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Abstract. This paper proposes a simulator capable of quickly generating a large
amount of data that may be used to train bus travel time predictive algorithms
in an urban transport network. To validate the proposal, a case study was car-
ried out on a bus line in the city of Brası́lia/DF, Brazil. In the case study, the
Simulator generated data for several scenarios that differ in distinct levels of
variability and these data were used to evaluate the performance of a K-Nearest
Neighbor predictor in each of the scenarios.

1. Introduction
Urban residents rely on different modes of public transportation for their daily com-
mute. Based on that, many works have been developed aiming to improve the effi-
ciency and the accessibility of urban transportation services [Lima and Campos 2017,
Monteiro et al. 2017]. In this context, accurate and real-time travel time information for
buses has an important role because, among other reasons, it can help passengers better
plan their trips and minimize waiting times.

Many factors such as weather conditions, day of week, time of day, and current
traffic conditions may influence bus travel times. However, the exact nature of such rela-
tionships between travel times and predictor variables is usually not known and some-
how these factors need to be incorporated into prediction algorithms either indirectly
through binned analyses or through direct modeling [Kormáksson et al. 2014]. More-
over, travel times in urban areas are prone to high degrees of variability due to the pres-
ence of traffic lights, congestion, geometric conditions of roads and weather conditions
[Reddy et al. 2016].

High variability conditions may affect the performance of the travel time predictor.
For instance, [Reddy et al. 2016] proposes bus travel time predictions under high vari-
ability conditions and concludes that Kalman Filter [Sorenson 1966] and Support Vector
Machines (SVM) [Platt 1999] are promising prediction techniques to solve high variabil-
ity problems. Therefore, the travel time prediction method choice should account for the
degree of environmental variability.

One way to analyze the degree to which variability impacts predicting bus travel
times in an urban transport network is to collect data from the network in a variety of
situations with high and low degrees of variability, then predict bus travel times for each
of these situations using a predictor. Finally, predictor performance can be compared for
each of these scenarios. However, to run this experiment with data from a complex trans-
port network in a large urban center and different scenarios changing traffic parameters to
check simulator performance, is unfeasible, since the costs involved in creating each of
the different scenarios in real world network would be prohibitive. Therefore, one way to
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overcome this challenge would be to use traffic simulation tools. Wen et al. in [Wen 2018]
highlight safety, convenience and low cost as advantages of using a simulation.

The main challenge of this work is to propose a simulator capable of quickly
generating a large amount of data that may be used to train bus travel times predictive al-
gorithms. In addition, the simulator must be able to generate data for several scenarios, so
this data may be used to evaluate the performance of prediction algorithms for each sce-
nario. The main requirements for the simulator include: the ability to provide geographic
location and velocity of buses when requested, geolocation data available through a Rep-
resentational State Transfer (REST) Application Programming Interface (API), allow sim-
ulation variability degree adjustments using parameters, simple modeling and integration
with other systems through a geographic database.

In order to validate the proposed tool, a case study was carried out simulating the
traffic of a bus line in the city of Brası́lia/DF, Brazil. In this case study, the bus lines were
represented as graphs in which bus stops are represented by nodes, and the roads between
bus stops are the edges. The data generated by the simulation were used to train and test a
machine learning algorithm to predict bus travel times. The results showed that the degree
of variability affects the performance of the predictor in terms of the calculated error.

The current paper is organized as follows: in Section 2 the related works are
discussed; in Section 3 the architecture of the proposed tool and its components are de-
scribed; in Section 4 a case study with its respective results are presented; and finally, in
Section 5 there are the conclusions.

2. Related Works
Simulation models can be classified into two types: macroscopic and microscopic
[Helbing et al. 2002]. The macroscopic traffic models are restricted to the description
of the collective vehicle dynamics in terms of the spatial vehicle density ⇢(x, t) and the
average velocity V (x, t) as a function of the location x and time t. In contrast, the mi-
croscopic traffic models delineate the positions xa(t) and velocities va(t) of all interacting
vehicles as a function of time t.

The macroscopic models are addressed to large scale traffic, treating traffic as a
liquid, frequently applying hydrodynamic flow theory to vehicle behavior, such as Cellu-
lar Automaton (CA), car following model and IDM/MOBIL as widespread models used
within the traffic science community [Sommer et al. 2011]. All these approaches are of
equal value in terms of mobility models.

In [Wen 2018], traffic simulations of vehicles in a connected environment, trav-
eling through a commercial area, were carried out with the PARAMICS tool to test the
collection of traffic data and the prediction of travel times, four types of models were con-
structed for the analysis of travel times: linear regression, multivariate adaptive regression
spline, stepwise regression and elastic net. The results showed that the approaches had
similar performance in terms of Root Mean Square Error (RMSE).

