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Abstract. Fire processes contribute to carbon dioxide emissions, main gas re-
sponsible for the Greenhouse Effect. Considering the importance of fire pro-
cesses management for the detection of burnt areas in the Brazilian Amazon, the
Linear Spectral Mixture Model is one of the main methods available. Nonethe-
less, some manual processes are required before its application, such as iden-
tifying adequate images in databases. In this manner, we have developed an
approach for Remote Sensing Image Information Mining (ReSIIM), which was
tested for burnt areas studies. ReSIIM stores information about well-known tar-
gets found in Remote Sensing imagery, such as cloud, cloud shadow, clear land,
water, vegetation and bare soil.

1. Introduction
Several rainforests worldwide are located in underdeveloped countries. In such
a way, resources to protect and preserve the intact environment are typically
scarce [FAO et al. 2011]. Although rainforests play an important role in climate regula-
tion, they face countless threats. Among them, in the Brazilian Amazon, deforestation is
often the first one to be pointed, yet during a fire, the main gas emitted is carbon dioxide,
which is also the primary Greenhouse effect gas [Anderson et al. 2005a, Lashof 1991].
According to [Aragão and Shimabukuro 2010], drought years followed by fires release
as much carbon (C) as deforestation processes. The negative effects of fires thus extend
beyond damage to a single swath of trees. They influence global climate changes once sur-
face radiative changes have occurred [Shimabukuro et al. 2009, Shimabukuro et al. 2015,
Anderson et al. 2015, Padilla et al. 2017]. Therefore, comprehending, managing and
avoiding fires in the Amazon region could meet the international demand for C emis-
sion reductions. These fires, normally induced by humans, are often applied to fa-
cilitate land use and land cover (LULC) changes. Where before there was a nat-
ural habitat supporting a wide variety of life forms, agricultural areas and pastures
arise [Shimabukuro et al. 2015, Aragão et al. 2016].

Analyzing large areas of the Earth’s surface in a short time is possible using
Remote Sensing (RS) tools. However, describing and finding information, as well as
improving data management, analysis and cataloging such a great amount of data are
some of the main challenges [Li et al. 2016]. Produced in a high velocity, Earth Ob-
servation (EO) data come from several remote sensors in different data types, resolu-
tions and scales [Datcu and Seidel 2002, Datcu and Seidel 2003, Li et al. 2016]. Con-
sidering the data deluge, production velocity and high diversity [Laney 2001], EO data
is also coined as Big Data [Körting et al. 2016]. In this way, RS image catalogs were
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developed by institutions in order to manage and distribute EO data. Many efforts cur-
rently aim to develop efficient, easily-accessible and well-sourced catalogs. Some ex-
amples are the United States Geological Survey (USGS) 1, the European Space Agency
(ESA) 2 and the Brazilian National Institute for Space Research (INPE) 3, whose goals
are the management and distribution of EO data. Through these catalogs, it is pos-
sible to search for images according to user’s specifications, such as location and
date [Datcu et al. 2000, Li and Narayanan 2006, Stepinski et al. 2014]. On the other
hand, more accurate images search tools are not available even in the most modern satel-
lite image catalogs, and smart tools are scarce [Stepinski et al. 2014]. Such mining strate-
gies would strive to improve geospatial data handling tools, taking into account the vol-
ume of data [Quartulli and Olaizola 2013].

For the detection of burnt areas in the Brazilian Amazon using satellite images,
the Linear Spectral Mixture Model (LSMM) [Shimabukuro and Smith 1991] is one of the
main approaches available. Nonetheless, some manual processes are still required before
its application, such as identifying adequate images in databases [Andere et al. 2015]. If
more accurate methods for searching RS images in catalogs existed, detection of burnt
forest areas would be boosted along with other related research. Image searching is,
hence, a time consuming step and fast results are important to guide public policies. In
this context, this paper introduces a methodology of Remote Sensing Image Information
Mining (ReSIIM) applied to supporting the detection of burnt forest areas in the Brazilian
Amazon, providing users with the possibility of searching according to its basic target
criteria, such the presence of cloud, cloud shadow, clear land, water, vegetation and bare
soil. The aforementioned methodology is, however, versatile enough to be applied on any
related RS applications.

