscillator i
on j. It means that Γij(θk−θi) = Γji(θk−θi) = −Γij(θi−θk) (MALLADA; TANG, 2013).
Two coupled phases move towards each other with same magnitude but different
direction. Besides, one foresee that the influence on an oscillator upon itself is null:
Γij(θk − θk) = 0. The sine function holds all the discussed characteristics and is
therefore a natural candidate for a coupling function of phase oscillators.

One special synchronization measure is the Kuramoto order parameter

pθ = |pθ|eiψ = 1
N

N∑
i=1

eiθ (2.10)

where |pθ| ∈ [0, 1] with |pθ| = 1 when the phases are synchronized and pθ = 0 when
they are balanced.

The Kuramoto model has a so-called gradient structure. One may define a potential
from the order parameter so that it is minimum when phases are balanced, and
positive otherwise. Consider the special case in which the frequencies are zero ω1 =
· · · = ωN = 0:

V (θθθ) = 1
2 |pθ|

2 . (2.11)
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This is a Lyapunov function and the next step is to calculate its gradient

θ̇θθ = −∇V (θθθ). (2.12)

The contribution of every single oscillator in the system can be computed with the
corresponding partial derivatives:

θ̇j = −∂V (θθθ)
∂θj

= 1
N

N∑
l

sin(θl − θj), j = 1, · · · , N. (2.13)

The phase space of the Kuramoto system can be considered as S1×S1× · · ·×S1 =
TN , the N -th torus, with solutions θ(t) moving towards the minimum of V , that
means θ1 = θ2 = · · · = θN .

Now, if we consider nonzero frequencies, the system becomes:

V (θθθ) = 1
2 |pθ|

2 −ωωωθθθ, (2.14)

with θθθ = (θ1, · · · , θN), ωωω = (ω1, · · · , ωN),

with derivatives

θ̇j = ωj + 1
N

N∑
l

sin(θl − θj), j = 1, · · · , N. (2.15)

Remark that it has no longer a gradient structure on TN , but on RN due to the ωωωθθθ
term.

2.3 Delayed phase oscillators

This section deals with the problem of delayed communication between neighboring
oscillators. An example is the problem faced by soccer fans in a stadium. When
they try to clap hands in unison, they do so from a local point of view, although
the sound reaches far places with a certain time lag. This happens due to the finite
sound speed and the fan has locally a sensation of global synchrony. Other examples
are electronic, mechanic, biological and chemical systems. The delay corresponds to
transport time (earth shock waves, fluids in a chemical process, space electromag-
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netic radiation, etc) (HALE; LUNEL, 1993; YEUNG; STROGATZ, 1999; ERNEUX, 2009;
ERNEUX et al., 2017; YANCHUK; GIACOMELLI, 2017).

This problem may be modeled as Delay Differential Equations (DDE) as follows

ẋ = F (t, x(t), x(t− τ)) (2.16)

in which x(t) = φ(t) is the initial condition, with −τ ≤ t ≤ 0. Notice that, differently
from the ODE, the DDE has a function as the initial condition and not a point. This
function corresponds to a system history, given that it is necessary to possess the
solution at time t− τ to integrate the system at time t.

A system of phase-coupled oscillators with delay τ is

ẋi = f(xi(t)) + κ
N∑
j=1

AijΓ(xj(t− τ)− xi(t)). (2.17)

Yeung and Strogatz (1999) studied a noisy and delayed Kuramoto model and real-
ized that when the delay is “small” the stability of the system is not affected. They
considered both delay and coupling strength as control parameters. From a quanti-
tative point of view, it is hard to establish what is a big or small delay, because it
depends on the studied system (YANCHUK; GIACOMELLI, 2017). Furthermore, big
delays may even help synchronization (MALLADA; TANG, 2013).

We will show later in Section 5.5 some results with isochronous synchronization,
that is when the oscillators reach synchronization under delayed communication
(GRZYBOWSKI et al., 2012).

2.4 Chaotic systems and Lyapunov exponents

“Chaos is aperiodic long-term behavior in a deterministic system that exhibits sen-
sitive dependence on initial conditions” (STROGATZ, 1994). This means the trajec-
tories are not attracted to fixed points, periodic or quasiperiodic orbits. Moreover,
very close neighboring trajectories separate exponentially in average from each other
and have different futures. One way to check whether the system has a chaotic signa-
ture is to compute its Lyapunov exponent, which measures the sensitivity of initial
conditions.
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Given some initial condition x0 of a one-dimensional map and a nearby point x0 +δ0,
with small δ0, consider that after n iterations, the separation between the points is
δn. We estimate that |δn| ≈ |δ0|enλ and call λ the Lyapunov exponent. When the
neighboring points converge after some transient of integration, it means that the
system is stable and has negative λ. Nonetheless, positive λ is a signature of chaos
(STROGATZ, 1994).

Firstly, lets compute δn = fn(x0 + δ0)− fn(x0). In this sense,

λ ≈ 1
n

ln
∣∣∣∣∣δnδ0

∣∣∣∣∣ = 1
n

ln
∣∣∣∣∣fn(x0 + δ0)− fn(x0)

δ0

∣∣∣∣∣ . (2.18)

Considering that δ0 → 0, we have

λ ≈ 1
n

ln |(fn)′(x0)| . (2.19)

From the chain rule,

(fn)′(x0) =
n−1∏
i=0

f ′(xi)

which leads to

λ ≈ 1
n

ln
∣∣∣∣∣
n−1∏
i=0

f ′(xi)
∣∣∣∣∣ = 1

n

n−1∑
i=0

ln |f ′(xi)|

In the limit of n→∞, a trajectory with infinite length, the Lyapunov exponent is
given by:

λ = lim
n→∞

{
1
n

n−1∑
i=0

ln |f ′(xi)|
}
. (2.20)

2.5 Numerical integration

This section presents the 4th order Runge-Kutta (RK4), a method for numerical
integration of systems of ODEs (ZIEGEL et al., 2007):
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ẏ = f(t, y), y(t0) = y0. (2.21)

We first discretize the integration time in steps of size h, so that yn = y(t0 + nh).

The simplest way to integrate it is by using the so-called Euler method, that adds
the derivative at the beginning of the interval to the current state:

yn+1 = yn + hf(tn, yn), (2.22)

being a first-order approximation for the problem. Other methods explore more
sub-intervals within the step size h, like the Runge Kutta of 4th order:

yn+1 = yn + 1
6(k1 + 2K2 + 2k3 + k4), (2.23a)

tn+1 = tn + h (2.23b)

n = 0, 1, 2, · · · , where

k1 = hf(tn, yn), (2.24a)

k2 = hf

(
tn + h

2 , yn + k1

2

)
, (2.24b)

k3 = hf

(
tn + h

2 , yn + k2

2

)
, (2.24c)

k4 = hf(tn + h, yn + k3). (2.24d)

The yn+1 is the approximation of y(tn+1), which depends on the present value yn
and the weighted average of four increments. The k1 term corresponds to the Euler
method, k2 is an approximation of the midpoint between tn+ h

2 with k1 representing
the y component, k3 is an approximation of the same point with k2 as y and lastly
k4 is an approximation of the end of the interval tn + h, using k3 as y.

The error is of order O(h5), which means that the Euler method for a step size
h = 0.1 presents errors of order 0.1 and the Runge Kutta of 10−5. Although it

16



demands four times the calculation of function approximations, the gain is way
bigger in regard to the error.

For the numerical integration of DDEs, we use the same method, however with some
implementation differences. Assuming that the delay τ is known, one must store past
calculated values of y from time t − τ to t. In this thesis, we use a queue of size
T = τ/h, that always discard the oldest element yn−T whenever receiving a new
yn+1. Then, every time one needs to compute the DDE (2.16), the corresponding
y(t− τ) is available.

From here on we use the time notation with a subscript of the form t − τ = tn−T .
Rewriting (2.24) for the DDE integration, gives:

k1 = hf(tn−T , yn−T ), (2.25a)

k2 = hf

(
tn−T+ 1

2
, yn−T + k1

2

)
, (2.25b)

k3 = hf

(
tn−T+ 1

2
, yn−T + k2

2

)
, (2.25c)

k4 = hf(tn−T+1, yn−T + k3). (2.25d)

As mentioned before, f(tn−T , yn−T ) is known (stored in the queue), so we always
have k1. The same happens for k4, since we have the state at tn−T+1. The problems
arise when we compute k2 and k3, because only time instants that are multiples of
h are stored and here we would need also tn−T+ 1

2
. We overcome this problem with

a polynomial interpolation F (ZIEGEL et al., 2007) that depends on four states, so
that yn−T+1/2 = F (y(tn−T−1), y(tn−T ), y(tn−T+1), y(tn−T+2)). The desired state seats
exactly at the middle point of the considered time frame, as shown in Figure 2.1.

2.6 Evolutionary optimization

The basic structure of Evolutionary algorithms consists of selecting an initial popula-
tion, applying random modifications (also referred to as mutation) and evolutionary
operations into the individuals, evaluation according to a fitness criterion (objec-
tive function) and selection of the next generation (FOGEL, 2006). In this section,
the word “population” refers to individuals of evolutionary algorithms and not the
agents of our model. As a matter of fact, the most well known evolutionary algorithm
is the Genetic Algorithm (GA) (GOTMARE et al., 2017).
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Figure 2.1 - Interpolation yn−T+1/2 = F (y(tn−T−1), y(tn−T ), y(tn−T+1), y(tn−T+2)) using
the four closest points. The desired point has symbol ‘o’.

tn−T−1 tn−T tn−T+1
2

tn−T+1 tn−T+2

yn−T−1
yn−T

yn−T+1
2

yn−T+1

yn−T+2

SOURCE: Produced by the author.

A member of the population is composed of the variables used for the calculation of
the objective function, the “design variables”. Their values change over time accord-
ing to evolutionary operations such as mutation and crossover. These operations
alter the characteristics of an individual or combine pairs of individuals to generate
new ones. The aim is to seek the most adapted solutions for the problem, taking
into account the direction of maximization or minimization of the chosen objective
function.

The two optimization algorithms we use are the Generalized Extremal Optimization
(GEO) (DE SOUSA et al., 2003) for mono objective purpose, and the Multiobjective
Generalized Extremal Optimization (M-GEO) (CUCO et al., 2011), for multiple func-
tions. DE SOUSA et al. (2003) showed that GEO is competitive with GA and its
main advantage over other algorithms is the need of adjusting only a few parameters.

2.6.1 Generalized Extremal Optimization

This section describes the Generalized Extremal Optimization (GEO), a global
search metaheuristic used for complex optimization problems. DE SOUSA et al.
(2003) introduce the canonical GEO and a variation, the GEOvar. In the former,
only one evolutionary operation is carried out in the design variables per iteration.
The latter, on the other hand, executes one operation per variable, which results
in bigger jumps in the search space than in the canonical GEO. When the problem
has a highly constrained design space, GEO seems to perform better than GEOvar,
since the solutions tend not to leave the feasible area of the design space during
the search. However, for problems with only lateral constraints the solutions remain
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in the feasible area during all the time. Under those conditions, GEOvar converges
faster than the canonical GEO (DE SOUSA et al., 2003).

Every solution is constituted of a sequence of bits in which each element is called an
individual of the population. Yet, the binary representation of these variables must
meet a precision requirement that is application dependent. The minimum number
of bits m necessary to obtain a desired precision p is given by

2m ≥
[
(x′′j − x′j)/p+ 1

]
, (2.26)

for x′j and x′′j are the lower and upper bounds, respectively of variable j, with
j ∈ {1, 2, · · · ,M}.

The conversion from the binary representation to the correspondent decimal number
is

x = x′j + (x′′j − x′j).
∑m
i=1 bi.2i−1

(2m − 1) (2.27)

in which x is the decimal number and bi is the bit value in the i-th position of the
string, from right to left.

One solution is the concatenation of the sequences of bits that correspond to each
design variable. It has L bits of length from M variables of L/M bits each, all
randomly chosen at the beginning.

The GEOvar algorithm works as follows (CUCO et al., 2011):

1. For each bit, flip its value, calculate the objective function Vi, and compute the
gain or loss ∆Vi = (Vi− Vref ), when compared to the best value Vref achieved so
far. After each calculation, return the bit to the original value.

2. For each variable, rank the bits from the most adapted (k = L/M) to the least
(k = 1), considering the obtained ∆Vi. If two or more bits have the same fitness,
rank them randomly. Remark that the canonical GEO ranks the bits for the
entire sequence and not per variable.

3. The mutation operation is proportional to the following power-law probability
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distribution:
Pi(k) = k−τ (2.28)

for τ > 0 the only free parameter. The more adapted a bit is the less likely it is
to flip. For each variable, one chooses a candidate bit i with uniform distribution,
then generates a random number RND ∈ [0, 1]. If Pi(k) ≥RND, the bit is flipped.
Otherwise, one chooses another bit and generates RND again. The process repeats
until one bit is flipped in each variable. The reason why it is possible to flip bits
that correspond to well-adapted solutions resides on the necessity of avoiding
local minima. Sometimes the solutions must degrade a little to glimpse the global
optimum.

4. Save the best results and perform the steps 1 to 3 until meeting stop criteria, that
can be: the maximum number of objective function evaluations (NFE), iterations
of the GEOvar, or a desired value of the objective function.

2.6.2 Multiobjective Generalized Extremal Optimization

As an extension of the GEO algorithm, the Multiobjective Generalized Extremal
Optimization (M-GEO) (CUCO et al., 2011) is concerned with the problem of opti-
mizing multiple objective problems at a time. In this instance, there can exist more
than one optimum, and these values constitute the so-called Pareto Frontier, whose
number of dimensions corresponds to the number of objective functions.

One objective function is randomly chosen at every algorithm iteration and evo-
lutionary operations are performed alike in GEO. In contrast to mono-objective
problems, the M-GEO must keep a set of trade-off solutions known as Pareto Fron-
tier. They may all be considered optimal because every single solution is better than
the others in at least some specific objective function.

Another characteristic of M-GEO is the possibility of restarting the population dur-
ing the search. In addition to the parameter τ , one sets the number of times η the
population will restart during the simulation and the maximum number of objective
functions’ evaluations NFE. This is important to build a more robust Pareto set,
with a variety of solutions, and results in NFE/η evaluations in total for each new
population.
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2.7 Conclusions

This Chapter presented selected elements from the theory of Dynamical Systems,
gradient systems, phase-coupled oscillators, synchronization, time delay, numerical
integration, and evolutionary optimization. Moreover, we showed that the classic
Kuramoto model of coupled oscillators has a gradient structure, the principle be-
hind the system of particles with phase-coupled oscillators dynamics that we study
hereafter.
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3 COLLECTIVE MOTION SYSTEMS

This Chapter presents systems of mobile agents that work together towards a com-
mon task. We first introduce the unicycle model, common in mobile robotics and
particle systems, which is used hereafter. Following, we present a Reactive model
with bio-inspired weighted interaction rules, whose coefficients are chosen with a
heuristics algorithm. Finally, we discuss a model of particles with phase-coupled
oscillator dynamics.