Similarly, in [Barceló et al. 2010] it is presented a comprehensive list of traffic
simulation softwares describing their approaches to model building and implementation.
The microscopic approach is represented by the softwares VISSIM, AVENUE, Paramics,
Aimsun, MITSIM, SUMO and DRACULA. The macroscopic approach is represented by
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METANET. Although most of these tools are complete in terms of functionality, a simpler
model may be implemented to generate a large volume of data with less computational
effort.

When there is a concern about the exact positions of simulated nodes, macro-
scopic and mesoscopic models cannot offer this level of detail, then only microscopic
simulations are considered. Microscopic simulations model the behavior of single vehi-
cles and interactions between them [Sommer et al. 2011]. However, there are different
disadvantages, such as a high computational time and the requirement of detailed infor-
mation, which might limit the applicability of a microscopic model to medium networks
and those that do not operate in real time [Adacher and Tiriolo 2018].

Considering the trade-off between macroscopic and microscopic models, one of
the challenges of this work is to propose a simulator that can provide the exact position
of each simulated node, but with a good applicability in real-time applications and with-
out the need for high computational time, merging characteristics of the macroscopic and
microscopic models. Considering the high computational cost required in the general
simulator softwares, and the lack of specific simulator to generate training data for bus
travel time predictive algorithms, we propose a dedicated simulator able to model several
external events that may occur in daily traffic and to generate data useful for experimental
evaluation of predictive algorithms. The proposed simulator seeks to achieve these ob-
jectives by reducing the complexity of the model, and the results maintains the necessary
coherence for the analysis of the performance of travel time predictors.

3. Simulator Architecture
The Simulator consists of four software components and a Geographic Database. The
software components are: Time Controller, Line Simulator, Trip Simulator, and Location
REST Service. The diagram with the components is shown in Figure 1. Each software
component will be described in the following sections.

Figure 1. Simulator Architecture.

3.1. Line Simulator

The Line Simulator performs scheduled tasks according to a parameterized period. The
main activities performed by this component are: updating edge status, updating neigh-
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boring edges influence, updating edges average velocities, updating node delays, and up-
dating edges in geographic database. The responsibility of this component is to update
attributes related to the behavior of roads and bus stops.

To simulate the occurrence of events, such as accidents or bad weather, each edge
is classified as: normal, light event, moderate event, and severe event. The normal status
represents a situation without events. In other words, it is not under the influence of
external events that may negatively impact the traffic flow, whereas the other statuses
represent the occurrence of events that impact the traffic flow with increasing degrees of
severity from light to severe.

During the edge’s status updating process, if an edge has normal status, a pseudo-
random probabilistic event determines an increasing probability of severe, moderate and
light events. This means the occurring probability of a light event is greater than the
occurring probability of a severe event. If no event occurs, the edge retains normal status.

If an edge is under the effect of some event during the edge’s status updating pro-
cess, the event regression probability is evaluated. A severe event regresses to a moderate
event, while a moderate event regresses to a light event and a light event regresses to the
normal status. Again, the regression probability of a light event is greater than the regres-
sion probability of a moderate event, which is greater than the regression probability of a
severe event. Figure 2 illustrates the edge status state machine.

Figure 2. Edge Status State Machine.

To represent the influence of neighboring edges, four influence classifications
were created: severe, moderate, light and absent. An edge is under severe influence
when the edge immediately downstream has a severe event, on the other hand, an edge is
under moderate influence when the edge that is after the edge immediately downstream
has a severe event. Finally, an edge is under light influence when the edge immediately
upstream has a severe event. If the edge does not fit into any of the above rules it will be
under absent influence. Figure 3 illustrates the influence of an edge under severe event on
its neighboring edges.

Figure 3. The Neighboring Edges’ Influence.

After updating edge status and edge influence, edge velocity is updated. Each edge
has an average velocity that is initially represented by the maximum velocity allowed in
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that edge. In the edge updating average velocity first step, the path maximum velocity is
multiplied by a correction factor that varies according to the edge status. This factor is
always a number less than or equal to one. The result velocity will always be less than
or equal to the maximum edge velocity allowed. The higher the severity of the event, the
lower the correction factor. This correction factor has a normal distribution so that one
simulation parameter determines the mean and another determines the standard deviation.