2. Literature Review

2.1. Remote Sensing Image Metadata

Generally, spatial data is related to any information with absolute or relative location.
In this context, the collection of a geographic phenomena information forms a spatial
database [Guptill 2015]. Metadata provides detailed attributes and characteristics descrip-
tion of a given element [Guptill 1999], being the data about data. Based on RS image
metadata, different search criteria can be developed in catalogs. Roughly, a catalog refers
to a description list of items found in a collection [Frank 1994]. A data catalog is thus,
a collection of metadata records, which is associated with search tools and data manage-
ment [Guptill 1999]. Therefore, an image catalog facilitates the operations of searching,
sharing and processing data to users.

RS image metadata can be identified through some approaches such as
Fmask algorithm, first developed by [Zhu and Woodcock 2012] and improved by
[Zhu et al. 2015]. Based on these works, [Flood and Gillingham 2017] developed a set
of command line utilities in a Python module. The output of the algorithm is a single
thematic raster with up to 6 different values [0, 5], representing: null value, cloud, cloud

1https://data.usgs.gov/datacatalog/
2https://earth.esa.int/web/guest/data-access/catalogue-access
3http://www.dgi.inpe.br/catalogo/
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shadow, clear land, snow, and water. Clear land refers to data that are none of the afore-
mentioned targets even though it carries information.

Regarding the information of presence of water in RS images,
[Namikawa et al. 2016] extracted 5-meter spatial resolution masks from Brazilian
water bodies using RapidEye images with an automated methodology. Although water
bodies are usually identified due to its low reflectance, in the real world several parame-
ters may interfere in their detection, such as suspended solids and water depth. With this
in mind, the methodology was based on the color transformation from Red-Green-Blue
(RGB) to Hue-Saturation-Value (HSV) and the minimum radiance from all the bands.
For that, some factors were considered, as the differences in illumination and scattering
throughout more than 15,000 RapidEye scenes. As a result, it was possible to classify
seven classes of water in agreement with the confidence of the classified pixels ranging
from 1 to 7, according to the presence of water, where 1 is more reliable and 7, less
reliable. Furthermore, the degree of persistence is also available, if needed. According to
the authors, although this methodology is considered simple, it is accurate to detect water
bodies. [Namikawa and Castejon 2017] identified some issues which may interfere the
results nonetheless, such as cloud noise, shadow in urban areas and specular reflection of
sunlight.

Furthermore, regarding the information of presence of live green vegetation in
RS images, [Rouse Jr et al. 1974] developed the Normalized Difference Vegetation Index
(NDVI), which ranges from [-1.0, +1.0]. The definition of thresholds in NDVI for map-
ping vegetation is controversial, and it also varies from one region to another. However,
NDVI values between 0 and 0.1 normally refer to rocks and bare soil, regardless of said
controversy. Values greater than 0.1 indicate a gradual increase in greeness and intensity
of vegetation [NOAA 2017]. On the other hand, some authors use NDVI limit of 0.2 for
bare soil and vegetation [Jin et al. 2014, Liang et al. 2014b, Liang et al. 2014a], and the
transition zone is considered from 0.1 to 0.2 [Liang et al. 2014a].

2.2. Burnt Forest Detection

Although some processes were developed for identifying burnt areas, outstand-
ing questions remain in the literature, such as associated uncertainties and its
causes [Anderson et al. 2005a, Aragão et al. 2016]. In [Aragão et al. 2016], studies for
estimating burnt forest areas are briefly described, ranging from the first tests in the 80’s
to algorithms to separate burnt forests from other phenomena such as selective logging.
A short compilation of burnt forest identification is available in [Lima 2013].

