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Abstract 

Regionalisation is a classification procedure applied to spatial objects with an areal 

representation, which groups them into homogeneous contiguous regions. This paper 

presents an efficient method for regionalisation. The first step creates a connectivity 

graph that captures the neighbourhood relationship between the spatial objects. The cost 

of each edge in the graph is inversely proportional to the similarity between the regions 

it joins. We summarise the neighbourhood structure by a minimum spanning tree 

(MST), which is a connected tree with no circuits. We partition the MST by successive 

removal of edges that link dissimilar regions. The result is the division of the spatial 

objects into connected regions that have maximum internal homogeneity. Since the 

MST partitioning problem is NP-hard, we propose a heuristic to speed up the tree 

partitioning significantly. Our results show that our proposed method combines 

performance and quality and it is a good alternative to other regionalisation methods 

found in the literature. 

Keywords: regionalisation, constrained clustering, graph partitioning, optimisation, 

zone design, census data analysis. 
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1 Introduction 

In a significant number of geographical applications, such as socio-economic, health 

and census data analysis, data is organised as a large set of spatial objects represented 

by areas. Examples of these spatial objects include census tracts, health districts and 

municipalities. In many circumstances, it is desirable to group a large number of spatial 

objects into a smaller number of subsets of objects, which are internally homogeneous 

and occupy contiguous regions in space. This procedure is called regionalisation, which 

results in new areas (called regions) with a more comprehensive geographic extent. The 

idea of regionalisation applied to socio-economic units (also called zone design) was 

pioneered by Openshaw (1977). Grouping a  set of homogeneous areal units to compose 

a  larger region can be useful for sampling procedures (Martin, 1998). Regionalisation is 

especially valuable for dealing with large data sets of areal units, removing fine scale 

variations and preserving relevant patterns. If properly carried out, it can produce 

entities that are more useful for spatial pattern discovery than the original data set 

(Openshaw and Alvanides, 1999).  

 There are three types of regionalisation techniques proposed in the literature. 

The first one is a two-step procedure that applies a nonspatial clustering algorithm, 

followed by a neighbourhood-preserving classification. The second one uses the 

geographical coordinates of the location as extra attributes in the clustering procedure 

(Haining et al., 2000). In these two techniques, the clustering procedure is not 

constrained by the neighbourhood relationship between the areal units, being introduced 

either as a second step in the method or as an indirect constraint when using coordinates 

as attributes. Therefore, the resulting clusters may not properly depict the inherent 

spatial patterns of the data set (Openshaw and Wymer, 1995). In the third approach, the 
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neighbourhood relationship between the spatial objects is used explicitly in the 

optimisation procedure. The best-known approach to regionalisation of socio-economic 

units based on the latter approach is the AZP algorithm (Openshaw and Rao, 1995). 

While the original AZP algorithm used ‘Monte Carlo’ optimisation, Alvanides et al. 

(2002) developed an alternative implementation of AZP using simulated annealing.  

 In this paper, we follow the third approach, aiming for an efficient 

regionalisation procedure. We represent the objects by a graph, and our proposed 

algorithm prunes the graph to get contiguous clusters. The advantage of graph-based 

techniques is to make spatial adjacency an essential part of the clustering procedure. 

The challenge for graph-based regionalisation techniques is twofold: to bring down the 

computational cost of the optimisation procedure and to reduce the sensitiveness on the 

choice of the initial position for tree partitioning. To address these questions, we present 

a technique for graph-based regionalisation in two steps. In the first step, we create a 

minimum spanning tree (MST) from the neighbourhood graph. This MST represents a 

statistical summary of the neighbourhood graph. Then we employ a heuristic to prune 

the MST and get a set of spatial clusters. In the paper, Section 2 presents a review of the 

literature. Section 3 describes the proposed method, showing how to build the MST and 

describing how to partition the tree efficiently. In Section 4 we apply the method on a 

case study on the city of São Paulo. Section 5 presents a performance analysis in 

comparison with AZP method. 

2 Regionalisation approaches: a review of the literature 

There are three main approaches to regionalisation. The first approach is a two-step 

algorithm. In the first step, a conventional clustering procedure is performed using 
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nonspatial attributes. In the second step, objects in the same cluster with no spatial 

contact will be split, forming different regions. This solution enables a quick evaluation 

of spatial dependence among objects. However, this method does not capture the spatial 

adjacency condition directly, resulting in limited capacity to capture spatial patterns. 