3.1 Unicycle models

A unicycle-type model is characterized by agents having some forward speed but
zero instantaneous lateral motion, a non-holonomic system. The unicycle robot can
only turn right or left and cannot perform the lateral motion. Instead, a holonomic
agent can navigate from any state to any other.

The unicycle model can be described as:

ẋ = v cos(θ(t))
ẏ = v sin(θ(t))
θ̇ = ω

(3.1)

so that [x, y]T ∈ R2 are the coordinates, v is the forward speed, θ is the heading
angle and ω is the angular velocity. When ω is constant, the particle moves in circles.

3.2 Reactive model for autonomous vehicles formation following a mo-
bile reference

This Section presents a model of mobile agents that group into a certain neighbor-
hood and follow a mobile reference (FREITAS, 2016; FREITAS; MACAU, 2017b; FRE-
ITAS et al., 2018). The elements are considered reactive because they respond to the
stimuli from nearby agents in the form of heading angle adjustments. It is inspired
by the alignment, attraction and repulsion rules of Reynolds’ boids (REYNOLDS,
1987).

Each agent has a vision radius around itself within which the neighbors are perceived.
Besides the interactions, the agent also follows the so-called virtual agent (VA), a
non-real agent that dictates the trajectory to be chased, as shown in Figure 3.1. The
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VA can be thought of as a changing in time GPS signal that shows the trajectory
to be followed by all the agents. The model groups the agents around the VA, while
it moves to predefined directions. In a real-world scenario, this model can be used
before turning to other models that require the agents to be close to each other.
Also, it is important in applications that require the agents to move in specific
paths, for example surveillance, area monitoring, chasing a specific target, imaging
from multiple points, etc.

Figure 3.1 - Initial conditions of a simulation scenario, with agents represented in red,
their vision radii in gray, and the VA in blue. Agents are randomly placed
inside the dotted area when the simulation begins, with random associated
velocities.

FR

VA

Agents

Vision 
radius

SOURCE: Produced by the author.

The interaction rules take place according to the neighbors’ positions concerning
the agent. The vision radius is divided into layers of specific radii, called perception
zones as Figure 3.2 presents. Such zones first appeared in Couzin et al. (2002) as an
attempt to capture the behaviors observed in groups of fish (HERBERT-READ et al.,
2011), to keep the group cohesion.

The agents also have different speeds depending on whether they are close to the VA
or not. The seminal work of Reynolds (REYNOLDS, 1987) considers unitary speed,
which does not agree with agents closely following a mobile reference as in our case.
One agent must accelerate to reach the group and be close enough to the VA.

The dynamics of the model is dictated by a linear combination of five interaction
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Figure 3.2 - Perception zones. Zone of Separation (ZS), Zone of Alignment (ZA) and Zone
of Cohesion (ZC).

ZS

ZA

ZC

SOURCE: Produced by the author.

rules that influences the direction changes on the agent’s heading angle, exclusively.
Besides, speed adjustments depend on its position concerning the VA.

This model is called reactive because it follows the architecture of reactive multia-
gent systems, in which the agents do not keep memory from previous interactions
(RUSSEL; NORVIG, 2010). They basically react to the current environment state at
a discrete time.

The aim is to make the agents flock together in parallel following a moving reference,
the so-called VA, maintaining their position in a certain range around it, wherever
it goes. For this purpose, the agents interact with each other according to specific
rules that impose group alignment, cohesion, collision avoidance, and VA tracking.
We call them “virtual forces” or only “forces” because they represent the effect over
each agent caused by its neighbors and VA states. An individual changes its heading
angle based on what it perceives so the external stimuli applies some kind of “virtual
force” on it.

This model first appeared in Freitas (2016) and Freitas and Macau (2017b), in which
we defined strategies for the usage of the virtual forces. The main drawback is that
we considered a limited set of forces’ combinations and analyzed the possible model
behaviors based on a few combinations of parameters. Those problems are addressed
here with a more general model definition and a further introduction in Chapter 4
of quantifiers that characterize some desired configurations.
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To elucidate the role of VA, we introduce a discussion about leadership. Shen (2007)
describes a system with Hierarchical Leadership (HL), whose members can be or-
dered in such a way that lower-rank agents are led and only led by agents of higher
rank. This hierarchy can emerge in two manners: passively or actively.

The former is built when an event occurs and the agent’s reaction propagates to its
neighbors, eventually reaching others in a wave-like form. In this case, the leader
with higher rank will be the one who first reacts, and the other ranks are assigned
according to the time response to this event. It means that the last agents to react
will be led by the others. On the other hand, in an active HL, each agent has its
role previously stated, as in military environments. It means the same agents always
lead their subordinates.

One assumption of HL models is that the agents have the same dynamics but their
state changes depend on their leaders with higher rank. In a specific case in which
we have one agent with privileged information, and it is the only leader, one can
assume the system as having an HL with two levels.

Albi et al. (2014) presents a model with two kinds of agents, the leaders, and the
followers. The leaders’ behavior is influenced by both the desire to achieve a pre-
scribed opinion consensus and the mean opinion of the followers. Their model also
includes the case of leaders that do not interact with the followers’ population. In
the absence of diffusion, each agent of the leaders’ population reaches the target
opinion and at the same time the followers may comply with them under suitable
assumptions on the interaction function.

Our VA may be thought of as a leader, although it does not fit the aforementioned
scenarios. Its dynamics is not related to the ordinary agents and it is not influenced
by them. Besides, it is not an actual agent, but a trajectory for the agents to follow.
For example: consider one wants to take several photos of an area, using a few UAVs
(unmanned aerial vehicles) which have to follow a trajectory that covers the area.
In this particular case, this trajectory must be time-integrated and its position is
passed to the UAVs. Here, the UAVs are the agents and the trajectory is the VA.

The VA could be considered a real agent in the framework of an HL of two levels as
the only leader. One application is a suspect over persecution (leader), represented
by the VA being followed by other agents like cars, UAV’s, drones, etc. Therefore,
it should be included in the calculation of the collision avoidance routine.
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The model dynamics is described in Equation (3.2):

ẋi = si(t) cos(θi(t))
ẏi = si(t) sin(θi(t))
θ̇i = F i(t)

(3.2)

where [xi, yi]T ∈ R2 is the i-th agent’s position, si(t) is its speed, θi(t) is its heading
angle and F i(t) represents the action of the virtual forces. This last term is a linear
combination of five interaction rules, that will be conveniently shown later.

Figure 3.1 sketches N agents randomly positioned inside a certain area and the
VA aside, like the initial conditions for the simulations of Chapter 4. The region
around the VA is the Formation Region (FR), where agents are attracted after
some transient and remain. Yet, it delimits where the group must be in order to end
up with a tight formation following the VA closely. The body length (bl) of an agent
is the diameter of the red circle, which is the same for all of them. This unit is later
used to describe its speed.

The VA moves at constant speed sva, and the i-th agent regulates its speed si ∈
[sva, sout] depending on whether it is inside or outside the FR, in which sout is the
maximum speed the agent is able to reach, i.e., it is a physical aspect that depends
on the hardware. When the agent is outside the FR its maximum speed is sout > sva,
because it needs to reach the VA. On the other hand, when it is inside, its speed
converges to sva.

When entering the FR, the agent decreases its speed from its current value si(t) to
sva as described in Equation (3.3):

sdi (t) = sva −
(sini − sva)(t− tfi )

∆ti
, (3.3)

with sini the agent speed at the moment it starts entering the VA.

At each time unit of the deceleration process, the agent’s speed is given by si(t) =
sdi (t). Still, when the agent leaves the FR, it accelerates from si(t) to sout according
to si(t) = sai (t):
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sai (t) = sout + (sout − sini)(t− tfi )
∆ti

. (3.4)

In both situations, the speed change is not instantaneous but takes a random time
∆ti ∼ U(0, 2t̄) to happen. It follows a uniform distribution that gives the total time
the agent i takes to adjust its speed. The t̄ is an empirical approximation of the time
that the agent takes to reach the VA at constant speed si = sout, departing from the
FR fringe. That is, the time it takes from the border of the FR until reaching the
VA. The intention is to uniformly distribute the agents inside the region. Each agent
has its own ∆ti, although it does not depend on i. It possesses this index because,
once generated, it is kept unchanged until the deceleration (or acceleration) finishes
or the agent crosses the FR borders again. The term sini is the i-th agent speed at
the time tini it crosses the FR border, and the time tfi = tini + ∆ti is the time unit
the speed regulation finishes. When ∆ti = 0 the speed changes instantaneously.

The virtual force F i(t) of Equation (3.2) is composed of five others that impose
the agents some angle adjustments, i.e., angular velocity, resulting in changes of
direction. The forces are: separation (Fs), alignment (Fa), cohesion (Fc), alignment
with the VA (Fav) and cohesion with the VA (Fac), depicted in Figure 3.3.
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Figure 3.3 - Virtual forces. The dotted circumferences represent the vision radius consti-
tuted of the three perception zones of one agent (in black). The gray region in
subfigures (a), (b) and (c) contains the neighbors used to calculate the forces
Fs, Fa and Fc, respectively. At (d) and (e) the blue agent is the VA. Fs is
calculated considering only the neighbors inside the zone of separation (ZS),
Fa with the individuals inside the zone of alignment (ZA), and Fc with those
inside the zone of cohesion (ZC).

(a) Fs (b) Fa (c) Fc

(d) Fav (e) Fcv

SOURCE: Produced by the author. Appears in Freitas et al. (2018).

They are inspired by observations of groups of animals like birds and fish. Some
species of fish increase their speed when a neighbor is far ahead (cohesion), decreases
when it is too close (separation) and align with them for medium distances (KATZ

et al., 2011). Following this principle, the calculation of each force depends not only
on the heading angle differences but also on the relative positions between the agent
and its neighbors, according to the perception zones of Figure 3.2. These zones are
rings, i.e., they do not overlap, similar to the work of Couzin et al. (2002).

When a neighbor is present in the i-th agent’s Zone of Separation (ZS), it computes
the separation force F i

s to adjust its heading angle to the opposite direction in
relation to the neighbor. This angle adjustment is performed gradually each iteration
until ZS is empty, as follows:
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F i
s(t) = fadj(θi, θs + π) (3.5)

with θs = arctan(∆y/∆x), for ∆x = xs−xi and ∆y = ys−yi. Coordinates [xi, yi]T ∈
R2 are the i-th agent’s position and [xs, ys]T ∈ R2 are the neighbor’s. The term fadj

corresponds to the step of the angle adjustment for one time unit. This formula
leads a reference angle θref until a target angle θtgt via Equation (3.6):

fadj(θref , θtgt) = sign(∆θref,tgt − π) min(γ, |∆θref,tgt − π|) (3.6)

in which fadj ∈ [−γ, γ], so that γ is the angular velocity that says how fast the agent
is able to turn, i.e., hardware dependent. It is the maximum step that θref is able to
adjust to reach θtgt. A quantity is subtracted or added to θref at each time unit. The
signal of this operation is given by sign(∆θref,tgt − π), and its intensity comes from
min(γ, |∆θref,tgt−π|), whose maximum is γ. The term ∆θref,tgt ∈ [0, 2π) corresponds
to the difference between the angles θref and θtgt, according to Equation (3.7):

∆θref,tgt = (θtgt − θref + π) mod 2π. (3.7)

As an example, the calculation of the separation force comprises θref = θi and
θtgt = θs + π and aims to decrease to zero the difference between θref and θtgt. Yet
it is important to highlight that both θi and θs change over time and there are
moments in which there is no neighbor inside the ZS, resulting in F i

s(t) = 0. The
same happens to the F i

a(t) and F i
c(t), when there are not neighbors inside the Zone

of Alignment (ZA) and Zone of Cohesion (ZC).

The alignment force F i
a has the goal of aligning the heading angle of agent i with

the average heading angles θavg of its neighbors inside the ZA (set NZA), as follows:

F i
a(t) = fadj(θi, θavg), with θavg = 1

|NZA|
∑

j∈NZA

θj. (3.8)

There is also a force Fav of alignment with the VA, that seeks to align the agent i
with the VA’s heading angle θa:
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F i
av(t) = fadj(θi, θa). (3.9)

The cohesion force Fc seeks to drive the agent i towards the center of mass of its
neighbors NZC from ZC, according to Equation 3.10:

F i
c(t) = fadj(θi, θcm), (3.10)

in which θcm = arctan(∆y/∆x), for ∆x = xavg−xi and ∆y = yavg− yi. In this case,
[xavg, yavg]T ∈ R2 is the center of mass coordinates of the agent’s neighbors, so that
xavg = 1

|NZC |
∑
j∈NZC

xj, and yavg = 1
|NZC |

∑
j∈NZC

yj.

Similarly, the force Fcv of cohesion with the VA, given by Equation (3.11), leads the
agent to move towards the VA’s position according to

F i
cv(t) = fadj(θi, θca), (3.11)

where θca = arctan(∆y/∆x), for ∆x = xa − xi and ∆y = ya − yi. The i-th agent’s
position is [xi, yi]T ∈ R2 and [xa, ya]T ∈ R2 are the VA’s coordinates.

In summary, the force F i(t) is the weighted combination of the aforementioned
virtual forces

F i(t) = αsF
i
s(t) + (1− αs)

αaF
i
a(t) + αcF

i
c(t) + αavF

i
av(t) + αcvF

i
cv(t)

αa + αc + αav + αcv
, (3.12)

under the condition that

αs =

0, if ZS is empty
1, otherwise,

(3.13)

that is, αs = 0 when the particle is not about to collide, and αs = 1 when there is
at least one individual inside the ZS, whereupon Fs overwrites the other forces.

The control coefficients αs, αa, αc, αav and αcv are related to their respective forces,
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and set the contribution of each force in F i(t). They also dictate if and how fast
the group will converge to the parallel formation around the VA. The challenge is
to find the correct α’s that lead the group to desired configurations.

The five forces are very important for the purpose of establishing formations of
agents. Although the forces Fav, Fcv and Fs seem enough to achieve a formation, the
optimization results of Section 2.6 show that Fa and Fc contribute when considering
different formation objectives.