Generally, two main approaches are used to identify burnt forests: alterations of
biophysical properties of the carbonized matter and heat release. Different channel com-
binations of multispectral RS images can be used to enhance complex phenomena iden-
tification [Bannari et al. 1995, Key and Benson 2006], yet they are not accurate in every
biome.

Currently, burnt forest research in the Brazilian Amazon is commonly per-
formed based on the Linear Spectral Mixture Model (LSMM) [Anderson et al. 2005b,
Shimabukuro et al. 2009, Cardozo et al. 2013, Andere et al. 2015, Anderson et al. 2015].
Even for more accurate spatial resolutions, satellite data presents a mixture prob-
lem [Anderson et al. 2005b, Shimabukuro et al. 2009], since a pixel represents the
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average spectral response from all the elements located in that pixel. In
this perspective, LSMM was developed aiming to depict subpixel heterogene-
ity [Shimabukuro and Smith 1991]. In this model, some pure pixels called end-
members are selected by a domain specialist, deriving shade fraction images for
burnt area detection. Similar spectral responses may interfere with the results
though [Chuvieco and Congalton 1988, Bastarrika et al. 2011, Andere et al. 2015]. For
instance, burnt areas exhibit low reflectance, as well as water and cloud shadows. More-
over, cloud coverage and fire smoke may also omit pixels with spectral response affected
by fire [Aragão et al. 2016], whilst clouds and their shadows influence negatively many
uses of EO data, such as inaccurate atmospheric correction and land cover classifica-
tion [Zhu and Woodcock 2012]. In this context, applying LSMM methodology requires a
prior step: identifying appropriate images for analysis.

3. Methodology
In this section, we present the developed methodology (Figure 1). The Remote Sensing
image database is composed of Landsat 5 and 8 imagery. ReSIIM is organized in two
main steps, feature extraction algorithm and metadata generation algorithm. In a decision
process, the generated metadata is analyzed according to the reference data. If the result is
unsatisfactory, it goes back to the ReSIIM phase in an attempt to generate more accurate
metadata. Finally, some searching criteria for burnt forest detection studies takes place in
the metadata database.

Remote Sensing
Image Database

Feature
Extraction
Algorithm

Metadata
Generation
Algorithm

Metadata
Database

Metadata
Correlation
Analysis

ReSIIM

Unsatisfactory

Figure 1. Methodology Flowchart.

3.1. Remote Sensing Image Information Mining (ReSIIM)
Our Remote Sensing Image Information Mining methodology (hereafter ReSIIM) aims
to extract and generate metadata from satellite images, and is based on open source
softwares, scripts and libraries. For that, different indices and methods consolidated
in the literature were evaluated according to the correlation between these approaches
and real targets along a set of images. Two main tools were used: Fmask algo-
rithm [Zhu and Woodcock 2012, Zhu et al. 2015] for cloud, cloud shadow, clear land and
water; and NDVI [Rouse Jr et al. 1974] for vegetation and bare soil. More details about
them are available in Section 2. Summing up, ReSIIM is already able to identify 6 basic
targets.
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We describe in this work the use of ReSIIM to support burnt forest research, yet
its application to other analysis is not ruled out, since ReSIIM was idealized to be contin-
uously improved according to the scientific demands.

3.1.1. ReSIIM Metadata Examples

Examples of RS images are available in Figure 2, which shows the contrast between two
scenes and the generated metadata. Figure 2-A (path/row 220/065 - 24.09.2013) is not
cloudy (0.05%) in contrast with Figure 2-B (path/row 225/071 - 10.04.2015) (52.30%),
which means that for burnt forest detection, A would be more suitable than B. Moreover,
in A, Clear Land percentage is noticeably higher. On the other hand, it is also remark-
able that Figure 2-B presents vegetation percentage higher than Figure 2-A. Other basics
targets in both scenes do not show outstanding percentage differences.

Figure 2. Examples of Remote Sensing images and the generated metadata. A �
scene 220/065; B - scene 225/071 (color combination in R4G3B2 using L8 bands).