In the second update step, the result calculated in the first step is multiplied by a
peak time correction factor. This factor is not applied if the current time is outside the
interval of the peak hour. Similar to the status correction factor, the peak time correction
factor has a parameter that determines the Gaussian mean and a parameter that determines
the Gaussian standard deviation, but in this case, the Gaussian mean is not a constant
value. Rather, it is determined by a linear discontinuous function that decreases in the
first half of the peak hour window and increases in the second half of this window, so that
the velocity variation becomes a little smoother. The discontinuous linear function can be
replaced by any other mathematical function to better model this phenomenon.

Finally, in the third update step, the result of the second step is multiplied to the
influence correction factor – the greater the influence of the neighboring edge, the lower
the influence correction factor and the lower the final average velocity. As with all other
correction factors, this factor has a normal distribution parameterized by the mean and the
standard deviation.

Node delays represent the amount of time buses spend at bus stops. These delays
also have a normal distribution with mean and standard deviation parametrized. Presently,
to simplify the process, the peak time window does not affect node delays. However, it
is possible to apply a peak time correction factor to these delays, increasing the delay at
peak hours.

The last activity of the Line Simulator is to update the Geographic Database with
edge average velocities. This allows any graphical tool that can integrate with a geo-
graphic database to monitor edge status and edge average velocity at simulation time.

3.2. Trip Simulator

Similar to the Line Simulator, the Trip Simulator executes scheduled tasks according to
a parameterized period. The main activities of this component are: updating bus posi-
tion, updating bus velocity, and updating Geographic Database with bus positions. The
responsibility of the Trip Simulator is to update the behavior attributes of the buses.

Each graph element behaves differently, whether it is an edge or a node. When a
fraction of time is available to a bus that is on a node, this time is consumed while the
bus stands on the bus stop. However, when the bus is on an edge and a fraction of time
is available, it moves over the edge at a distance that is a function of its instantaneous
velocity and the available time. The travel times spent by all the buses in each of the
stops or crossing each of the edges are recorded in the Geographic Database at the exact
moment that the vehicle leaves the respective graph element.

The instantaneous bus velocity is a function of the graph element average velocity.
Graph nodes always have zero average velocity, while the average velocities of edges are
calculated by the Line Simulator. The instantaneous velocity of the buses is the multi-
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plication of the edge average velocity by a velocity oscillation factor. Consequently, two
buses on the same edge do not necessarily have the same instantaneous velocity. The
buses’ instantaneous velocities have a normal distribution, with mean equals to edge av-
erage velocity and parameterizable standard deviation, which is the velocity oscillation
factor.

Node delays are multiplied by a delay oscillation factor, so two buses do not nec-
essarily remain the same time period in a certain bus stop. The delay oscillation factor also
has a normal distribution with mean equals to the node average delay and parameterizable
standard deviation – the delay oscillation factor.

Finally, the Geographic Database is updated with the positions of the buses, al-
lowing other tools to monitor these positions at runtime through database integration.

3.3. Location REST Service
The Location REST Service allows retrieving information from the entire bus fleet
through a Hypertext Transfer Protocol (HTTP) call. The information is made available
through a JavaScript Object Notation (JSON) document and includes name, line, velocity,
and location (latitude and longitude) of all buses.

This service, in addition to allowing system integration independent from the plat-
form, the operational system, or programming language, it also makes possible to obtain
bus fleet data in a real time.

3.4. Time Controller
The Time Controller is nothing more than a clock that controls the simulation time. All
other system components use the Time Controller clock instead of the operational system
clock. The Time Controller clock speed is set by the ”Time Multiplier” parameter. If the
parameter is set to two, then the time passage in the simulation will be twice as fast as the
real time passage. Therefore, this component allows the simulation to be executed both
in real time and in an accelerated time, so that weeks of traffic simulation can be executed
in a few hours.

3.5. Geographic Database
The Geographic Database, illustrated in Figure 4, stores information from nodes and
edges, bus locations over time, and travel time information of all edges and nodes. In
addition to maintaining the entire simulation history the database also works as an inte-
gration point between the Simulator and other systems.

The ”Location” table, in Figure 4, stores the buses’ geographic location and veloc-
ity at a given time. The ”TravelTime” table records the time a bus has remained in a given
graph element. The ”GraphElement” table has all graph nodes and edges including each
element name, size, maximum speed allowed , and the bus line name. When the element
is a node, the ”Graph Element” table has the geolocated point with the node location.
However, when the element is an edge this table stores the set of geolocated points and
lines that represent the edge trace and position.

3.6. Simulator Parameters
Adjusting the Simulator parameters, a traffic situation with high variability can be created:
constant changes in bus speeds, occurrence of many external events and many other traffic
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Figure 4. Geographic Database.

situations. Likewise, other adjustments can create a situation with low variability: with
constant velocities and little or no occurrence of external events.