3.3 Particles with phase-coupled oscillator dynamics (PCOD)

This section is devoted to a first-order model of particles with phase-coupled oscil-
lator dynamics, which is composed of N particles with unitary speed (SEPULCHRE

et al., 2007; JUSTH; KRISHNAPRASAD, 2004; PALEY, 2007) that follow the dynamics

ṙk = eiθk , (3.14a)

θ̇k = uk(rrr, θθθ), k = 1, . . . , N. (3.14b)

The k-th particle position is described by the complex coordinate rk = xk + iyk

and the phase/heading angle θk ∈ S1; eiθk is the direction of the velocity vector;
rrr = (r1, . . . , rN)T ∈ CN is the vector of particles positions; θθθ = (θ1, . . . , θN)T ∈ TN

is the phases vector, and uk(rrr, θθθ) is the feedback control, which is a forcing in the
direction normal to velocity.

For simplicity, we first study the trivial configuration of a unicycle model, with
uk = ω0, for ω0 6= 0. This setup corresponds to particles moving in circles, without
communication exchange, with ṙk(t) = eiω0t. The integration of ṙk(t) results in

rk(t) = rk(0) + i

ω0
− i

ω0
eiω0t, (3.15)

which is a circular motion centered at

ck(t) = rk(t) + i

ω0
eiθk(t), (3.16)
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see Figure 3.4.

Figure 3.4 - Simple circular dynamics of (3.14) for the case of a constant control uk =
ω0 6= 0. The particle is moving around the center ck given by Equation (3.16)
and radius |ω0|−1.
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SOURCE: Produced by the author.

Further on we present controls for circular formations, that are characterized by
particles moving in circular trajectories with the same centroid. After the formation
is reached, particles’ phases are updated according to a constant force uk(rrr, θθθ) = ω0.
It means that, during a certain transient, the system updates with uk(rrr, θθθ) = ω0 +
a, for some |a| > 0 that correspond to the contribution of the coupling between
particles. As soon as they are perfectly positioned within the formation, they simply
rotate according to the mentioned constant force.

3.3.1 Circular formations

This Section aims to present how to achieve particles sharing the same rotation
center c1 = c2 = · · · = cN . Firstly, consider the following potential (SEPULCHRE et

al., 2007):

S(rrr, θθθ) = 1
2‖Pc

cc(rrr, θθθ)‖2, (3.17)

where
ccc(rrr, θθθ) = rrr + i

ω0
eiθθθ, P = IN −

1
N

111111T = L/N,

IN is the N ×N identity matrix, and 111 = (1, · · · , 1). The P matrix also corresponds
to the graph Laplacian overN . In short, the centers are identical if and only if Pccc = 0

33



and the potential S achieves its minimum. The time derivative of the potential (3.17)
along the solutions of the particle model is given by

Ṡ = ∂S

∂θθθ

dθθθ

dt
= 1
ω0

N∑
k=1

(ω0 − uk)
〈
eiθk , Pk ccc(rrr, θθθ)

〉
, (3.18)

where 〈z1, z2〉 = Re{z∗1z2} for z1, z2 ∈ C, z∗1 is the complex conjugate of z1, and Pk
is the k-th row of the matrix P .

Choosing the control uk as follows

uk(rrr, θθθ) = ω0(1 +K0
〈
eiθk , Pk ccc(rrr, θθθ)

〉
) = ω0 −K0ω

2
0
∂S

∂θk
, (3.19)

equation (3.18) yields

Ṡ = −K0

N∑
j=1

〈
eiθj , Pj ccc(rrr, θθθ)

〉2
≤ 0. (3.20)

Therefore solutions of system (3.14) with the control (3.19) converge asymptotically
to the same centers c1 = · · · = cN , which implies immediately that uk = ω0 and
the particle solutions are of the form (3.16), i.e. the particles move around the same
centers with the same frequency ω0 and radius |ω0|−1.

The idea is to decrease the difference between pairs of centers so that the control
gives

uk(rrr, θθθ) = ω0 + ω0K0 cos(θk)
N∑
j=1

(
ck
N
− cj
N

)
,

which shows that the differences (ck/N − cj/N) decrease and the control receives
a contribution that is opposite to its counterpart (cj/N − ck/N) due to the cosine
function, making the centers of the particles to go toward each other.

3.3.2 Symmetric circular formations

This section introduces a phase control that aims to organize the particles into
symmetric groups. So far, we only have control (3.19), whose role is to lead particles
to concentric circular trajectories.

Let us define the so-called (M,N) pattern as a symmetric arrangement of N phases
distributed in M clusters uniformly spaced around the unit circle, each with N/M
synchronized phases (SEPULCHRE et al., 2007). The coveted symmetric circular for-
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mations are made of (M,N) patterns orbiting a common center. Formally, the
(M,N) pattern is characterized as

θj,k(t) = ω0t+ 2πk/M,

rj,k(t) = c− i

ω0
eiω0t+i2πk/M ,

(3.21)

where the index k = 1, . . . ,M counts the clusters, j = 1, . . . , N/M are the oscillators
within each cluster, and c is the common center. In the following, we describe the
choice of uk(rrr, θθθ) that guarantees the formation of symmetric circular clusters.

First note that the center of mass of the particles

R = 1
N

N∑
j=1

rj (3.22)

moves with the velocity

Ṙ = 1
N

N∑
j=1

eiθk =: pθ = |pθ|eiΨ, (3.23)

which equals to the Kuramoto order parameter (KURAMOTO, 1984). Since 0 ≤
|pθ| ≤ 1, the case |pθ| = 1 corresponds to the synchronized phase arrangement with
particles heading to the same direction θ1 = · · · = θN . Oppositely, pθ = 0 stands for
balanced heading angles, so that the center of mass remains in a steady position.
This is possible, in particular, when the particles are moving radially from their
center of mass. Plus, this measure is important to characterize synchronized and
balanced states of particles.

We further introduce the m-th moment of the Kuramoto order parameter (SEPUL-

CHRE et al., 2007):

pmθ = 1
mN

N∑
j=1

eimθj , m = 1, 2, 3, . . . (3.24)

with 0 ≤ |pmθ| ≤ 1/m. Whenever the phases form uniformly distributedM -clusters,
the (M,N) pattern, |pmθ| achieves its minimum |pmθ| = 0 for m < M and its
maximum |pMθ| = 1/M for m = M .

The division by m in the right hand side of Equation (3.24) acts as a normalization
factor to guarantee that the scale of the deviations of pmθ is the same for every
m. In other words, since the derivative of pmθ matters for the dynamics, the factor
1/m balances different m cases. Figure 3.5 (a) presents a splay state as blue circles
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and its perturbed version as symbol ‘+’, in which we add a small perturbation ε.
Figure 3.5 (b) shows them-th order parameter |pmθ| of the perturbed system and the
normalized order parameter m|pmθ|. Notice that the |pmθ| presents small differences
for varying m, whilst it normalized version is less smooth.

Figure 3.5 - (a) Phases in a splay state as blue circles and its perturbed version as red
symbols +; (b) m-th phase order parameters of the perturbed system as sym-
bols x and the corresponding normalized version as stars.
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With the aim of minimizing |pmθ| when m < M and maximizing |pMθ|, the following
potential is considered:

UM,N(θθθ) =
M∑
m=1

KmUm(θθθ), Um(θθθ) = N

2 |pmθ|
2, (3.25)

whereKm > 0 form = {1, · · · ,M−1} andKM < 0. The (M,N) patterns correspond
to the minimum of the potential UM,N(θθθ) = (KMN)/(2M2), as follows

UM,N(θθθ) =
M∑
m=1

Km
N

2

∣∣∣∣∣∣ 1
mN

N∑
j=1

eimθj

∣∣∣∣∣∣
2

.

When the particles assume a symmetric formation, Um = 0 for m < M , and the
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only nonzero potential is UM(θθθ), that gives

min{UM,N(θθθ)} = Km
N

2
1
M2 = KMN

2M2 . (3.26)

The gradient of (3.25) is given by

∂Um
∂θk

= N

2

(
∂pmθ
∂θk

p∗mθ + pmθ
∂p∗mθ
∂θk

)
= 1

2m
(
imeimθkp∗mθ − pmθime−imθk

)

= 1
2m

imeimθk
1
mN

N∑
j=1

e−imθj − 1
mN

N∑
j=1

eimθj ime−imθk



= i

2mN

 N∑
j=1

ei(m(θk−θj)) −
N∑
j=1

ei(m(θj−θk))



= 1
2mN

N∑
j=1

i cos(m(θk − θj))− sin(m(θk − θj))− i cos(m(θj − θk)) + sin(m(θj − θk)),

that results in:

− ∂UM,N

∂θk
= 1
N

M∑
m=1

N∑
j=1

Km

m
sin(m(θk − θj)). (3.27)

Gathering the control (3.19) for obtaining circular formations and the gradient of
the phase potential (3.27) for symmetric phase arrangements, gives

uk(rrr, θθθ) = ω0 −K0ω
2
0
∂S

∂θk
− ∂UM,N

∂θk
=

= ω0(1 +K0
〈
eiθk , Pkccc(rrr, θθθ)

〉
) + 1

N

M∑
m=1

N∑
j=1

Km

m
sin(m(θk − θj)). (3.28)

Figure 3.6 presents simulation results of model (3.14) under the control of Equation
(3.28) for symmetric circular formations with N = 6 particles and M = {1, 2, 3, 6}
clusters. Trajectories are plotted in gray, the particles are the red circles with direc-
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tion arrows and the center of mass is the smaller circle in blue.

Figure 3.6 - Simulations of model (3.14) under the control for symmetric circular forma-
tions of Equation (3.28). Parameters: N = 6, K0 = 0.1, ω0 = 0.05, Km = 0.18
for m < M and KM = −0.02. Particles are the red circles and the center of
mass is in blue.
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A nice hint of what are the order parameters measurements during the time inte-
gration of the system can be seen in Figure 3.7 with the example of M = 3. At the
beginning, for small t, they exhibit a wiggling like form and after that, the |pθ| and
|p2θ| decrease as expected, while |p3θ| grows.

Figure 3.7 - Time series of the order parameters of model (3.14), with control (3.28) and
parameters: N = 6, M = 3 K0 = 0.1, ω0 = 0.05, Km = 0.18 for m < M and
KM = −0.02
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3.3.3 Limited communication

Here we present the generalization of the PCOD model for a limited communication
scenario, where particles exchange information with neighbors according to a fixed
network topology (SEPULCHRE et al., 2008).

We define the following phase potential

U(θθθ) = N

2 〈pθ, pθ〉 = 1
2N

〈
111T eiθθθ,111T eiθθθ

〉
= 1

2

〈
eiθθθ,

1
2111111T eiθθθ

〉
(3.29)

which, substituting the (111111T )/N = diag{111} − P by L, gives

WL(θθθ) = 1
2
〈
eiθθθ, Leiθθθ

〉
. (3.30)

with L = [lij] ∈ R2 and

lij =


|N net

i | if i = j

−1 if j ∈ N net
i

0 otherwise

The potential for symmetric circular formations is as follows:

WM,N
L (θθθ) = −

M∑
m=1

Km

m2 WL(mθθθ) = −1
2

M∑
m=1

Km

m2

〈
eimθθθ, Leimθθθ

〉
(3.31)

with Km > 0 for m = 1, · · · ,M − 1, and KM < −∑M−1
m=1 Km. The corresponding

derivative with respect to θk is

WM,N
L

∂θk
= −

M∑
m=1

Km

m

〈
ieimθk , Lke

imθθθ
〉
. (3.32)

The corresponding control to undirected and incomplete interconnection networks
is the following:

uk = ω0(1 +K
〈
eiθk , Lkccc

〉
)− ∂WM,N

L

∂θk
, K > 0. (3.33)
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The potential of Equation (3.30) always decreases when the communication network
is circulant (SEPULCHRE et al., 2008; JAIN; GHOSE, 2018). A circulant network is
completely defined by its first row and each subsequent row is the previous row
shifted one position to the right. Its first entry is equal to the last entry of the
previous row.

3.3.4 Collision avoidance

Considering the Kuramoto model of Equation (2.9), when K > 0 the phases dis-
tribute around the unitary circle, leading the zero order parameter. Motivated by
this behavior, we propose the introduction of a repulsion term rep in Equations
(3.28) and (3.33), so that the phases of close range particles are adjusted to avoid
collision, by moving apart.

The repulsion term comes from the potential of Equation (3.30), also called Lapla-
cian phase potential (LEONARD et al., 2007). Its gradient is given by

∂WL

∂θk
= 1
N

〈
ieiθk , Lke

iθθθ
〉

(3.34)

which corresponds to

∂WL

∂θk
= 1
|N (rk)|

∑
j∈N (rk)

sin(θk − θj)

for N (rk) = {j ∈ N | ‖ rk − rj ‖< d} is the set of neighbors of agent k and
|N (rk)| is the number of neighbors in N (rk). An agent belongs to N (rk) if it is
within a predefined radius d, centered at rk. This gradient leads the solutions to the
stationary points when the Laplacian matrix is circulant. We employ the gradient
of the Laplacian phase potential as a repulsion term:

rep = Kr

|N (rk)|
∑

j∈N (rk)
sin(θk − θj) (3.35)

with Kr > 0 being the repulsion strength.

The idea behind the Equation (3.35) is that the agent k tries to balance its heading
angle with its closest neighbors N (rk). This results in an adjustment of agent’s k
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heading angle to the opposite direction concerning N (rk).

One drawback of this approach is that it is not possible to guarantee that the matrix
is circulant since L is time-varying. However, the neighbors indeed repel the agent
as desired.

The new controls for symmetric circular formation with the rep term are shown in
Equations (3.36) and (3.37) for all-to-all and limited coupling networks, respectively:

uk = ω0(1 +K
〈
eiθk , Pkccc

〉
)− ∂UM,N

∂θk
+ rep (3.36)

uk = ω0(1 +K
〈
eiθk , Lkccc

〉
)− ∂WM,N

L

∂θk
+ rep (3.37)

with K > 0.

3.4 Conclusions

This Chapter introduced the Unicycle model and two models we study throughout
the thesis, namely the phenomenological reactive model of agents following a mobile
reference and the particles with coupled-oscillator dynamics. We end the chapter
with a collision avoidance strategy. The interaction rules are presented in detail and
the synchronization-based strategies alike. Here we finish the presentation of all the
necessary theoretical background for the understanding of the next Chapters.
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4 REACTIVE MODEL FOR AUTONOMOUS VEHICLES FORMA-
TION FOLLOWING A MOBILE REFERENCE: SIMULATIONS AND
NUMERICAL RESULTS

This Chapter presents simulations and numerical results for the reactive model intro-
duced in Section 3.2. We first solve the inverse problems of finding proper parameters
that lead the group to specific behaviors with heuristics. The problems are initially
solved considering single-objective functions and later we combine such functions
in a multi-objective approach. Lastly, we present three simulations scenarios that
mimic real-world applications.