3.2. Metadata Correlation Analysis

In this section, we explain the methods used to analyze the correlation between the gen-
erated metadata and real targets along a set of images. For that, random L8 scenes along
Legal Amazon were used (freely available at https://earthexplorer.usgs.
gov/).
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3.2.1. Water

The correlation analysis of water was performed based on the reference dataset devel-
oped by [Namikawa et al. 2016] (detailed in Subsection 2.1). This approach was taken
into account, once it is more flexible when compared with a common threshold for a
large amount of scenes [Namikawa et al. 2016]. The water reference data was filtered
according to the high persistence of water along 4 years.

The correlation analysis was based on two main approaches: water correlation
accuracy (WCA) and commission error (CE). WCA refers to the overlapped data between
the target water generated in ReSIIM and the reference data, whilst CE refers to the
data wrongly classified. For that, 10 random scenes were selected across the Brazilian
Amazon. WCA ranged from 76% to 99% of correct classification, and average WCA was
90%. CE is also considered low once no cases of more than 24% were misclassified, and
the average CE obtained about 10%. Omission error was not taken into account, since the
reference data’s spatial resolution is 5m and the classified data is 30m (L8).

3.2.2. Vegetation

Considering the several meanings that land cover vegetation carries, such as for agricul-
ture and several kinds of forest, we limited a NDVI threshold in this work, according to
previous analysis. We used forest mask classified by the Brazilian National Institute for
Space Research (INPE) from the PRODES project, which monitors the Brazilian Amazon
through satellites [INPE 2017]. The forest mask was used, thus, to derive the NDVI in-
terval for our analysis (Figure 3). In most cases, the amount of pixels labeled as forest by
PRODES was higher in NDVI values starting from 0.8. In such a manner, we empirically
determined the threshold of 0.8 due to its high correlation to dense vegetation, and defined
NDVI >= 0.8 for vegetation target detection.
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Figure 3. NDVI variance in areas identified as forest by PRODES.
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Our vegetation correlation analysis was based on two approaches: vegetation cor-
relation accuracy (VCA) and commission error (CE). VCA refers to the overlapped data
between the target vegetation generated in ReSIIM and the forest reference data from
PRODES, whilst CE refers to the misclassified data. For this analysis 10 random scenes
were selected from the Brazilian Amazon.

The results were satisfactory, considering that average VCA was 93% and average
CE was 7%. Nonetheless, it is remarkable that although VCA was higher than 92%
for each scene, just in a riparian vegetation scene, VCA was 58% and CE, 42%. This
outline suggests that the used threshold is not suitable for this kind of vegetation. Figure 4
presents this special case in four steps: A - original data; B - forest reference (PRODES);
C - detected forest (NDVI >= 0.8); and D - final composition of the three aforementioned
layers. PRODES data considers that both sides of the water body are characterized as
forest. Even so, through NDVI threshold approach, this reality was not detectable. Along
the bank of the river, known as riparian vegetation, NDVI values range mainly from 0.4
to 0.7.
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Figure 4. Outlier identified in NDVI threshold for vegetation target. A - Orig-
inal Scene (color combination in R5G4B2 using L8 bands); B - Forest Mask
(PRODES); C - Vegetation Detected (NDVI>=0.8); D - Input Image, Forest Mask,
and Vegetation Detected.
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3.2.3. Other Targets

Due to the lack of source data neither cloud nor cloud shadow correlation analysis were
possible, as well as clear land.

No validation data for bare soil targets was also identified, thus we analyzed in-
stead the main thresholds of NDVI found in the literature, aforementioned in Section 2.
As highlighted by [Liang et al. 2014b], validation processes in this area of research are
restricted due to limited data sources and methodologies.

Low NDVI values do not necessarily indicate a lack of vegetation, since the
differences along vegetated areas through the year and seasons may interfere in this
value [NOAA 2017]. However, in this work we employed the NDVI interval based on
the literature. Therefore, we defined 0.0 <= NDVI <= 0.2 for bare soil target detection.