Another inconvenience of this approach is the lack of control on the resulting regions. 

Data sets with low spatial autocorrelation will result in more regions then desirable 

(Haining et al., 2000). 

The second approach used in regionalisation considers both the geographical 

position and nonspatial features of those objects. The clustering algorithm uses the 

coordinates of the area’s centroid as extra attributes, and measures similarity between 

objects as a weighted mean of nearness in the feature space and nearness in the 

geographical space. To work well, the algorithm needs a choice of weights that 

produces connected clusters. The analyst has to perform the procedure several times, 

trying different weights until she gets connected regions. This weighted means approach 

is used by the regionalisation method of the SAGE system (Spatial Analysis in a GIS 

Environment) (Haining et al., 2000). SAGE employs an iterative k-means clustering 

procedure whose objective function has three terms: a) homogeneity: similarity in the 

feature space; b) compactness: nearness in the geographical space, based on centroid 

coordinates; c) equality: similarity of values of a selected attribute in the resulting 

clusters (population, for example). SAGE employs the equality measure to produce 

balanced regions for a given attribute, to allow proper comparisons across resulting 

regions. Typical control attributes are total population or population at risk for a given 

disease. Martin (1998) uses a similar approach to produce output areas for the analysis 

of UK census data.  
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 Openshaw et al.(1998) criticise the weighed means regionalisation algorithm, 

since the three conditions (homogeneity, compactness, and equality) are not strictly 

comparable. According to them, a better and simpler strategy would be to select 

homogeneity as the sole basis for the objective function. Compactness and equality are 

constraints, and should not be combined with homogeneity measures. Instead, 

compactness and equality should be handled by defining their expected values 

(example: minimum population within a region).  

 The third approach includes algorithms that use adjacency relations as constraints 

to the clustering procedure. The AZP (Automatic Zoning Procedure), proposed by 

Openshaw (1995) is an example. This method starts with performing a random partition 

of n objects in k regions. Then, through trial and error, it seeks to reallocate objects over 

regions to minimise an objective function, subject to the adjacency constraint. 

Improvements to AZP led to the ZDES automatic zoning system (Alvanides et al., 

2002). Since the AZP algorithm is computationally expensive, it is useful to consider 

other techniques that use the adjacency relations of the objects and are computationally 

efficient. This interest leads to the authors’ proposal, described in the next section. 

3 Regionalisation through graph partitioning  

3.1 General strategy 

In this section, we describe our strategy for transforming the regionalisation problem 

into a graph partitioning problem. We refer to the algorithm as SKATER (Spatial 

‘K’luster Analysis by Tree Edge Removal).  We use a connectivity graph to capture the 

adjacency relations between objects, as shown in Figure 1a. In the graph, each object is 

associated to a vertex and linked by edges to its neighbours. The cost of each edge is 
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proportional to the dissimilarity between the objects it joins, where we measure 

dissimilarity using the values of the attributes of the neighbouring pair. By cutting the 

graph at suitable places, we get connected clusters. In this way, we transform the 

regionalisation problem in an optimal graph partitioning problem. Since optimal graph 

partitioning is an NP-hard problem, we need a heuristic applicable to large spatial data 

sets to achieve suboptimal solutions in acceptable time. For a general discussion on 

heuristics for graph partitioning for other types of application, see Even at al (1997) and 

Karypis and Kumar (1998). 

 Our proposal is to limit the complexity of the graph by pruning edges with high 

dissimilarity. The pruning produces a reduced graph that defines a smaller class of 

possible partitions and whose edges join similar areas. In the reduced  graph, further 

removal  of  any  edge  splits  the  graph  into  two unconnected  subgraphs.  To carry 

out this idea, we take our reduced graph to be a minimum spanning tree (MST), defined 

in the next section and shown in Figure 1b. After creating the MST, we get clusters by 

partitioning the tree. Since the optimal solution for partitioning an MST is also an NP-

hard problem, we propose a heuristic procedure for tree partitioning that produces good 

quality clusters at acceptable computational costs. We describe the method in detail 

below.   
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Figure 1.a - Connectivity graph. Figure 1.b - Minimum spanning tree. 