The results we present are dependent on the model parameters and not on initial
conditions. We simulate small numbers of agents and do not use boundary conditions
on the 2D plane of the simulation scenario so that we can depict real-world aspects
of systems with autonomous vehicles.

At the beginning, we employ a search in the control parameter space, to seek for
“optimal” parameters that lead the agents to specific formation topologies. The
chosen heuristics is based on evolutionary optimization, that start with random
parameters and evolve them towards the minimization of certain objective functions.
We propose three such functions that take into account how tight the formation is
and how fast it converges.

In addition, we present three examples of path planning scenarios, in which the
agents follow the VA considering fixed or dynamic relative positions. It means that
the agents can follow the VA closely maintaining or not their relative distances. Fixed
relative positions are important when the agents are satellites in formation fly, in
which the formation must be rigid. Oppositely, dynamic positions are interesting in
surveillance systems due to the desired agents’ unpredictability.

4.1 Evolutionary Optimization

In our reactive model, the control coefficients α’s are the design variables of an
optimization problem. However, there are four coefficients to be adjusted, and finding
the optimal set is a hard task that is not feasible to be performed empirically, i.e.,
by only using the intuition to knob the values or through brute force, testing all
the possibilities. The problem is then to find the sets of parameters that makes our
system to converge as fast as possible, but keeping a cohesive group.
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4.1.1 Objective functions

Find bellow the three objective functions that we use in the optimization procedures,
also sketched in Figure 4.1:

a) ftime (Convergence time): it corresponds to the time units (tu) from the
beginning of the simulation until the first time the agents achieve a desired
formation: all agents moving in an almost parallel formation inside the FR
with the same speed of the VA. We consider that they are in the coveted
almost parallel formation if their heading angle differences are up to 5
degrees.

b) fang (Angular uniformity): This function characterizes the agents’ distri-
bution around the VA. The relative angles Θj between the position of each
agent and the VA are calculated and used to evaluate the Order parameter
pΘ of Equation (4.1) (STROGATZ, 2000):

pΘ = 1
N

N∑
j=1

eiΘj (4.1)

with eiΘk = cos Θj + i sin Θj, such that Θj = arctan(∆y/∆x), for ∆x =
xa−xi and ∆y = ya− yi, for [xi, yi]T ∈ R2 is the i-th agent’s position, and
[xa, ya]T ∈ R2 are the VA’s coordinates.

In this case, fang = |pΘ|. When fang = 0 the agents are uniformly dis-
tributed around the VA. On the other hand, if fang = 1 then the agents
are at the same position, beside the VA.

c) frad (Radial uniformity): The mean of the distances between each agent
and the VA:

frad = 1
N

N∑
j=1

dj (4.2)

in which dj is the distance between the j-th agent and the VA.
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Figure 4.1 - Objective functions: a) Convergence time ftime when every agent is inside
the FR and |θi− θa| < 5 degrees; b) Angular uniformity fang = | 1

N

∑N
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iΘi |
and; c) Radial uniformity frad = 1
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The minimization of such functions lead the system to tight formations of agents
distributed around the VA.

4.1.1.1 Results

Both GEO and M-GEO algorithms, described in Section 2.6, are employed. Be-
sides, one solution corresponds to the four design variables αa, αc, αav and αcv,
encoded as sequences of bits. We bound the M = 4 design variables to the inter-
val αa, αc, αav, αcv ∈ [0, 1] and define a precision of p = 0.01 for their representa-
tion, which gives m = 7 bits for each variable, as follows from Equation (2.26),
27 ≥ (1− 0)/0.01 + 1→ 128 ≥ 101.

One solution is the concatenation of the four sequences of bits that correspond to
the four design variables, regardless of initial conditions. This solution has L = 28
bits of length from M = 4 variables of L/M = 7 bits each, all randomly chosen at
the beginning.

The three inverse problems to be solved are described by Equations (4.3), (4.4) and
(4.5), whose goals are to minimize the time to reach the the desired formation, the
angular uniformity and radial uniformity, respectively:

min {ftime}
subjected to design variables: αa, αc, αav, αcv ∈ [0, 1],

(4.3)
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min {fang}
subjected to design variables: αa, αc, αav, αcv ∈ [0, 1],

(4.4)

min {frad}
subjected to design variables: αa, αc, αav, αcv ∈ [0, 1].

(4.5)

The radii of the zones of perception are not included as design variables. Couzin et
al. (2002) realized that ZA+ZS≥ 2.5 guarantees that the group reaches a polarized
configuration, i.e., they reach consensus and move in parallel. They used ZA= 1 so
that the width of the zone of attraction is ZA-ZS= 1.5. We employed slightly higher
values so that the control parameters α’s could have room to properly regulate the
contribution of each force.

The objective functions’ calculation depends on model simulations using the design
variables as parameters. The simulations are limited to 5000 time units (tu) because
it is computationally expensive to run them longer, beyond the fact that waiting
too long for the formation to emerge is not coveted. We empirically figured that for
some hand-tuned parameters the agents take about 1500 tu to converge to desired
formations. The extra 3500 tu is a margin to let the optimization algorithm evolve
its population.

The τ parameter is investigated in the first place, to make sure that the optimization
has the better setup possible. We run the model for varying τ ∈ [0.5, 2.5] in steps
of ∆τ = 0.25 and NFE= 10000 evaluations of the objective function each run. This
interval corresponds to the experiments of DE SOUSA et al. (2003) with various
functions.

As soon as a suitable τ is found, we execute the optimization 50 times with NFE=
100000.

Find bellow the initial conditions and parameters for the reactive model:

• N = 12 agents randomly positioned inside a rectangle of dimensions 36 x
76 bl alike in Figure 3.1.

• Perception zones: ZS = 2.5bl, ZA = 4.0bl and ZC = 5.5bl.

• Maximum turning angle: γ = 1 decimal degree.

• Maximum Fs: 2γ.
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• Maximum Fa = Fc = Fav = Fcv: γ.

• Initial heading angles θθθ: Random.

• sva = 1 bl/tu , sout = 1.4 bl/tu. This notation of speed stands for body-
length per time unit. An agent moving at 1 bl/tu travel the distance of its
length at every time unit.

• FR radius: 25 bl.

• VA heading angle: 180 decimal degrees, i.e., the VA is constantly moving
in a straight line.

• t̄ = 87.5tu.

• Control coefficients: αa, αc, αav, αcv ∈ [0, 1] and αs = 1.

4.1.2 Mono-objective problem

This Section starts with the results of optimization problem (4.3), in which Figure
4.2(a) is the investigation with varying τ and Figure 4.2(b) exhibits the optimization
using the best τ = 1.75. The abscissa gives the number of iterations of GEOvar and
the ordinate shows the progress of the convergence time optimization in number of
iterations of the reactive model. We present 50 runs in gray, the best highlighted in
purple and the average case in red. The average of the 50 runs is ftime = 758.76 tu.
Table 4.1 shows the best results.

Figure 4.2 - Results of optimization problem (4.3): (a) Optimal ftime for different values
of τ . (b) Optimal ftime, after 50 simulations of GEOvar with τ = 1.75. Best
result is the purple thick line and the average case is the dashed red line. The
50 simulations are represented by the thin gray lines.
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Table 4.1 - Results of optimization problems (4.3), (4.4), and (4.5), using the algorithm
GEOvar.

αa αc αav αcv f
ftime τ = 1.75 0.417323 0.125984 0.19685 0.464567 476 tu
fang τ = 1.50 0.811024 0.598425 0.244094 0.456693 3.6398× 10−4

frad τ = 1.50 0.228346 0.80315 0.488189 0.669291 3.39412 bl

The optimization for the Angular uniformity fang is presented in Figure 4.3, for
which τ = 1.5 performed better. The near zero fang indicates that the agents are
almost uniformly distributed around the VA. The best case is also presented in Table
4.1, and the average is fang = 0.00246136174.

Figure 4.3 - Results of optimization problem (4.4): (a) Optimal fang for different values
of τ . (b) Optimal fang measure after 50 simulations of GEOvar with τ = 1.5.
Best result is the purple thick line and the average case is the dashed red line.
The 50 simulations are represented by the thin gray lines.
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SOURCE: Produced by the author. Appears in Freitas et al. (2018).

The results for Radial uniformity are depicted in Figure 4.4, showing that τ = 1.5
outperformed the others. In our setup, the FR radius equals 25bl, then the higher
possible Radial uniformity is 25bl and only happens if all agents sit on the FR
boundaries. In contrast, the minimum value corresponds to how close the agents
can be of VA without colliding with each other. The best result is depicted in Table
4.1, and the average of the 50 runs is frad = 3.6232264.
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Figure 4.4 - Results of optimization problem (4.5): (a) Optimal frad for different values of
τ . (b) Optimal frad after 50 simulations of GEOvar with τ = 1.5. Best result
is the purple thick line and the average case is the dashed red line. The 50
simulations are represented by the thin gray lines.
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SOURCE: Produced by the author. Appears in Freitas et al. (2018).

The forces Fav, Fcv and Fs alone may lead the agents to formations around the VA,
with the collision avoidance mechanism. They are responsible to attract the agents
towards the VA, making them align with it without crashing events. One could now
question the need of Fa and Fc, since at a first glance they look useless.

Yet, in the three aforementioned optimization cases, the contributions of Fa and
Fc are indeed important. For the optimization of ftime, αa is the second higher
control coefficient, and it implies that aligning with neighbors is crucial to achieving
small convergence time. Along with Fc, the force Fa plays an important role for the
emergence of small angular uniformities, having the two higher coefficients. Lastly,
the optimization of frad is highly influenced by Fc as well.

4.1.3 Multi-objective problem

The motivation behind this section is the possibility of achieving formations of agents
close to each other, uniformly spread around the VA and with small convergence
time. These three characteristics are explored individually in the previous section
with the GEOvar. Here they are all taken into account at the same time.

The multiobjective problem we are dealing with is:
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min {fi}, i = {time, ang, rad}
subjected to design variables: αa, αc, αav, αcv ∈ [0, 1],

(4.6)

the simultaneous minimization of three functions: ftime, fang, frad. Figure 4.5 presents
our results using the same configurations of Section 2.6.1 simulations, with τ = 1.50,
η = 100 and NFE= 2000000. The axes represent fang and frand and colors are the
convergence time ftime, the latter given in time units (tu).

Figure 4.5 - Pareto Frontier obtained from M-GEO with τ = 1.50. Colors represent
ftime. The black arrow indicates the chosen solution for the simulations of
Section 4.2, whose values for the objective functions are ftime = 779,
fang = 0.0582744 and frad = 4.71353, and control coefficients αa = 0.23622,
αc = 0.212598, αav = 0.488189 and αcv = 0.976378. The vertical dashed line
highlights the fang = 0 to show how close the solutions approach to it.
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SOURCE: Produced by the author. Appears in Freitas et al. (2018).

Remark that the choice of the “best” solution is not trivial. Notwithstanding, one
good option is the one closer to the utopian solution, near the functions’ optimal
values. In the present setup, the task is the minimization of non-negative functions
so the utopian solution is the origin (0, 0, 0). Considering the candidate solutions
near the origin and also that convergence time is of great importance, we decided to
pick the one with the time depicted in blue tonality with the smaller fang and frad,
indicated by the black arrow in Figure 4.5 that corresponds to ftime = 779, fang =
0.0582744 and frad = 4.71353, with αa = 0.23622, αc = 0.212598, αav = 0.488189
and αcv = 0.976378.
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4.2 Path planning simulation

This section aims to present realistic scenarios that could be handled by the reactive
model. Since the role of the VA is to guide the formation, we model its motion
according to three mission requirements with the parameters from the last paragraph
of previous Section.

The three missions consist of:

1. Having the formation moving in a circular trajectory with a predefined radius.

2. Having the formation randomly moving inside a bounded area.

3. Having the formation randomly moving inside a bounded area with relative po-
sitions among agents preserved.

Remark that the performed optimization takes into account that the VA moves in
a straight line, and here we use the obtained parameters for other motions. Better
results may be obtained if the one optimizes the system depending on the desired
motion of the VA. Our results are a simplification due to the complexity of consid-
ering all possibilities for the VA.

The dynamics of VA’s position [xa, ya]T ∈ R2 is calculated as follows:

ẋa = sa cos(θa)
ẏa = sa sin(θa)

(4.7)

for sa is its speed and θa the heading angle.

The dynamics of θa is mission dependent and we start with the first: the circular
trajectory, in which it suffices for the VA’s θa to evolve constantly

θ̇a = ω (4.8)

for ω is the frequency of rotation. When ω is positive, VA moves clockwise, or
counter-clockwise if negative. Here we consider that va = 1 bl/tu, then the radius
of such circular trajectory is ρ = |ωa|−1. The simulations can be seen in Figure 4.6.
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Figures 4.6, 4.7 and 4.8 all show simulation results using the optimized parameters
of Section 4.1.3: αa = 0.23622, αc = 0.212598, αav = 0.488189, αcv = 0.976378, with
ω = 1.0 decimal degree, and maximum turning angle of γ = 10 decimal degrees.
The pictures show the evolution of the crowd, with the individuals changing their
direction with more freedom than in the optimization setup. This parameter γ dic-
tates the angular velocity, which depends on the vehicle’s hardware. The faster a
vehicle can change its heading angle the higher is the γ value.

Figure 4.6 - Simulation results with the VA following a circular trajectory with dynamics
of Equation (4.8). Parameters: αa = 0.23622, αc = 0.212598, αav = 0.488189
and αcv = 0.976378, ω = 1 and maximum turning angle γ = 10 decimal
degrees. We present three simulation snapshots, with the time units indicated
near them.

SOURCE: Produced by the author. Appears in Freitas et al. (2018).

Regarding the second and third missions, we define a rectangular area in the 2D plan
with vertices’ coordinates {(xmin, ymin), (xmax, ymin), (xmin, ymax), (xmax, ymax)}. The
VA moves randomly within these boundaries. In order to maintain the motion
bounded, at each time unit we compute the closest point [xc, yc]T ∈ R2 the VA
is from the region border

xc = max(xmin,min(xmax, x))
yc = max(ymin,min(ymax, y))

. (4.9)
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Let d =
√

(xa − xc)2 + (ya − yc)2 be the distance from the VA’s position to the
boundary closest point, and dmin the VA’s safe distance to the rectangle limit, a
parameter. When d > dmin, the VA moves randomly, according to:

θ̇a = ±γ (4.10)

in which the assignment of the two possible values of θ̇a follows a discrete uniform
distribution, such that p(θ̇a = γ) = p(θ̇a = −γ) = 0.5.