4. ReSIIM Results for Burnt Forest Detection
According to the required criteria to search for RS images in databases in burnt areas
studies, some tests were performed. The tests were based only on the basic attributes
available in the ReSIIM, focusing on phenomena in lieu of date or location. Summing up
60 Landsat scenes, representing almost 200 millions hectares and about 120 GB of data,
two main datasets were selected to compose the database, reference data (RD) and noisy
data (ND). Half of the database was composed of RD and the another half of ND. The
aim of the tests is to understand what combination of metadata information is needed to
maximize the RD generation and minimized ND.

Through the tests, we were able to comprehend better not only the available data,
but also the role of ReSIIM in burnt forest detection. Firstly we assessed individual targets
in order to support image retrieval. After that, the targets with best performance were
combined and evaluated as well. An overview of the main tests is present in Table 1.

In test 1, the searching criterion was the presence of bare soil target in scenes not
superior to 10%, yet, after analyzing the results of image retrieval from the target cloud,
we identified that this target was misclassified as other targets such as cloud and water.
For this reason, this target was not considered in the following steps.

Although clouds are crucial for image retrieval in burnt forest detection studies,
tests 2 (percentage of clouds in scenes is not superior to 10%) and 3 (percentage of clouds
is not superior to 20%) showed that it is not the only important searching criterion. That
probably happens because in some areas of the Brazilian Amazon, it is not possible to
access RS images without the presence of clouds along the year, due to local humidity.
As well as cloud, in tests 4-6, it is possible to notice that clear land also plays an important
role in image retrieval tests. Images with more than 30% of clear land (test 5) retrieved
all the RD and none of the ND.

Shadow targets were not relevant in the process, since almost 100% of the dataset
is composed of images with less than 10% shadow (test 7). We previously thought that
vegetation targets would also be essential in the analysis. However, images with more
than 10% of vegetation (test 8) are present in both RD and ND, and this is not a good
searching criterion for this kind of work. The same was also identified in the target water
(test 9). Some areas present water along the whole year, thus this kind of filter would be
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Table 1. ReSIIM tests to support burnt forest detection (RD: Reference Data;
ND: Noisy Data). Where X represents the percentage range criterion used to
retrieve scenes.

Test
Number

Searching
Criteria

Percentage Image
Retrieval

10 20 30 40 50 60 70 80 90 100 RD ND
1 Bare Soil X 30 1
2 Cloud X 27 0
3 Cloud X X 30 1
4 Clear Land X X X 0 30
5 Clear Land X X X X X X X 30 0
6 Clear Land X X X X X X 26 0
7 Shadow X 30 29
8 Vegetation X X X X X X X X X 12 17
9 Water X 30 29

10 Cloud X X 30 0Clear Land X X X X X X X

more suitable if applied for more detailed and specific studies, such as along coastlines.

Finally, we analyzed the integration of cloud and clear land searching criteria
(test 10), once those were the main targets identified in the aforementioned steps. The
intersection between both was satisfactory, once all the images from RD and none of the
ND were retrieved.

5. Conclusions

The Remote Sensing data deluge is overwhelming the capacity of institutions to manage
and retrieve its content. In this context, ReSIIM is a fast and easy alternative tool for
Remote Sensing image information mining. It is based on the application of well-known
methods for information extraction from RS scenes, storing this information and allowing
users to access land use and land cover metadata through open source software, scripts
and libraries. The developed tool will support many other avenues of sustainable research,
considering that it enables phenomena searching criteria in lieu of just location or date
parameters, as available in current official catalogs.

ReSIIM applied to support burnt forest detection was satisfactory, retrieving all
the reference data from the database. The crucial targets for our test application in burnt
forest detection were cloud and clear land. More analyses are consequently required in
order to combine different targets and Remote Sensing image retrieval results for further
understanding of Earth phenomena, such as land use and land cover changes.

ReSIIM methodology accuracy is not absolute, since it is an indication of tar-
get correlations using mathematical models. However, ReSIIM can be continuously im-
proved according to its user’s demands. In this context, future research is also required in
order to comprehend user’s requirements.
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