3.2 Definition of an MST 

In this section, we define a minimum spanning tree and discuss the conditions for its 

uniqueness. Consider a set of areal spatial objects O with a set of attributes {A1,..., An}. 

All objects have an attribute vector x = (a1, …, an) where ai is a possible value of the 

attribute Ai. The topology of the set determines a connectivity graph G = (V, L) with a 

set of vertices V and a set of edges L. There is an edge connecting vertices vi  and vj  if 

areas i and j are adjacent (see Figure 1A). We  associate  a  cost  d(i, j)  to  the  edge  (vi, 

vj) by measuring the dissimilarity between objects i and j using their attribute vectors xi  

and xj. The dissimilarity measure is context dependent. When the attributes have 

comparable scales, such as when they are measured in standard deviation units, a usual 

choice is the square of the Euclidean distance between the attribute vectors xi  and xj : 
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 A path from node v1 to node vk is a sequence of nodes (v1, v2, . . . , vk) connected 

by edges (v1, v2), . . . , (vk−1, vk). A graph G is connected if, for any pair of nodes vi and 

vj there is at least one path connecting them. A spatial cluster is a connected subset of 

nodes. Our aim is to partition the graph G into C disjoint spatial clusters G1,. . . GC, 

where their union is G and each one of them is a connected subgraph. This is an NP-

hard optimisation problem whose objective function is based on a measure of within-

cluster homogeneity.  

 A circuit is a path where the first and the final nodes are the same, and a tree is a 

connected graph with no circuits.  A spanning tree T of a graph G is a tree containing all 

n nodes of G, where any two nodes of G are connected by a unique path and the number 

of edges in T  is n − 1.  The removal of any edge from T results into two disconnected 

subgraphs that are spatial clusters candidates. A minimum spanning tree is a spanning 

tree with minimum cost, where the  cost  is  measured as the  sum  of  the  dissimilarities  

over  all  the  edges of the tree. The minimum spanning tree is unique if the costs 

between any node and all its neighbours are distinct (Aho et al., 1983). Should the 

dissimilarity measure use categorical attributes, many edges would have the same cost 

and this could lead to more than one minimum spanning tree.  In spatial applications 

involving socio-economic units, we expect the attributes to be random  variables with 

continuous variation, resulting in a unique minimum spanning tree for the usual choices 

of dissimilarity measures. The algorithm used to build the minimum spanning tree 

makes this point clear. 

(1) 
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3.3 MST generation 

In this section, we describe the algorithm for building the minimum spanning tree. We 

build the MST in a recursive way, based on Prim’s algorithm (Jungnickel, 1999). Given 

a connectivity graph G = (V, L) with a set of vertices (V) and a set of edges (L), the 

algorithm starts with one T1 tree, containing only one vertex. At each iteration, we add a 

new edge and a new vertex to the tree. In iteration n, the Tn tree contains all n vertices of 

V and a subset Lm of L with n-1 edges. The sum of costs associated to edges in Lm is 

minimal. The steps for MST generation are: 

Step 1: Choose any vertex iv  in the complete set of vertices (V), setting 

).},{(1 φik vTT ==  

Step 2: Find the edge of lowest cost (l’) in L that connects any vertex of 

kT to another vertex, jv , belonging to V  but not to kT . 

Step 3: Add jv and l’ to the tree kT , creating a new tree 1+kT . 

Step 4: Repeat Step 2 until all vertices have been included in the tree (Tn). 

Figure 2 shows the procedure for MST construction, showing the first three and the last 

iteration. If more than one edge of lowest cost could be inserted in step 2 of the 

algorithm, the MST would not be unique. In these cases, the MST would be dependent 

of the choice of the vertex iv (Step 1) and of the order of evaluation of the links costs in 

the Step 2. However, as explained above, in the graphs associated to socio-economic 

data, this is unlikely to happen. 
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First iteration: 

Set ),( 111 LVT = , where }{ 11 vV = and 

.1 φ=L  

Find the edge of lowest cost ( fa ll 〈 ). 

Step 3: ⇒2T },{ 312 vvV = e }{2 alL = .  

Step 4: Repeat Step 2. 
 

 

Second iteration: 

Find the edge of lowest cost ( fdcb llll 〈〈〈 ). 