Contrarily, for d < dmin the control θa is a bit different to avoid the VA from leaving
the coveted area. One calculates the angle φ between the VA’s position [xa, ya] and
the closest boundary point [xc, yc]: φ = arctan(∆y/∆x) for ∆x = xc − xa and
∆y = yc− ya. Its heading angle is adjusted to the opposite direction of φ, similar to
the separation force, as shown in Equation (4.11), with fadj ∈ [−γ, γ]:

θ̇a = fadj(θa, φ+ π). (4.11)

Simulation snapshots are exhibited in Figure 4.7.

Figure 4.7 - Simulation results with the VA performing a random walk inside a bounded
region with dynamics of Equations (4.10) and (4.11). Parameters: αa =
0.23622, αc = 0.212598, αav = 0.488189 and αcv = 0.976378, ω = 1 and
maximum turning angle γ = 10 decimal degrees. We present three simulation
snapshots, with the time units indicated near them.

SOURCE: Produced by the author. Appears in Freitas et al. (2018).
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The third example (Figure 4.8) consists of obtaining formations in which the agents
keep their relative positions fixed. The simulation is similar to the second example,
with the VA’s random walk. Here the difference is related to the agents’ control
parameter. As soon as one agent enters the FR and its speed converges to sa, its
control parameters are set to αa = αc = αcv = 0, αs is maintained as is and
finally αav = 1. It results in particles aligning only with the VA when inside the FR
and the only reaction to other nearby agents is collision avoidance. Consequently,
F i(t) = Fav when no collision is about to happen and F i(t) = Fs otherwise. This
alignment-only state with the VA inside the FR guarantees the relative distances
among agents fixed. An alternative would be to keep αa 6= 0 to tackle noise and any
sort of external influence.

Figure 4.8 - Simulation results with the VA performing a random walk inside a bounded
region as in Figure 4.7, but the agents maintain their relative positions fixed,
after a transient (notice that relative positions do not change from t=1375
to t=3675). Parameters: αa = 0.23622, αc = 0.212598, αav = 0.488189 and
αcv = 0.976378, ω = 1 and maximum turning angle γ = 10 decimal degrees.
We present three simulation snapshots, with the time units indicated near
them.

SOURCE: Produced by the author. Appears in Freitas et al. (2018).

When the VA moves in a straight line as in the optimization setup, the individuals
do not change their position very often inside the FR, except in the imminence of
collisions. However, in situations where the VA changes its heading angle continu-
ously, like the scenarios we presented in this Section, the agents constantly interact.
If one wants the agents to establish a static formation, one idea would be to fol-
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low the strategy of the third example, for fixed formations. Dynamic formations are
desired in applications such as surveillance or exploration wherein one desires the
agents’ positions inside the group not to be predictable or static. On the other hand,
in formations of satellite constellations, they must keep the relative positions fixed.

4.3 Conclusions

This Chapter presented the simulations and numerical results of the model for au-
tonomous vehicle formation following a mobile reference. The focal point was to
solve the inverse problem of finding proper parameters that drive the agents to the
desired formations. Three objective functions are used to quantify the formations
and their minimum correspond to the group configurations we want. We first solved
the problem for each function and lastly present the results for the multiobjective
version, considering all three functions in parallel. The last section was concerned
with the simulation of three real-world problems: in the first, the group must develop
a circular trajectory in a formation with varying relative positions among agents; the
second consists on random motions inside a rectangular area, and; finally, the third
example is as the second but with fixed relative positions, such that the formation
keep a tight configuration.
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5 PARTICLES WITH PHASE-COUPLED OSCILLATOR DYNAMICS:
SIMULATIONS AND NUMERICAL RESULTS

Here we present simulations and numerical results for the PCOD model introduced
in Section 3.3. Firstly, the control parameters’ space is investigated in order to fig-
ure out which regions lead the particles to symmetric circular formations in a timely
manner. Following is presented the effects of adding and removing agents to/from
already stable formations. Another important scenario is the interchangeability of
system configurations, going from one symmetric formation to another, which is ad-
dressed as well. We propose the so-called “Switching System” that consists of period-
ically switching the system potential, resulting in formations with non-overlapping
particles and chaotic circular-like trajectories. Finally, the effects of fixed time delay
in the communication between agents are investigated followed by simulations with
a collision avoidance mechanism.

5.1 Effect of control parameters on cluster emergence

The symmetric arrangements discussed in Section 3.3 depend both on initial con-
ditions and control parameters Km, for m = 1, . . . ,M related to the number of
clusters. The number of symmetric clusters strongly depends on initial conditions
and, in particular, it can be different from M when Km is not properly chosen.
In other words, the system converges to a certain local minimum of the potential,
instead of the global minimum with M clusters (Figure 3.6).

We address here the problem of finding sets of control parameters Km for which
the particles achieve symmetric M clusters for most initial conditions. We present
in Section 5.3 that some symmetric formations are local minimum of others. This
means that the original model does not work for some specific initial conditions.

For simplicity, we assume the first positiveM−1 weights to be identical K1 = · · · =
KM−1. We grouped them due to their common role that is to suppress the unwanted
possible symmetric formations that could emerge.

We performed a numerical study of the model (3.14) with control (3.28) for different
values of the parameters K1 and KM . The simulations are assessed with the m-th
moments of the order parameter pmθ of Equation (3.24).

The black regions of Figure 5.1 indicate which parameter values result in emerging
symmetric formations with a relatively short transient time. More specifically, they
depict simulations whose order parameters fulfill m|pmθ| < ε for m = {1, · · · ,M−1}
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and M |pMθ| > 1 − ε with ε = 10−3. The moments pmθ for each pair of parameter
values K1, KM are computed by averaging over the results of three simulations each
starting with different random initial conditions. The same integration time tf =
15000 is employed at each simulation.

Figure 5.1 - Parameter space KM ×K1. The black regions correspond to the parameter
values, for which symmetric M -cluster formations emerge after the transient
tf = 15000. More specifically, for these parameters, the conditions m|pmθ| <
10−3 for m < M and M |pMθ| > 1 − 10−3 are fulfilled. Other parameters:
N = 12, ω0 = 0.05.
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SOURCE: Produced by the author. Appears in Freitas et al. (2019, Submitted).

WhenM < N/2 is not a divisor of N , clusters of slightly different sizes may emerge.
We computed the respective order parameters for such cases and figured out that
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there are no regions obeying |pθ| < 10−3 and M |pMθ| > 1 − 10−3 when M < N/2
and N modM /∈ N for N = 12 particles.

As a future work, one could find optimal Km through heuristics (BÄCK; SCHWEFEL,
1993; DE SOUSA et al., 2003), considering the gains for the whole setm = {1, · · · ,M},
instead of only K1 and KM . Besides, it might focus on a more specific setup that
depends on the mission. Our results have a wider usage, not being target specific.
With the heuristic, one could account for a specific number of agents, clusters, initial
conditions, desired convergence time, actuators’ constraints, etc.

5.2 Adding and removing particles

Real engineering systems must consider the replacement of broken equipment and a
certain level of scalability. New agents may join formations and the system should
be able to recover from possible failures of equipment. With this motivation, we con-
ducted tests consisting of adding and removing particles to/from already stabilized
symmetric circular formations.

We carried out simulations with a set of parameters KM and K1 from the stable
regions of Figure 5.1 and N = 12. Besides, the particles can be added or removed
in various ways and we study here some possibilities.

We begin with the case of new particles being added to the system. To the starting
stable M clusters, Nadd new particles are introduced, in accordance with one of the
following strategies:

• A0) All at random (random phases and coordinates);

• A1) All uniformly distributed between clusters: they are placed exactly in
the spots between neighboring clusters;

• A2) All uniformly distributed inside clusters;

• A3) Add one by one randomly to already stable formations: only one
particle with random phase and coordinates is added to a system of
N := 12 + Nadd − 1 particles in M stable clusters. When Nadd = 0, no
particle is added, and N := 12;

• A4) All in a cluster with random phases: the new Nadd particles are placed
exactly inside one cluster, with random phases;
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• A5) All in one spot between two clusters with random phases: one randomly
chooses two clusters and adds all new particles exactly in the spot between
them;

• A6) All at a cluster with the same phase: similar to A4, but with the same
phases as the particles inside the cluster.

The persistence or destruction of the clusters are monitored by the normalized M -
th moment of the order parameter M |pMθ| ∈ [0, 1] and the corresponding UM,N

potential of Equation (3.25). Simultaneous fulfillment of I) M |pMθ| = 1 and II)
UM,N = (KmN)/(2M2) indicates that the system has reached a symmetric state
with M clusters. When only I is fulfilled, all particles join clusters, but there is no
balance.

Figure 5.2 shows the simulation results forN = 12, the cluster sizesM = 2, 3, 4, 6, 12,
and different number of added particles Nadd. Both the order parameter M |pMθ|
and the corresponding potential UM,N of each point of the graphs are computed by
averaging over the results of five simulations with different random initial conditions.
We have observed that for all strategies M |pMθ| decreases with the increasing of the
“mismatch” n = Nadd mod M 6= 0 and suddenly jumps to close to 1 when n = 0.
In other words, the order parameter decreases as the extra particles are added until
the number of new members reaches a multiple of M .

The following three situations are distinguished: I) When Nadd/M ∈ N, the particles
tend to uniformly distribute among the clusters and M |pMθ| → 1 with increasing
time; II) When N �M ,M |pMθ| → 1 up to a small ε-error even in the case whenM
is not multiple of Nadd due to a relatively small perturbation by the added particles;
III) Neither situation I or II takes place, i.e., both Nadd/M /∈ N and N is not too
high in comparison to M . Thus M |pMθ| < 1 − ε holds even after a long transient
time.

Notice that there are places in whichM |pMθ| = 1 and the potential does not reach its
minimum. They correspond to a system of unbalanced M clusters. Besides, M |pMθ|
measures whether the clusters are uniformly distributed in the unit circle. The other
M − 1 moments of the order parameter assess whether the clusters have the same
number of elements. Consequently, the more potentials are present in the control
the more the optimization focuses on having clusters of the same size and less on
establishing uniformly distributed clusters of phases inside the formation. In Figure
5.2, the M -th order parameter oscillates more with increasing M .

60



Figure 5.2 - Normalized order parameter MpMθ (left) and potential UM,N (right) for
different number Nadd of added elements to already formed clusters. The
dashed gray line on the right plot corresponds to the potential minimum
UM,N = (KmN)/(2M2). The system starts with N = 12 particles with the
following number of clusters: (a) M = 2, (b) M = 3, (c) M = 4, (d) M = 6,
and (e) M = 12. The chosen integration time is t = 15000.
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SOURCE: Produced by the author. Appears in Freitas et al. (2019, Submitted).

In general, if all particles are added in the same spatial position and phase, they
enter the formation already as a new cluster, which triggers some cluster(s) to break
in an attempt to reach some potential (local) minimum. For this specific case, the
potentials Um struggle more to converge to optimal values, compared to the setups
with broader distributions of particles. The adding strategy number A6 fits this
scenario. We also added many particles in one specific spot (chosen at random, or,
for example, at the center of mass of the already established formation) with the
same phases and the results are worse than the observed for strategy A6.

Strategies A0, A1, A2 and A3 produce the best results in terms of the order param-
eters and potentials close to optimal.

Strategies A4 and A5 correspond to new particles being placed in one single spot.
In contrast to strategy A6, they have random phases and even so they also tend
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to join the closest clusters. As particles are randomly placed in strategy A0, they
are more likely to reach all clusters equally and then converge to a near optimum
configuration.

Figure 5.3 presents final states of simulations for N = 12 particles divided into
M = 4 clusters andNadd green colored added particles with initial conditions marked
with crosses (strategy A0). For small Nadd, there are n particles positioned between
clusters and this explains why M |pMθ| decreases for increasing n. When N � M

these isolated particles join the clusters, since n� N and the contribution of those
remaining particles is not high enough to strongly interfere in the potential mini-
mization. This transition is noticeable in Figure 5.2 (c) for M = 4 when Nadd ≥ 17,
for example.

Figure 5.3 - Positions of new added particles (green) and clusters (red) after transient
tf = 15000. Crosses denote randomly chosen initial positions of the added
particles. Initial configuration: N = 12 particles, M = 4 clusters, ω0 = 0.05,
Km = 0.18 for m < M and KM = −0.02.
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SOURCE: Produced by the author. Appears in Freitas et al. (2019, Submitted).

The second part of this section deals with the problem of removing particles from
already stable cluster formations. The system starts with N = 108 particles and
they are removed according to one of the following strategies:

• R0) Randomly remove Nrem particles;

• R1) Remove in a balanced manner : maintain the same number of partici-
pants in each cluster, or as close as possible to it.

• R2) Remove one cluster at a time: start removing from one cluster and
proceed to the next only when the latter vanishes.

• R3) Randomly remove one particle at a time from stable formations: es-
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tablish the stable formation with N := 108 − Nrem + 1 particles and M

clusters, and randomly pick one particle to be removed. When Nrem = 0,
no particle is removed, and N := 108.

When removing Nrem particles from a system one finds similarities as well as dif-
ferences to the case of adding. Let us define q = Nrem mod M . The left side of
Figure 5.4 shows that M |pMθ| grows for increasing q, i.e., q = 1 corresponds to local
minimum, whilst n = M − 1 is the local minimum for the adding particles problem.

Figure 5.4 - Normalized order parameter M |pMθ| (left) and potential UM,N (right) for
different number Nrem of removed elements from already formed clusters.
The dashed gray line on the right plot corresponds to the potential minimum
UM,N = (KmN)/(2M2). The system starts with N = 108 particles with the
following number of clusters: (a) M = 2, (b) M = 3, (c) M = 4, (d) M = 6,
and (e) M = 12. The chosen integration time is t = 15000.
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Strategy R3 presents the best result because it starts with 108−Nrem + 1 particles
perfectly distributed inM clusters and at each iteration only one particle is removed.
Thus one expects that the order parameter and the potentials keep close to optimum
values.
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Strategy R2 always produce unbalanced clusters for small Nrem as one can see in
Figure 5.4, with high UM,N . When Nrem is sufficiently large, it approaches the results
of the other strategies (observe the potentials). Regarding the number of observed
clusters, all strategies seem to behave the same, as the order parameters suggest.

Strategies R0 and R1 generate similar results, with an exception for M = 2, where
strategy R1 is better.

Interestingly, both Figure 5.2 and Figure 5.4 show very similar results for the order
parameter for the same configuration (total number of oscillators N and the targeted
cluster size M) independently on the way how this configuration is achieved, i.e.
either adding or removing the particles.