In addition, by adjusting the parameters it is possible to define the number of
buses that will be running during the simulation, the windows of the peak hours, the
Line Simulator and the Trip Simulator update periods, and the time multiplication factor.
Table 1 lists all Simulator parameters.

Table 1. Simulator Parameters

Name Description
fleetSize Number of buses
severeEventProb Severe event probability
moderateEventProb Moderate event probability
lightEventProb Light event probability
normalCorrectionFactor Normal status correction factor
lightCorrectionFactor Light event correction factor
moderateCorrectionFactor Moderate event correction factor
severeCorrectionFactor Severe event correction factor
correctionFactorSD Correction factor standard deviation
severeEventEndProb Severe event ending probability
moderateEventEndProb Moderate event ending probability
lightEventEndProb Light event ending probability
absentInfluence Absent influence factor
lightInfluence Light influence factor
moderateInfluence Moderate influence factor
severeInfluence Severe influence factor
influenceSD Influence factor standard deviation
morningPeakTime Morning peak time
afternoonPeakTime Afternoon peak time
tripSimulatorUpdate Trip Simulator update period
lineSimulatorUpdate Line Simulator update period
timeMultiplier Simulation time multiplier factor
delayOscillationFactor Node delay oscillation factor
delayOscillationFactorSD Standard deviation of the node delay oscillation factor
velocityOscillationFactor Edge velocity oscillation factor
velocitOscillationFactorSD Standard deviation of the edge velocity oscillation factor
peakTimeCorrectionFactor Peak time correction factor
peakTimeCorrectionFactorSD Standard deviation of the peak time correction factor

4. Case Study
A case study was carried out using simulated data to evaluate a travel time predictor
performance using scenarios with different variability degrees. The simulations were
performed on a bus line located in downtown Brası́lia / DF, Brazil.
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Geolocation data from the Federal District urban transport network, on the right
side of Figure 5, were obtained from a GeoServer [Contributors 2015] maintained by
the Federal District Transit Department (DFTRANS). For the case study, only the
”CIRCULAR-W3-SOUTH-NORTH-L2-NORTH-SOUTH” bus line was used, on the left
side of Figure 5.

Figure 5. Federal District Urban Transport Network.

The bus line was transformed into a graph with 82 nodes named after N1 to N82
and 82 edges named after A1 to A82. The bus stops are represented by nodes, while the
paths between bus stops are the graph edges. Travel time predictions take two nodes into
account: the origin node (O) and the destination node (D), and the single path composed
of one or more edges (A), which connects these two nodes, as shown in Figure 6.

Figure 6. Bus Line Graph.

To create different levels of variability, simulator and predictor parameters were
changed. The parameters were divided into 5 sets Ci, Cj, Ck, Cl, and Cm. Each of these sets
has 3 different configurations. For instance, Ci(0) is the parameter set Ci in configuration
0 while Cm(2) is the parameter set Cm in configuration 2. The parameter sets Ci, Cj, Ck,
and Ci are simulator parameters and are listed in Table 1 with their respective descriptions.
The parameter set Cm has a single predictor parameter, which determines the quantity of
previous travel times used to train the prediction algorithm. Since there are 4 simulator
parameter sets – 1 predictor parameter set, and each one with 3 possible configurations –
the total amount of simulated scenarios is 81, and the total amount of predicted scenarios
is 243. Table 2 shows the 5 parameter sets and their values for each configuration.

During the experiments, the simulator ran for 3 hours for each of the scenarios
described, with a fleet of 82 buses and a time multiplication factor of 60. Then, for 3
hours of simulation a little more than a week of traffic data was generated.

The prediction of travel times was performed by a K-Nearest Neighbors classifier
(KNN) [Aha et al. 1991]. This classifier was chosen due to its speed and the simplicity of
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Table 2. Simulation Scenarios

Ci
Parameter Ci(0) Ci(1) Ci(2)
severeEventProb 0,0000 0,0005 0,0010
moderateEventProb 0,0000 0,0010 0,0020
lightEventProb 0,0000 0,0020 0,0040

Cj
Parameter Cj(0) Cj(1) Cj(2)
lightCorrectionFactor 0,90 0,80 0,70
moderateCorrectionFactor 0,75 0,65 0,55
severeCorrectionFactor 0,60 0,50 0,40
peakTimeCorrectionFactor 0,80 0,70 0,60

Ck
Parameter Ck(0) Ck(1) Ck(2)
lightInfluence 1,00 0,90 0,80
moderateInfluence 1,00 0,80 0,70
severeInfluence 1,00 0,70 0,60

Cl
Parameter Cl(0) Cl(1) Cl(2)
delayOscillationFactorSD 0,01 0,05 0,10
velocitOscillationFactorSD 0,01 0,05 0,10

Cm
Parameter Cm(0) Cm(1) Cm(2)
qtdPreviousTrips 6 4 2

its implementation. This approach is one of the simplest and oldest methods used for pat-
tern classification. It often yields efficient performance and, in certain cases, its accuracy
is greater than state-of the-art predictors [Hassanat et al. 2014, Hamamoto et al. 1997].
The KNN predicts the travel time of a test example using the average past travel time
among its k-nearest (most similar) neighbors in the training set.