 

Set ⇒3T },,{ 5313 vvvV = and },{3 ba llL = . 

 
 
 

 

Third iteration: 

Find the edge of lowest cost ( fedc llll 〈〈〈 ). 

Set ⇒4T },,,{ 54314 vvvvV =  and 

},,{3 cba lllL = . 

 

 

 

Final Iteration: 

VVn = . 

 

 

 

 

Figure 2 - Construction of the minimum spanning tree. 
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3.4 MST partitioning 

This section describes the partitioning algorithm for breaking up the MST into a set of 

contiguous clusters. Using the MST, we transform the regionalisation problem into a 

tree partitioning problem. To make a partition of n objects in k regions, it is necessary to 

remove k-1 edges from the MST. Each resulting cluster will be a tree, with all vertices 

connected and no circuits (cf. Section 3.2). To make a partition of n objects in k trees, 

we use a hierarchical division strategy. Initially, all objects belong to a single tree. As 

we remove edges from the original MST, a set of disconnected trees appears, and each 

tree in this set has a univocal correspondence with a region. At each iteration, one of the 

trees is split into two by cutting out an edge, until we reach the number of clusters 

previously stipulated. 

 The partitioning algorithm produces a graph G* that contains a set of trees 

T1,…Tn where each tree is connected, but has no common edges or vertices with the 

other trees. At the first iteration, G* has only one tree, which is the MST. At each 

iteration, we examine the G* graph, and take out one edge that will divide the tree Ti 

into two trees Ti
1 and Ti

2. This is the same as splitting a connected region into two 

subregions. We select the edge that brings about the largest increase in the overall 

quality of the resulting clusters. The quality measure is the sum of the intracluster 

square deviations, which needs to be minimised: 

∑
=

=∏
k

i

iSSDQ
0

)(  , 

where:  

• Π is a partition of objects into k trees. 

(2) 
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• Q(Π) is a value associated to the quality of a Π partition. 

• SSDi is the sum of square deviations in region i. 

 The intracluster square deviation SSD is a measure of dispersion of attribute 

values for the objects in a region. Homogeneous regions have small SSDs values. Thus, 

the smaller Q(Π) , the better the partition. The intracluster square deviation SSD is: 

( )∑∑
= =

−=
m

j

n

i

jijk

k

xxSSD
1 1

2
   

where:  

• nk is the number of spatial objects in tree k; 

• ijx  is the j-th attribute of spatial object i; 

• m is the number of attributes considered in analysis; 

• jx  is the average value of j-th attribute for all objects in tree k. 

At each iteration, we have to remove an edge from the graph G* that contains a set of 

trees T1,…Tn.  To do this, we compare the optimum solutions for each of the trees 

T1,…Tn. The solution that best subdivides a tree T is the optimum solution RS* , according 

to an objective function: 

)()(1 TbTaT

T

l SSDSSDSSDSf +−=  , 

where: 

• T

lS  is the arrangement produced by cutting out the edge l from the tree T. 

• Ta and Tb are the two trees produced by diving T after cutting out the edge l. 

(4) 

(3) 
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 At each iteration, we divide the tree Ti  that has the highest value of the objective 

function )( *1
TiSf . The idea is to get the greatest improvement of quality at each step. 

Starting from an MST, we produce the clusters as follows: 

Step 1: Start the graph G* = (T0) where T0 = MST.  

Step 2: Identify the edge that has the highest objective function ToS* . 

Step 3: While #(G*) < k (desired number of clusters), repeat steps 4 and 5. 

Step 4: For all trees in G*, select the tree Ti with the best objective 

function )( *1
TiSf . 

Step 5: Split Ti  into two new subtrees and update G*. 

 Figure 3 pictures the method, showing the first three iterations. In the first 

iteration, there is only one tree in G* (the MST). Then, we select the best objective 

function ToS*  and divide the tree by cutting out the edge matching ToS* . This originates 

two new trees, T1 and T2. By repeating the pruning, we will create an optimal partition 

of the MST. However, the exhaustive comparison of all possible values of the objective 

function is expensive computationally. To speed up the choice, we propose a heuristic 

described in detail in the next section.   
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Iteration 0: G* = MST. We select the edge 

which has the largest objective function. 