However, there are still some differences between the points in which the total num-
ber of particles is the same after the adding/removal operation is performed. We
see for instance, the case M = 6 of Figure 5.2(d) and 5.4(d), with Nadd = 11 and
Nrem = 85 (corresponding to the same total number of oscillators N = 23), where
6|p6θ| = 0.68 and 6|p6θ| = 0.99, respectively. This means that a system of a given
size, after the introduction of new elements, is more likely to perform worse than
another system of the same size, after losing elements. In other words, in some rare
cases, one can argue that the system is more able to recover from failures than to
stabilize after receiving more particles.

5.3 Changing between formations

This section deals with the problem of changing the formation from one number
of clusters Mf to another Mt. The sub-indexes f and t stand for “from” and “to”,
respectively. We observe that the transition works perfectly in the following two
situations:
I) Mf < Mt;
II) Mf > Mt when (Mf/Mt) ∈ N.
In other scenarios, the Mf cluster formation appears to be a local minimum of the
potential UMt,N .

The explanation behind case I is that the gradient (3.27) of the potential UUt,N is
evaluated form ∈ [1,Mt] and, since the new number of clusters is higher than before,
the corresponding potential KfUf is included and the cluster formation related to
it is suppressed.

In the second case Mf > Mt, the summation (3.27) of the new potential UMt,N
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does not cover Mf . Therefore, the cluster state with Mf clusters is not explicitly
considered in the optimization procedure. However, when Mf = nMt with some
n ∈ N, then Mf |pMfθ| = Mt|pMtθ| = 1, hence, all potentials related to multiples of
M are minimized as well.

Figure 5.5 illustrates the two possibilities for (a) Mf = 2, Mt = 3 and (b) Mf = 4,
Mt = 2. The small-scale oscillations (wiggling pattern) of the order parameters come
from the transient processes since the phases do not occupy their positions in the
new Mt clusters immediately. Instead, they move towards the desired places in an
oscillatory motion. Although the order parameters display these local fluctuations,
they have a clear long term direction. A similar pattern is observed in pulse-coupled
neuronal ensembles (LÜCKEN et al., 2013) right after they are submitted to the so-
called “coordinated reset stimulation”.

Figure 5.5 - Time series of the order parameters m|pmθ| for system (3.14) with the control
(3.28). The system starts with Mf symmetric clusters and its potential is
switched from UMf ,12 to UMt,12 at time t = 0. The order parameters indicate
successful switching to the desired number of clusters Mt.
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SOURCE: Produced by the author. Appears in Freitas et al. (2019, Submitted).

The problems arise when Mf > Mt and Mf and Mt are not multiples. This means
that the Mf -th potential, that is already at optimum, is not considered in the mini-
mization process and it becomes impossible to break the existing cluster symmetry.
In other words, the cluster formation with symmetric Mf clusters remains a local
minimum of the new potential UMt,12. As a result, adding a small additive Gaussian
noise in control (3.28) cannot solve effectively the problem, since it merely results
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in fluctuations around a local minimum.

We support the claim that small perturbations in symmetric clusters produce no
effect with the simulations of Figure 5.6. The system starts already with M = 3
clusters and the potentials Um(θθθ) of Equation (3.25) are evaluated at time t0. After
that the system is integrated with control (3.28), but with the new configuration
M = 2. We know that this transition does not happen, for reasons we already
discussed (Figure 5.7a). Random perturbations of intensity ε are introduced to this
initial configuration at t = 0 in order to find out which ε breaks the initial cluster
symmetry. We realized that the system is only able to reach the M = 2 cluster
configuration for big ε. This means that the related potentials find local minimum
at the cluster formations and the perturbation should be high enough for the system
to leave them.

Figure 5.6 - Changing between formations with Mf = 3 and Mt = 2, for N = 12. Par-
ticles start at a symmetric circular formation with M = 3 and we added a
small perturbation of amplitude ε and start the control (3.28) integration. We
evaluated the potentials (3.25) at t = 0 and t = 15000 and observed that tran-
sitions start to occur when perturbations are high enough to make particles
move from local minima.
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Further tests have shown that if this perturbation persists during all the time, the 3-
clusters configuration is broken and the new arises by the cost of having the particles
always wiggling due to the noise. Maybe one could turn the noise source on at the
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beginning of the transition and shut it down after some transient.

Instead, we tackle this problem with a noiseless strategy that comprises the intro-
duction a correction term into the potential, such that the new potential reads

UMt,N
Mf

:= UMt,N + N

2 δ(Mf ,Mt)Kf |pMfθ|2, (5.1)

where

δ(Mf ,Mt) =

1, Mf > Mt and Mf/Mt /∈ N
0, otherwise

. (5.2)

Here Km > 0 for m = {1, 2, · · · ,Mt − 1}, Kf > 0 and Km < 0 for m = Mt. The
new term aims to break the Mf cluster symmetry. The new gradient then reads

−
∂U

Mt,N
Mf

∂θk
= 1

N

∑Mt
m=1

∑N
j=1

Km

m
sin(m(θk − θj))

+δ 1
N

∑N
j=1

Kf

Mf
sin(Mf (θk − θj))

. (5.3)

After replacing the former phase potential gradient in control (3.28) by this new
version, we obtain

uk(rrr, θθθ) = ω0(1 +K0
〈
eiθk , Pkccc

〉
)−

∂UMt,N
Mf

∂θk
. (5.4)

Figure 5.7 shows that (a) the old control (3.28) fails and (b) the new control (5.4)
enables switching from Mf = 3 cluster formation to Mt = 2.

The model (3.14) with control (5.4) produces the transition times from Mf to Mt

as shown in Figure 5.8. Here we provide some intuitive explanations for the ob-
served transition times. The transition is usually more time consuming forMf < Mt

than the opposite and the explanation can follow the arguments that are mentioned
above: for Mf > Mt, although the system is not located at a local minimum, it still
possesses initially a small gradient leading to a relatively slow repulsion from the
initial configuration with Mf clusters. Contrarily, it tends to be fast when Mf > Mt

because the existing clusters simply merge. It can be also time-consuming ifMf and
Mt are not multiples because it demands cluster breaking. Moreover, the transitions
from Mf > 2 to Mt = 1 are the most expensive, because it is a huge effort to raise
M − 1 potential values from minimum to maximum.
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Figure 5.7 - Illustration of a successful control by the modified potential (5.4). Time
series of the order parameters m|pmθ| for different m using model (3.14),
under conventional control (a) (3.28) and modified (b) (5.4), which is applied
at time t = 0. The system stays initially in the symmetric Mf cluster state.
Panel (b) shows successful switching between Mf to Mt symmetric cluster
formation.
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Figure 5.8 - Transition times for a switching fromMf toMt symmetric cluster formations
in system (3.14) with control (5.4). The changing time is calculated whenever
the order parameters achieve M |pMθ| > 0.999 and |pθ| < 0.001. The almost
white squares are of order 10000. Every bin is the average of 10 simulations.
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We neglected the changes between numbers of clusters whose division N/M is not
an integer because the resulting formations are not symmetric. The system with
N = 12 particles and M = 5 clusters fits the situation studied in section 5.1 for
M not divisor of N . The clusters are somehow formed, meanwhile the number of
particles is not high enough to fulfill the conditions we imposed for the Figure 5.8,
of M |pMθ| > 0.999 and m|pmθ| < 0.001 for m = {1, · · · ,M − 1}.

One of the simple conclusions of this section is: splitting is worse than merging,
except when one targets one single cluster.

5.4 The Switching System

This section introduces an approach for the generation of chaotic trajectories and
clusters with non-overlapping elements. The system, which we call “Switching Sys-
tem” (SS) consists of model (3.14) under control (5.4) for Mt periodically switching
betweenMA andMB with a certain period T . It means that each T/2 time units the
system focuses on the minimization of one of the two potentials UMA,N

MB
and UMB ,N

MA
,

correspondingly. Formally the new potential can be written as

USS = Π(t)UMB ,N
MA

+ (1− Π(t))UMA,N
MB

, (5.5)

where Π(t) is the T -periodic piece-wise constant function with the value 1 for all
(tmodT ) ∈ [0, T/2) and 0 otherwise.

Simulations show that a formation converges to M = max {MA,MB} when MA and
MB are multiples and the alternating period T is less than a critical value T1. The
explanation comes from the fact that when one minimizes the potential (5.1) using,
for example, M = MA < MB, the potentials for every other M multiple and higher
than MA are minimized as well. On the other hand, during the simulation, when
the potential for MB is active, the MA’s is being suppressed. After a long enough
transient, the potential related to MB is at its minimum value giving rise to MB

clusters.

Moreover, there is an interval of periods, between T1 and T2, within which the two
potentials compete and do not reach their minimal values. This interval can be seen
in Figure 5.10 at the first line with (MA,MB) = (6, 12) for (T1, T2) ≈ (135, 220). This
picture will be discussed later. For T slightly higher than T2, the system stabilizes
with M = max {MA,MB} clusters in such a way that it becomes hard to break its
symmetry. The scenario changes for T � T2, when the transition occurs from one
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formation to the other as presented in Figure 5.8.

5.4.1 Non-overlapping particles

Interestingly, when either MA or MB equals N/2 − 1, max{MA,MB} < N/2 and
T < T1, the result is an ensemble of N/2 clusters with 2 particles each that do not
overlap and keep their fixed relative distance. Figure 5.9 presents one example with
N = 12 particles, for which N/2− 1 = 5. The picture shows that as MA increases,
so increases the relative distance between participants of the same cluster.

Figure 5.9 - Alternating MA, MB, with T = 20s.
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Keeping stable fixed relative distances is important in real applications. Notice that
here we do not employ a collision avoidance mechanism itself, such as in Section
3.3.4.

All possible results for different numbers of particles and periods T < T1 are sum-
marized in Table 5.1.

Table 5.1 - The Switching System outcomes for period T < T1.

State Necessary condition
Splay state N

2 < max{MA,MB} ≤ N
max{MA,MB}
clusters

N/MA ∈ N, N/MB ∈ N and 1 ≤ max{MA,MB} ≤ N
2

Non-overlapping
particles

N/2 ∈ N (even), either MA or MB equals N
2 − 1,

max{MA,MB} = N
2 − 1 and MA and MB not multiples
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5.4.2 Chaotic trajectories

We are now interested in the interval T1 < T < T2 for which the particles do not
converge to a steady formation. It is convenient to consider discrete dynamics from
the system (3.14) with potential (5.5) at the time Tn, n ∈ N with the set of 3N
state variables xi, yi, θi. We use then the numerically computed mapping

yn+1 = f(yn) (5.6)

to calculate the largest Lyapunov exponents (LLE) (PARKER; CHUA, 1989) for dif-
ferent pairs (MA,MB) and periods T , so to infer whether the system is chaotic or
not.

The LLE calculation is as follows:

a) Form the 3N -dimensional state vector y that includes the values of all
system variables.

b) Iterate y in order to discard transients. We have iterated our system so
that the original model (3.14) have been integrated for at least tf = 10000
time units.

c) Perturb the state y∗ = y + c with a small perturbation vector c of size
‖ c ‖= ε.

d) Initialize Ls = 0. Repeat n times:

– Iterate both y and y∗ for k times.

– Compute the difference between the two vectors ck := yk − y∗k.

– Calculate the norm d :=‖ ck ‖

– Reinitialize y := yk, c := ck/d and the perturbed state y∗ to have
the distance ε from y, but preserving the perturbation direction y∗ :=
y + εc.

– Compute the natural logarithm of the relative separation Lf := ln d
ε

– Accumulate Ls := Ls + Lf

e) The LLE is given by λ = Ls

kn
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In contrast to autonomous differential equations, the generic mappings do not fea-
ture zero Lyapunov exponents. However, the mapping induced by the system (3.14)
possesses an additional continuous symmetry in which what matters are not the
angles, but the differences between them. Hence, the gradient term (3.27) is invari-
ant with respect to the simultaneous shift of all variables θk by the same arbitrary
constant angle ϕ. A result of this continuous symmetry is the zero Lyapunov expo-
nent, characterizing the neutral perturbations of ϕ. Simulations confirm that this
zero Lyapunov exponent (with numerical accuracy of ≈ 10−3) remains for periods
T < T1. In this range of parameter values, the other Lyapunov exponents appear
to be negative, indicating the ordered dynamics. At T1 < T < T2 the LLE presents
positive numbers, which indicates the presence of chaos, as illustrated by the bright
colors of Figure 5.10.

Figure 5.10 - Largest Lyapunov Exponents for different MA, MB and T .
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Figure 5.11 exhibits time series of the SS, (a) for zero LLE and (b) for positive λ. In
(a) we instantiate the map and a copy with a perturbation of size ε. We integrate
them both and see that their trajectories converge after some transient. On the other
hand, in (b) an increasing deviation emerges between the system and its perturbed
copy, that start to be noticeable after n ≈ 1/λ iterations as expected from the LLE
theory.

Figure 5.12 shows time series of θθθ(nT ) for the switched system with N = 12 parti-
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cles, ω0 = 0.05 and different MA, MB and T . The top sub-figure corresponds to a
6-clusters formation, i.e. each cluster contains two overlapping particles. The mid-
dle picture displays 6-clusters with non-overlapping particles, that is noticeable by
the slight shift between neighboring phases, followed by a chaotic trajectory in the
bottom figure.

Figure 5.11 - Error between the map (5.6) and a copy with a perturbation ε = 10−3

(horizontal dashed line) as time evolves: (a) Stable solutionMA = 3,MB = 6,
T = 100, λ ≈ 0: trajectories do not diverge with the small perturbation; (b)
Chaotic solutionsMA = 3,MB = 6, T = 160: trajectories diverge with small
perturbations from time n = 1/λ on. Recall from Figure 5.10 that (b) has
λ = 0.57, therefore trajectories should diverge at n ≈ 2 map iterations, as
observed.
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Figure 5.12 - Time series of θθθ for the switched system with N = 12 particles, ω0 = 0.05
and control parameters from Section 5.1. From top to bottom: (a) MA = 2,
MB = 6, T = 40; (b) MA = 2, MB = 5, T = 40 and; (c) MA = 2, MB = 6,
T = 175.
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5.5 Delayed communication

So far we have discussed results for instantaneous communication among agents.
In this section, we address the problem of time delay in information propagation:
particles receive data from the others with a certain time lag.

Time delay between dispatch and reception may show up due to the distance be-
tween agents. This problem is present in many systems like laser arrays, neuroscience,
population dynamics, traffic systems (DIEKMANN et al., 1995; WU, 2001; ERNEUX,
2009; SMITH, 2010; ERNEUX et al., 2017; YANCHUK; GIACOMELLI, 2017). Alike, it is
present in systems whose internal processing time may lag the information trans-
mission and/or reception.