The data used to train and test the models were: the current travel time, the period
of the day represented by a real number contained in the interval [0; 24), the day of the
week, the average bus speed, and ⌘ previous travel times where ⌘ is determined by the
predictor parameter ”qtdPreviousTrips”.

In the KNN process, the number of neighbors k needs to be determined. To de-
termine the parameter k, an experiment was carried out creating prediction models for a
random sample of 8 edges extracted from the real traffic network. The set of sampled
edges are labeled as {A1, A9, A33, A35, A51, A58, A80, A81}, where Ai is the edge in the
geographic database indexed by value i. The value of k was ranged from 1 to 52, and
for each value of k the model was created and evaluated by calculating the absolute mean
error. Figure 7 presents the absolute mean errors calculated during the evaluation of the
prediction model as a function of k for the 8 sampled edges. The curves initially have a
decreasing behavior, and around k = 4 there is an inflection point and the curves starts to
increase. Due to this behavior the value 4 was chosen for parameter k.

After estimating the value of k, KNN prediction models were created for all edges
and for many parameter scenarios. The simulation data were divided into 70% for training
and 30% for test, and for each test example, the value of Mean Absolute Error (MAE) was
calculated, corresponding the absolute difference between the predicted travel time and
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Figure 7. Mean Absolute Errors.

the real travel time.

The results predicted by KNN from generated data with several scenarios are
summarized in Figure 8. Figure 8 represents a plot matrix, in which each plot shows
travel time predictor mean absolute errors for each of the 243 prediction scenarios.
Columns of the plot matrix represent subset of edges A1, A33, and A80, while lines
represent configuration groups Ci, Cj, Ck, Cl, and Cm. Numbers 0, 1 and 2 in plot
matrix legends are related to simulation scenarios presented in Table 2. Not all pre-
dicted travel time results are presented here due to space limitations to plot all pa-
rameter combinations for each edge. The complete results and data can be found in
https://github.com/curupiras/results.git. Nevertheless, the subsam-
ple presented in Figure 8 represents the pattern found in all edges.

In Figure 8, the plot matrix in line Ci shows that the greater the probability of
the events, the greater the predictor error. Similarly, it can be observed in line Cj that the
smaller the correction factors, the more the events and the peak time impact on bus speeds
and the greater the predictor error.

Similarly, line Ck represents the impact of influence between neighboring edges
on the predictor error and line Cl represents the impact of delay and velocity oscilla-
tion factors on the predictor performance. At some moments, a lower influence between
neighboring edges and smaller oscillation factors end up increasing the predictor error,
however this is not the rule. In most cases, the greater the oscillation factors, and the
greater the influence of the neighboring edge, the lower the predictor performance, thus,
the greater the error.

Finally, in line Cm, it is worthy to note that the quantity of previous travel times
used in the predictor algorithm training has very little impact on its performance. How-
ever, it is possible to realize that when a greater quantity of previous travel times is used
to train the model, there is a slight improvement in the predictor performance.

5. Conclusion
In this work, a simulator capable of quickly generating a large amount of data for travel
time prediction algorithms was presented. The implementation was able to provide the
geographic position and speed of each simulated bus, upon request, either using REST
API calls or geographic database integration.
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Figure 8. Predictor Performance.

Furthermore, to validate the implementation, a case study was carried out on a bus
line in the city of Brası́lia. Over 20 months of traffic data with different levels of variabil-
ity were generated in approximately 10 days, proving the Simulator’s ability to generate
a large quantity of data in a short period of time for several different scenarios. The sim-
ulated data were used to train and test a KNN bus travel times predictor and the predictor
algorithm performance was evaluated in terms of mean absolute error. The results showed
that, in general, the higher the degree of variability of the traffic environment, the lower
the performance of the prediction algorithm.

Future work includes: comparing simulated data with real traffic data; testing the
simulator with other bus lines; the use of other prediction algorithms and the analysis of
their performance; refinements of the model to simulate traffic in multiple lanes; and to
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add the possibility of multiple paths choice.
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