Cut out this edge leaving two trees (T1 and 

T2). 

 

Iteration 1: G* = (T1, T2). We compare the 

highest objective functions for T1 and T2. 

We split the tree T1 since 

 

Iteration 2: G* = (T2, T3, T4). We compare 

the highest objective functions for T2, T3 

and T4. We split the tree T3 since  

Figure 3 – Partitioning of the MST  
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3.5 A heuristic for fast tree partitioning 

In this section, we describe a heuristic procedure that speeds up MST partitioning. In 

section 3.4 above, we described the MST partitioning algorithm. We pointed out that, 

for each subtree, we need to find the edge that best subdivides it. At each iteration, the 

algorithm chooses the edge that maximises the objective function (equation 4). 

However, we made no mention of the computational demands involved in choosing the 

best solution. In fact, choosing the best edge to partition each subtree is computationally 

demanding. In the exhaustive case, we would need to examine all the arrangements 

leading to k clusters, and select the edge that leads to the optimal solution. This is an 

NP-hard problem that leads to a combinational explosion. Therefore, this section 

describes an efficient heuristic that approximates the optimal solution at acceptable 

speeds.  

 Taken as an optimisation problem, the search for the edge that best subdivides a 

tree equals the search for the best candidate within a solution space S: 

S = {S1, S2, ..., Sn-1} , 

where the Sl candidate is the removal of edge l from the tree. The algorithm searches for 

an optimum solution by analyzing the neighbours of candidates already visited. We start 

by evaluating the solution Si at the current vertex and the solutions in its neighbourhood. 

Figure 4 shows how we do the expansion by neighbourhood in the solution space. In the 

example, Si has four neighbours: Sj, Sk, Sl and Sm. We evaluate all five solutions, and  

keep track of the solution with the highest objective function f1(Si) (cf. Equation 2). 

(5) 
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Figure 4 - Expansion by neighbourhood of a Si solution. 

 

After finding out the best solution in a given neighbourhood, the next step is to 

select a vertex for expanding our search for even better solutions. Contrary to common 

sense, the proper choice is not necessarily the vertex with the highest value of objective 

function. The main problem with all optimisation techniques is to avoid choosing 

solutions that are local maximums, instead of the desired global maximum, by also 

examining candidates that do not bring an immediate improvement to the objective 

function. To do this, we use a second objective function f2, which selects solutions that 

will divide the tree into two groups that are more homogeneous and balanced. The f2 

function prevents the generation of subtrees that are very uneven in size. Its value for a 

vertex is the smaller of two differences between the SSD value of the current tree and 

SSD values of the two subtrees resulting from cutting out this vertex: 

)](),min[(2 TbTTaT SSDSSDSSDSSDf −−=      . 

A good choice for the starting point can reduce the iterations needed for the search 

strategy to find the optimum solution. Considering the character of hierarchical division 

(6) 
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methods, a satisfactory starting point is a vertex located in the centre of the tree. To find 

out the central vertex, we go over all edges until we identify the edge that best splits the 

tree into two subtrees of similar sizes. Then we continue with the optimisation using the 

two objective functions. The stopping condition (SC) of the exploration strategy is the 

maximum number of iterations without growth in the value of f1. In summary, the 

optimisation heuristic is:  

Step 1: Start from the central vertex, Vc. Insert solutions associated to edges 

incident in Vc in the list of potential solutions, Sp. Set n* = n =0 and f1(S*) = 0. 

Step 2: Evaluate solutions in Sp and store them in the list L.  

Step 3: Update the information on best available solution. Select the solution 

Sj in Sp  with the highest objective function f1(Sj). If  f1(Sj) > f1(S*), then S* = 

Sj and n* = n.  

Step 4: Set n = n + 1. Based on the balancing function f2(Sj), select in the list 

L a solution that will have its neighbourhood expanded, originating a new list 

of potential solutions Sp. 

Step 5: Check the stopping condition (n - n* > SC). If it is false, go back to 

Step 2. Otherwise, choose S* as the best available solution and finish. 