One interesting example that relates to our problem is the LISA Project (BAKER,

J. et al., 2019), that consists of three spacecrafts in a triangular formation with the
aim to seek for gravitational waves from space. As they are about one million miles
apart, the communication is not real-time and the design must account for it.
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Satellite constellations (NAG; SUMMERER, 2013; BANDYOPADHYAY et al., 2016) are
also a trend nowadays, in various applications like the Cyclone Global Navigation
Satellite System (CYGNSS) (NATIONAL AERONAUTICS AND SPACE ADMINISTRA-

TION - NASA, 2017) whose mission is to measure the wind speed inside cyclones. As
the constellations with small satellites are becoming popular and numerous, forma-
tion fly strategies are necessary.

Usually, the control of such systems is centralized and does not account for time
delay, with each component simply following the orders of a central station. On
the contrary, here we deal with autonomous agents that must adapt their states
according to neighboring agents. Thus, the emergence of desired formations relies
on the (sometimes delayed) incoming information.

We introduce an adaptation of control (3.28) for symmetric circular formations to
handle a fixed time delay, as follows

uk = ω0(1 +K0
〈
eiθk(t), Pkccck

〉
) + 1

N

M∑
m=1

N∑
j 6= k

Km

m
sin(m(θk(t)− θj(t− τ))) (5.7)

with ccck = (c1(t − τ), c2(t − τ), · · · , ck(t), · · · , cN(t − τ)), to account for delay both
in phase and in the center ck coordinates.

Fixed time delay is useful either when the distances between pairs of agents are
similar most of the time, or the distance is not big enough for a lagged communi-
cation but they have all similar processing limitations. Consider as an example a
satellite constellation in which the satellites’ positions come from ground stations,
or satellites in a Splay State, receiving neighbors’ states at the same long distances
among themselves. Both examples fulfill the conditions for fixed time delay.

Recall that the only information agents exchange are position and phase. A good
strategy is to send the centers’ coordinates ck instead of position, in order to decrease
the processing load, so that each particle receives ccck and θθθ.

This setup differs from before due to the presence of delay, leading us from a system
of Ordinary Differential Equations to another of Delay Differential Equations, as
introduced in Section 2.3. The numerical integration is as the description of Section
2.5.
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Simulations evidence that there is a dependence between ω0 and τ , since ω0 de-
fines how fast a particle travels around the center, i.e., its period. Figure 5.13 shows
this dependence for N = 12 particles and different M for varying delay τ . Colors
represent the number of obtained clusters, that are characterized via the order pa-
rameters of Equation (3.24). We say that the system converged to M clusters when
m|pmθ| < ε for m < M and M |pMθ| > 1 − ε, considering ε = 10−1, and call such
solutions stable.

Figure 5.13 - Delay τ over natural frequency ω0. Colors represent the resulting number of
clusters, in which “zero” means disorder. We used the phase order parameters
to characterize the clusters, with m|pmθ| < 10−1 for m < M and M |pMθ| >
1− 10−1.
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Notice that the system with small ω0 is barely affected by delay. The effects start to
appear with increasing delay and after some period the stable solutions reappear.
For a simple explanation, observe Figure 5.13 for M = 1 and observe what happens
for ω0 = 1. In the beginning, for τ ≈ 0 (dark red), the system converges to one
cluster, as expected. By increasing τ a little further, we reach a region of disorder
(low order parameters and zero distinguishable clusters). Increasing a bit more, there
is again a stable region with one cluster and so on.
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Interestingly, the subfigure forM = 2 presents stable regions with one and two clus-
ters and again the black regions of disorder. In all other subfigures, we observe that
there exists reappearance of stable solutions for all number of clusters m ≤M . The
shape of the stability regions can be explained by the general reappearance proper-
ties of delay differential equations described in Yanchuk and Perlikowski (2009) and
indicate that delay can be used as an effective control parameter as well.

These results are important to map the system control parameters. Consider for
example a system with a fixed frequency and with a certain amount of delay so
that it reaches an undesired region of the (ω0, τ) parameter space. One solution to
overcome this problem would be to add an artificial communication delay in order
to enter the next stable region.

When M = N , the splay state, it is possible to reach any possible stable cluster
configuration that is a divisor of N by just tuning the delay τ .

As future work, we will numerically find the correct boundaries between regions of
Figure 5.13. Besides, we will study a more general framework for this problem: a
state-dependent delay. Nearby particles should be perceived faster than the farther
ones, which poses a more complex problem.

5.6 Collision avoidance

Here we solve the inverse problem of finding proper parameters for the collision
avoidance mechanism of Section 3.3.4 (FREITAS; MACAU, 2018). We employ the M-
GEO algorithm targeting solutions that decrease the number of collisions and the
order parameter (3.23).

The controls (3.36) and (3.37) possess parameters K and Kr. The former relates to
the circular formations and the latter to the collisions control. One has to deal with
the trade-off between them since K � Kr might result in circular formations at
the expense of several collisions. On the other hand, Kr � K introduces excessive
repulsion and the system never converges to the desired formation.

We model this multiobjective problem with the M-GEO algorithm with solutions of
14 bits, 7 for each design variable K,Kr ∈ [0, 1], which corresponds to a precision
p = 0.01 (recall Equation (2.26)).

The two objective functions to be minimized are:

77



• |pθ|: Equation (3.23). When |pθ| → 0, we say the agents are in a balanced
state. Recall that symmetric formations are a specific case of balanced
formations.

• fncoll: the number of imminent collisions per second. When two particles
i and j are within a certain distance ‖ ri − rj ‖< d, the agents are in an
imminent collision situation. A score is accumulated, by adding 1 unit per
second.

The problem is designed as follows:

min {|pθ|, fncoll}
subjected to design variables: K,Kr ∈ [0, 1],

(5.8)

the simultaneous minimization of both |pθ| ∈ [0, 1] and fncoll ∈ [0, tf ], for tf is the
maximum simulation time of the model (3.14).

The M-GEO configurations are the following:

• τ = {0.5, 1.0, 1.5, 2.0, 2.5}.

• Number of bits per design variable: 7, corresponding to a precision of 0.01;

• Number of runs for each τ : 50;

• NFE= 100000. It means that the algorithm evaluates the objective func-
tions 2000 times for each τ .

The initial conditions and parameters for the model of phase-coupled oscillators are:

• N = 6 agents randomly positioned inside a rectangle of dimensions l × l,
for l =

√
N ∗ π ∗ 20;

• Control of Equation (3.36), for all-to-all coupling.

• ω0 = 0.05;

• d = 5, the collision radius;

• K,Kr ∈ [0, 1].

• tf = 1000s is the total time of each simulation.
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The obtained Pareto frontier is depicted in Figure 5.14. If we run the M-GEO with
a more accurate precision p and a higher number of evaluations of the objective
function NFE, other optimal values may appear. It means that the values found so
far are possibly suboptimal solutions.

Figure 5.14 - Pareto frontier of the multiobjective optimization problem (minimization),
with objective functions |pθ| and fncoll, and design variables K and Kr.
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Following we present simulations using the obtained parameters in three setups:

a) All-to-all: each particle interact with every other;

b) Ring topology: every particle has exactly two neighbors, such that the
communication channels form a ring. This topology is a good option when
the agents have limited processing capabilities and can only handle a few
data. This assures less information exchange;

c) Dynamic network: the network changes continuously. Only close neighbors
within a certain sensory region are connected.

As in Chapter 4, we also choose here the solution that is closest to the utopian.
This gives the design variables K = 0.00787402 and Kr = 0.0866142. Besides, this
solution poses the least number of collisions and the difference between all |pθ| is
almost negligible.

Figure 5.15 presents the simulations for the all-to-all topology, with N = 6,
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ω0 = 0.05, d = 5 and optimal parameters K and Kr. Formations seem to hap-
pen accordingly, in contrast with Figure 5.16 that exhibits results for not optimal
parameters. The balancing between collision avoidance and the clusters does not
hold in this last setup.

Figure 5.15 - All-to-all: symmetric circular formation with control (3.36). Configuration:
N = 6, K = 0.00787402, Kr = 0.0866142, ω0 = 0.05, ρ = 20 and d = 5.
The red circles correspond to the agents, and the blue circle is their center
of mass.
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Figure 5.16 - All-to-all (not optimal): symmetric circular formation with control (3.36).
Configuration: N = 6, K = 0.1, Kr = 0.1, ω0 = 0.05, ρ = 20 and d = 5.
The red circles correspond to the agents, and the blue circle is their center
of mass.
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SOURCE: Produced by the author. Adapted from Freitas and Macau (2018).

The considered repulsion region has radius d = 5. In particular, we consider the
agents are particles, without a real size. However, in real applications, the bigger
the agents are the higher the radius d and/or the gain Kr must be, as they have to
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start to avoid the neighbors before they reach a critical distance. The parameters
d and Kr state the initial distance considered for the usage of rep and also the
maneuver intensity.

Figure 5.17 displays simulation results for a ring coupling topology, using control
(3.37) and Figure 5.18 shows results for simulations with not optimal control pa-
rameters, for comparison purposes. The control (3.37), for network-based coupling,
is an approximation of the control (3.36), for the all-to-all case. It means that the
results are not completely equivalent.

Figure 5.17 - Ring-like network topology: symmetric circular formation with control
(3.37). Configuration: N = 6, K = 0.00787402, Kr = 0.0866142, ω0 = 0.05,
ρ = 20 and d = 5. The red circles correspond to the agents, and the blue
circle is their center of mass.
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SOURCE: Produced by the author. Adapted from Freitas and Macau (2018).

Figure 5.18 - Ring-like network topology (not optimal): symmetric circular formation with
control (3.37). Configuration: N = 6, K = 0.1, Kr = 0.1, ω0 = 0.05, ρ = 20
and d = 5. The red circles correspond to the agents, and the blue circle is
their center of mass.
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SOURCE: Produced by the author. Adapted from Freitas and Macau (2018).

81



The last simulation results are for dynamic networks in which the agent has a sensory
region with radius γ. An agent j at a distance less or equal γ from agent i is said
to be neighbor of i. A restriction we impose, for obvious reason, is that γ must be
larger than d.

Dynamic networks do not guarantee the circulant property unless the radius γ has
infinite size. If the agents’ initial coordinates are close enough so that the maximum
distance between two agents is γ = 2ρ+ δ, we can make sure all the agents will see
each other, for certain δ > 0. In this case, the final network is complete and the
model should work accordingly.

Figure 5.19 presents simulation results for symmetric circular formations of M = 3
clusters, for different γ values. When γ < 2ρ + δ, for δ > 0, the circular formations
rarely occur, due to the resulting networks are not circulant (Figure 5.19a). Figure
5.20 illustrates results of simulations with not optimal control parameters K and
Kr.

Figure 5.19 - Dynamic networks: symmetric circular formation with control (3.37). Con-
figuration: N = 6, K = 0.00787402, Kr = 0.0866142, ω0 = 0.05, ρ = 20 and
d = 5. The red circles correspond to the agents, and the blue circle is their
center of mass.
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The results of Figure 5.20 suggests that another optimization procedure should be
performed. Notice that the formation emergence is better for not optimal configu-
ration when γ = 40 than when using the found parameters.

Clearly, the results are better for the all-to-all setup, since the optimization was
performed using this configuration. In order to overcome the not as good results for
the other topologies, one should run the optimization for each scenario.
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Figure 5.20 - Dynamic networks (not optimal): symmetric circular formation with control
(3.37). Configuration: N = 6, K = 0.1, Kr = 0.1, ω0 = 0.05, ρ = 20 and
d = 5. The red circles correspond to the agents, and the blue circle is their
center of mass.
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5.7 Conclusions

This Chapter presented the results of the second part of the thesis, regarding sym-
metric circular formations with the model of particles with coupled-oscillators dy-
namics. We first explored the control parameter space with the aim to find regions
where desired formations emerge in a timely manner. Next, we discussed the con-
sequences of adding and removing particles to/from stable formations. There is a
phase transition when the number of new particles to be added of the amount to be
removed exceeds critical values. Following we introduce a new term into the poten-
tials to overcome the problem of switching from one formation to the other. Without
this term, some formations are a local minimum of others and the transition may
never happen. Afterward, we introduced the Switching System, in which we period-
ically switch between potentials and reach two interesting behaviors, not observed
in the real model: clusters of non-overlapping particles and chaotic circular-like tra-
jectories. Such behaviors depend both on the chosen potentials and the switching
period. Additionally, we discussed the influence of time delay within the communi-
cation among particles. We figured out that it is also a control parameter, capable of
switching the system to different behaviors. Besides, some solutions reappear with
increasing delay. Finally, we present some results with a collision avoidance strategy.
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6 MOBILE ROBOT SIMULATIONS

This chapter presents simulations of autonomous mobile robots using the model
(3.14) with control (3.28). The aim is to reduce the so-called reality gap, by showing
that the model can be implemented in real-world applications.

We use the ARGoS1 (Autonomous Robots Go Swarming) simulation environment
(PINCIROLI et al., 2012) to emulate the Augmented Reality for Kilobots (ARK) sys-
tem (REINA et al., 2017) for swarms of Kilobots (RUBENSTEIN et al., 2014).

The ARGoS simulator is a mobile robot simulator, able to reproduce large-scale
swarms of robots of any kind. Their open-source code enables the development of
new functionalities like sensors, actuators, robot components, visualizations, physics
engines, and other communication means.

The Kilobots are tiny robots that weight 0.016 kg, has a circular shape of 33 mm
of diameter, the height of 34 mm, are able to turn with an angular velocity of 45
degrees/s and move at approximately 1 cm/s. The robot has very simple hardware
that allows it to communicate with neighbors up to 7 cm away by reflecting infrared
(IR) light off the ground surface. It moves thanks to its two vibration motors that
act as a differential drive system. It does not have wheels, but three fixed thin legs
that do not move.

ARGoS is proven to be able to resemble the real Kilobots behavior (PINCIROLI et

al., 2018) and the simulation source code is compatible with the Kilobots API (LAB,
2013), which can be deployed on real-world setups.

We use ARGoS to simulate the ARK system because the PCOD model demands
more sensory capabilities than the Kilobots available resources. The ARK is com-
posed of a computer station, cameras and overhead controllers (OHC), that track
the Kilobots and send them messages (Figure 6.1). This makes possible to emulate
other sensors including an all-to-all (and other network topologies) communication
channel.

Kilobots controllers are implemented in ARGoS, so that we do not need to care about
hardware details. The ARK is implemented in the form of a loop-function and one
can adjust the tracking and message exchanging rates, among other parameters.
Loop-functions are a set of hook functions executed during the main simulation

1https://www.argos-sim.info/
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loop.

Figure 6.1 - ARK system.

SOURCE: (PINCIROLI et al., 2018).

Messages are sent from the ARK to the robots, which in turn receive them through
the API compatible code, called “behavior” within the ARGoS modular organiza-
tion. As soon as a Kilobots receive a message, it triggers a series of actions we
design.