In this procedure, we take: 

• S* is the best interim solution, which on completion will represent the chosen 

solution; 

• n  is the number of iterations; 

• n* is the last iteration where an improvement of the objective function f1 has 

occurred; 
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• Sp is the list of potential solutions in the current iteration; 

• L is the list of candidates that have been evaluated but not yet expanded; 

• Sj is the best solution in the current list of potential solutions Sp. We identify this 

solution after considering all solutions in Sp. 

• SC is the stopping condition for the search, defined as the number of iterations 

without improvements in f1. 

To show the behaviour of the heuristic, we present one experiment where we chose 

a vertex far from the best solution as the starting point. Figure 5 presents a bar chart 

with the values of the f1 objective function. We can note a local maximum, which was 

reached in the seventh iteration. To go beyond it, the search strategy had to insist along 

six iterations before the value of the objective function started to increase again.  We 

found the optimum solution at the fourteenth iteration. In this experiment, the stopping 

condition was eight iterations without improvement in the f1 objective function. 

 

Figure 5 - Values of the objective function during exploration of the solution space 

in the experiment 
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 In the experiment, an MST vertex far from the ideal solution was the seed of the 

exploration procedure. With this choice, we intended to show how the search strategy 

escapes from local maximums. In a real case, we should select a starting point that 

reduces the iterations needed to find an optimum solution. Considering the character of 

hierarchal division methods, a good starting point is a vertex located in the centre of the 

tree. Our tests show that adopting a central vertex as starting point reduces the number 

of evaluations to find the best solution. 

3.6 Performance impact of the heuristic  

This section discusses the performance impact of the proposed heuristic, compared with 

the exhaustive search method. The data set has 415 municipalities in the Brazilian state 

of Bahia, which were grouped in 20 regions based on 3 attributes. These attributes 

measure the percentage of municipality area with 3 land cover types: crops, pasture and 

woods. We used two different values for the stopping condition (SC = 15 and SC = 30). 

Higher values of the stopping condition SC result in the better quality partitions, at a 

higher computational cost. Table 1 presents results, comparing the exhaustive search 

(where no heuristic is applied) with the heuristic using two different stopping 

conditions.  

Table 1-  Performance comparison of MST partitioning methods 
 
 Exhaustive 

search 

Heuristic with 

SC = 30 

Heuristic with 

SC = 15 

Q(ΠΠΠΠ) – partition quality  380.22 380.22 390.88 
Number of evaluations 8060 1818 1121 
Relative performance 

(no optimisation = 100)  

 
100 

 
31 

 
17 

 Table 1 compares the quality of the resulting partitions, the number of 

evaluations and the relative performance. The quality measure is the sum of the 
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intracluster square deviations, which needs to be minimised (equation 2). The 

exhaustive search produces the best quality, at a large performance cost. The heuristic 

procedure with SC=30 also achieves an optimal quality, at 30% of the running time of 

the exhaustive search. The heuristic with SC=15 approximates the optimal quality at 

17% of the running time. The execution time in Table 2 does not include time spent for 

MST generation, which is the same for all three cases. We also provide the number of 

evaluations performed by each method. An evaluation is the set of all operations in one 

loop of the MST partitioning algorithm described in Section 3.4. Each evaluation selects 

one possible edge to be removed.  

4 Applying SKATER: a case study in São Paulo 

In this section, we show how to apply the SKATER algorithm for a case study in city of 

São Paulo, Brazil. The study has two parts: the first study shows results without 

restrictions in the regionalisation procedure. The second part shows how SKATER can 

incorporate restrictions. The data for the study consist of the “Social 

Exclusion/Inclusion Map of the City of São Paulo” (Câmara et al., 2004). Based on data 

from the 1991 census and the legal division of São Paulo into 96 districts, the social 

exclusion/inclusion map has four socio-economic indexes: income distribution, quality 

of life, human development and gender equality. The indexes are normalised in a 

continuous scale of [-1, 1].  

 The first study consists in getting eight homogenous regions for São Paulo, 

starting from the 96 districts and using the four socio-economic indicators of the Social 

Exclusion/Inclusion Map. We used the SKATER algorithm as described in the previous 

section. Figure 1.a shows the districts map and the connectivity graph and Figure 1.b 
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shows the MST. The tree partitioning requires cutting out seven edges (Figure 6.a). The 

result of the unrestricted regionalisation (shown in Figure 6.a) has great variations in the 

number of districts of each region. The northeastern region has one district only and has 

12,408 inhabitants, which is 0.12% of total population in the municipality. The bigger 

region next to it has 36 districts with a population of 3,533,082 inhabitants, which is 

36.6% of total population. For many applications, this unbalance is not convenient. 