We chose to have a simulation environment as close as possible to a realistic setup,
by using the parameters from Pinciroli et al. (2018).

Before diving into the Kilobots behaviors, we first introduce here a standard tool in
control theory, the Proportional, Integral and Derivative (PID) regulator, invented
in the first half of the 20th century (FRANKLIN et al., 1997).

This control aims to reduce the error e(t) between the current robot state sc(t)
and a reference sr(t). The robot must track the (varying) reference by adjusting its
actuators. Consider that sr(t) comes from a model, say the PCOD, for example.

Given that e(t) = sc(t) − sr(t) is the error in time instant t, the three following
terms are the proportional

u(t) = Ke(t), (6.1)

the integral control
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u(t) = K

TI

∫ t

0
e(η)dη, (6.2)

and finally, the derivative control

u(t) = KTDė(t), (6.3)

where K is the proportional gain, TI the integral time and TD the derivative time.

The proportional part is a first approximation of error removal. However, it does
not fully eliminate the error due to a remaining small steady-state error. Besides,
depending on the chosen gain K, it may result in a large transient overshoot.

By adding the integral of the error, it is possible to overcome this steady-state
error, yet deteriorating the dynamic response. This last problem is handled with the
derivative of the error, the last part of the PID regulator.

The approximations of these control terms to a discrete algebraic equation are the
proportional

u(k) = Ke(k), (6.4)

integral

u(k) = u(k − 1)K
TI
Te(k), (6.5)

and derivative

u(k) = KTD
T

[e(k)− e(k − 1)], (6.6)

controls. The differential equation that relates u(t) and e(t) is

u̇ = k(ė+ 1
TI
e+ TDë). (6.7)
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The use of Euler’s method (twice for ë) results in:

u(k) = u(k − 1) +K
[(

1 + T

TI
+ TD

T

)
e(k)−

(
1 + 2TD

T

)
e(k − 1) + TD

T
e(k − 2)

]
.

(6.8)

Now, consider that we are designing the PID for the robots to track the phases
that come from the models. The robots actuators use the tracking system to reach
the desired orientations. Each robot has θk as a reference and continuously adapts
its vibration motors to decrease the difference between its real orientation and the
model. This difference is the error e(t) = θk(t) − Θ(t), for Θ(t) is the robot’s real
orientation.

This error calculations ê(kT ) happens at discrete time, with sample time T . Besides,
the system output y = Θ(t) and its dynamics are continuous. A system having both
discrete and continuous signals is called sampled-data system. Thus, one has to
determine the effect of the sample rate and select a rate that is sufficiently fast to
meet all specifications (FRANKLIN et al., 1997).

The ARK system sends this error according to a latency of T seconds and as soon
as the robot receives it, the tracking system is computed through Equation (6.8).

Our setup accounts for Kilobots with maximum angular velocity of vm = π/4 rad/s,
that are able to execute three commands: Go straight, Turn left and Turn right.
Therefore, a discrete control system. The PID regulator works as follows, in Algo-
rithm 1.

Algorithm 1 Kilobot control
1: Compute u(k) with Equation (6.8)
2: α = u(k)/vm
3: if α > 1 then α := 1
4: else if α < −1 then α := −1
5: if |α| < 10−6 then
6: Go straight
7: else if α > 0 then
8: Turn left for α seconds
9: Go straight for 1− α seconds.

10: else
11: Turn right for α seconds
12: Go straight for 1− α seconds.
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The algorithm computes the control signal and normalizes according to the max-
imum angular velocity. After that, the control response is bounded and the robot
must turn to the chosen direction when needed and then go straight when the control
is small enough. Here we empirically chose 10−6 as a threshold for the Go straight
command.

The robot receives new errors e(k) from the ARK system each 1 second. During this
1 second, it updates the error about 10 times as follows e(k) := e(k)− u(k), so that
the robots can continue the tracking during the interval between messages.

6.1 PCOD model

This Section is devoted to the deployment of the PCOD model of Section 3.3 into
the Kilobots simulator. We introduced the speed variable since we are no longer
dealing with unitary speed, and do not care about collisions.

Whenever a model is implemented in a real device, one needs to adapt it to because of
hardware characteristics and limitations. Here, we care about the following physical
constraint: linear and angular velocities need to be properly limited, so to avoid
actuators overload.

Equation (3.14), for the PCOD model becomes:

ṙk = veiθk , (6.9a)

θ̇k = uk(rrr, θθθ), k = 1, . . . , N, (6.9b)

with v being the Kilobot nominal speed. When looking to the specific situation
where θ̇ = ω0:

rk(t) = rk(0) + v
i

ω0
− v i

ω0
eiω0t (6.10)

and thus the center of rotation is given by

ck(t) = rk(t) + v
i

ω0
eiθk(t) (6.11)

89



that stands for the velocity vector rotated 90 degrees (or minus 90, depending on
the ω0 sign), normalized according to the circular trajectory radius ρv = v

|ω0| and
multiplied by the robot nominal speed.

Simulations of model (6.9) with control (3.28) and algorithm 1 are shown in Figure
6.2.

Figure 6.2 - Simulation of model (6.9) under the control for symmetric circular formations
of Equation (3.28). Parameters: N = 6, K0 = 10, ω0 = 0.05, Km = 0.18 for
m < M and KM = −0.02, v = 0.01. a) M = 1, b) M = 2, c) M = 3, d)
M = 6.

SOURCE: Produced by the author.

6.1.1 Effect of Noise

Noise is introduced on the differential drive system so that the left and right
speeds account for calibration and environmental issues. Let the real velocity be
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v̂i = fi(vi + bi), with vi the nominal speed, bi is a fixed bias added to each robot at
the beginning of the simulation (calibration issues) and fi is a per-step actuation
noise (environmental problems), with i ∈ {l, r} the left and right wheels identifier.
Both fi and bi have Gaussian distributions.

After comparing results of a sample of 120 real and 600 simulated Kilobots, Pinciroli
et al. (2018) found that µb = −0, 75 mm/s and σb = 1.96 mm/s are the mean and
standard deviations for bi that better mimic the real world motions, when fi = 1
(without white noise).

We vary the standard deviation σf of fi and calculate the corresponding potentials
and M -th order parameters of the formations, after a simulation of length t = 5000.
The results of Figure 6.3 are the average of 100 trials. It shows that the potentials
grow and the respective order parameters decrease for increasing noise, as expected.

Figure 6.3 - Varying σf . Configuration: N = 6, K0 = 10, ω0 = 0.025, Km = 0.18 for
m < M and KM = −0.02, v = 0.01. (a) M = 1, (b) M = 2, (c) M = 3, (d)
M = 6.
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SOURCE: Produced by the author.

The formations are well defined for small noise and start to distort when noise is
high enough. Still, the system may be considered robust to noise up to some extent.
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6.2 Conclusions

This Chapter proposed an implementation of the model of particles with coupled-
oscillator dynamics into the ARGoS robot simulator. We introduced some adapta-
tions in the model and discusses the effects of noise on the differential drive system
and speed, the latter to account for calibration and environmental issues. The model
seemed to behave well until a certain noise strength.
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7 CONCLUSIONS AND FUTURE WORK

Collective motion is an ubiquitous phenomenon observed in schools of fish, flocks of
birds, bacteria, colonies of ants and other various groups of living beings. The mech-
anisms behind these behaviors may be triggered due to several reasons, namely the
imminent attack of a predator, mating rituals, foraging, etc. Unquestionably, each
agent is autonomous to make decisions based on its perception of the surrounding
environment, including the neighbors’ states.

The decision-making process is driven by interaction rules that may also be employed
in engineering systems in order to reach similar patterns. The aim is not to mimic
the living beings, but to extract proper rules that lead the band to desired behaviors.

The motivation of this thesis is grounded in the technological advances in satellite
constellations, groups of unmanned aerial vehicles and mobile robots. In the near
future, such systems are going to be present everywhere and the individual control
of each element will be unfeasible. Hence, they must have a high level of autonomy
to stand their position within coveted formations.

The thesis presented two main approaches: a phenomenological reactive model of
agents that follow a mobile reference in a tight formation, making use of bio-inspired
interaction rules, and a model of particles with coupled-oscillator dynamics. In the
first case, we dealt with the problem of quasi-parallel formations, heading to di-
rections dictated by the so-called virtual agent, that represents a trajectory. The
second model investigated formations in circular trajectories with particles group-
ing in clusters of the same size and uniformly distributed along the trajectory.

Regarding the first model, our results conclude that bio-inspired rules are effective,
especially when combined with heuristics to determine the coefficients that weight
their contributions. The evolutionary algorithm we employ is the Generalized Ex-
tremal Optimization (GEO) for mono-objective problems, and its counterpart for
multiobjective problems, the M-GEO.

Three test case simulations are presented with the reactive model to express real-
world problems: i) A formation that moves in circles; ii) a formation that randomly
moves inside a rectangular area and; iii) the random motion inside a rectangular
area but keeping fixed relative positions between agents.

The first simulation represents the setup of a data collection mission in which the
formation must periodically visit some places. This has great importance in data
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collection, surveillance, imaging, etc. The second and third simulation picture the
scenario of formations moving inside a desired region, with the difference that the
third maintains the relative positions between agents fixed. The first and second
cases value unpredictability since the formation continuously change although it has
a predefined dispersion, contrarily to the third simulation.

Some applications require circular trajectories. Take as an example the CYGNSS
system, a satellite network that orbits Earth with the aim to compute the wind ve-
locity inside cyclones. The satellites uniformly distribute around this trajectory and
keep their position within the formation. However, the satellites of the CYGNSS are
not autonomous and must be individually controlled, oppositely to future missions
that will inevitably consider autonomous agents.

With this motivation, we studied the model of particles with coupled-oscillator dy-
namics for symmetric circular formations, whose controls are derived from potential
functions. We observed through Monte Carlo simulations that there are specific re-
gions in the control parameter space within which the stable formations emerge. The
remaining areas might also result in circular trajectories, but they either depend on
initial conditions or take too long to converge.

Furthermore, we investigated the system response to new particles being added.
When there is only one cluster, it does not matter how many new elements are
introduced, the system always converges to one cluster. With a proper choice of
control parameters, this is also verified for two clusters. Things start to change with
configurations of three or more clusters, since some new particles may never join
them. This happens when the number of new particles is below a certain threshold
and results in some simply sitting between stable clusters.

We realized that this happens because configurations with an unbalanced number
of particles, in relation to the number of clusters, never reach the minimum of the
potentials. When those particles sit between clusters, the potential has the minimum
possible values for that specific configuration. After a critical number of new elements
are added, the potential approaches the minimum when all particles join clusters.

This behavior is similar regardless of the way this operation is done: for particles
included at random, or inside already stable clusters, or between clusters, all with
the same initial conditions, etc. For instance, if they are uniformly included inside
clusters, or at random, the potentials are usually closer to optimal. The explanation
for the former is obvious. In the latter case, we observe that particles tend to be
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attracted by clusters, which is easier when they have spread around and not grouped.
On the other hand, if one adds lots of new agents at one single place, they are already
a cluster, which leads to the costly operations of breaking and rearranging clusters.

The opposite case of particles being removed from stable clusters is investigated as
well. Clusters start to break only when the number of removed elements is above a
certain threshold. The total number of elements in the system when this threshold
is reached is (almost) the same as in the addition case when the number of new
agents reaches the aforementioned critical. In other words, two systems with the
same number of agents, the first starting with many particles, having some removed,
and the second starting with a few particles, having some added, behave the same.
There are some rare cases in which the system that has particles removed is able to
maintain the clusters more than the other.

Both situations resemble real-life systems that break and must be replaced or mis-
sions that scale up due to increasing funding or changes in requirements.

Furthermore, we proposed a strategy for changing cluster configurations. We realized
that the potentials of some formations are a local minimum of others. This means
that in order to exchange from one configuration to another, one must perturb the
system. Our strategy was to include a new term into the potential to suppress the
previous formation. We observe that some transitions happen faster, especially when
the new number of clusters is higher than the previous because it is more expensive
to break existing clusters than to merge.

Besides, we introduce the so-called Switching system that consists of periodically
changing the model potentials. We set two parameters MA and MB, two number of
clusters, respectively, and switch between their respective potentials with a certain
period T . Under certain conditions the formation converges to M = max{MA,MB}
clusters. Surprisingly, another possibility is the convergence of clusters of two par-
ticipants each that do not overlap. They reach stable positions within the trajec-
tory and keep nonzero relative positions inside each cluster fixed. Moreover, chaotic
circular-like trajectories may emerge as well for certain combinations of MA, MB

and T .

An important problem we also address is delayed information exchange between
agents. In some applications, such as in satellite constellations, the communication
happens from distant positions. We observed that delay plays the role of a control
parameter. Depending on its intensity, different cluster configurations emerge, even
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when all other parameters are fixed. Besides, it has a direct dependence on system
frequency, having less impact for small frequencies. Basically, the system is more
tolerant to delay when in low frequencies than in high. As delay increases, the
system presents different cluster configurations and eventually reaches again the
same solutions as in instantaneous communication. Yet such solutions reappear for
delays that are multiples of the system period.

We propose a collision avoidance mechanism, motivated by real systems of moving
agents. It is an anti-alignment between agents’ heading angles that depends on
a constant coupling strength. We employed the M-GEO algorithm to find proper
model parameters that both decrease the number of collisions and guarantee the
desired formations.

Lastly, we implemented the model on the ARGoS robot simulator, using the Kilobot
platform and emulating a tracking system. Such platform has very limited architec-
ture and poses an engineering challenge when it comes to long-range communication
and internal processing. We assessed our implementation with the addition of noise
into the robot controls. After all, the robots were able to reach the coveted symmetric
circular formations in a timely manner for an acceptable range of perturbations.

As future work, we intend to deepen the investigation of the Switching system. So
far we only observed formations of non-overlapping clusters with two particles each.
We wonder whether is possible to achieve this behavior with different numbers of
agents per group. Besides, it is still not clear the reason behind the emergence of
such phenomena.

Another important point is that we have only considered fixed time delay and mes-
sages from farther vehicles should take more time to arrive than from close ones.
Hence, the next step would be the implementation of a state-dependent time delay.

The only constraint for the choice of the PCOD model control parameters was that
they should belong to the stable regions we found. For simplicity, we grouped some
parameters, but a more proper strategy would be to run an optimization routine
with them as design variables for every setup.

Other possibilities for the circular formations are second-order models that allow for
radii prescriptions due to their frequency synchronization nature.

Last but not least, we intend to release a more decentralized implementation with the
ARGoS simulator, leaving the processing part for the robots instead of the central
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computer. Additionally, other robot platforms should be tested.
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