Therefore, we need to add restrictions to the regionalisation procedure. In studies 

involving rare events, for example, it may be necessary to establish minimum values for 

the population at risk in the resulting clusters, for resulting rates to be representative. 

  

Figure 6.a - Unrestricted regionalisation. Figure 6.b -  Population-restricted 
regionalisation 

  A simple way to add restrictions to SKATER is to set upper and lower limits for 

certain attributes of a region. If a solution is off-limits, it will be considered invalid. 

Thus, the search strategy includes both a condition of homogeneity of regions and a 
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condition for minimum or maximum value of attributes in a region. We performed a 

second regionalisation procedure with a constraint of a minimum population of 500,000 

inhabitants for a region. The result is shown in Figure 6.b. Regions are more balanced in 

population, which now varies from 651,513 to 2,543,743 inhabitants. 

5 Comparison between SKATER and AZP 

In this section, we compare the SKATER and the AZP algorithms. We selected AZP 

since it is a well-known algorithm and has been used for regionalisation of the UK 

Census (Openshaw and Rao, 1995, Openshaw and Alvanides, 2001, Alvanides et al., 

2002, Martin, 2003). The AZP algorithm is also a constrained classification procedure 

of the same type as SKATER. We recognise there is no decisive way to compare two 

classification methods, because performance is dependent of characteristics of the data 

set used in the study. Nevertheless, we can detect some trends with well-selected 

experiments. We compared SKATER with AZP in a series of experiments with 

different arrangements of number of objects, number of attributes, and resulting regions. 

The grouping condition used by the two algorithms in the two experiments was the 

internal homogeneity of the regions. We used three data sets in the comparison: 96 

districts of the municipality of São Paulo; b) 415 municipalities of the Brazilian state of 

Bahia state; and c) 853 municipalities of the state of Minas Gerais. The attributes used 

in the experiments were socio-economic variables.  

 We implemented the AZP as described in Openshaw and Rao (1995).  We used 

the same stopping condition for both methods in all experiments (SC = 10).  In our tests, 

the AZP method has shown to be sensitive to the choice of the initial partition, changing 

the quality of resulting partitions in a significant way. This fact suggests that this 
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method has a tendency to converge to local maximums. This problem has been pointed 

out in Openshaw and Rao (1995).  Following their suggestion, we ran the AZP method 

5 times for each experiment, using different initial partitions. We took the best value of 

the 5 runs as the partition quality for the AZP method. 

 We compared SKATER and AZP for processing speed and quality of the resulting 

partitions. We tested three cases: different number of objects, different number of 

attributes, and different number of resulting regions. The first experiment used the three 

data sets that have a different number of objects (96 for São Paulo, 415 for Bahia, and 

845 for Minas Gerais). The number of resulting clusters and the number of attributes 

were the same (20 clusters and 3 attributes). The results are shown in Table 2. The 

second experiment used the same data set (415 municipalities of state of Bahia), the 

same number of resulting regions (20) and varied the number of attributes (3, 6, and 9 

attributes). The results are shown in Table 3. The third experiment used the same data 

set (415 municipalities of Bahia state), the same number of number of attributes (3) and 

varied the number of resulting clusters (20, 40, 60). The results are shown in Table 4. 

 

Table  2 -  Comparison of AZP and SKATER for different numbers of objects    

Data sets: (a) 96 districts of the city of São Paulo; (b)  415 municipalities of the state of Bahia; (c) 
845 municipalities of the state of Minas Gerais. All tests used 3 attributtes and 20 regions. 

       

num. Objects Skater AZP Q(P)% time% 

  Q(P) Time (s) Q(P) Time (s)     

96 5.046 10 7.0584 92.2 0.715 0.108 

415 403.32 216 408.072 2588.6 0.988 0.083 

853 3.141 889 3.1874 9206 0.985 0.097 
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Table  3-  Comparison of AZP and SKATER for different numbers of attributes    

Data set: 415 municipalities of the state of Bahia with 20 clusters     

       

num. attributes Skater AZP Q(P)% time% 

  Q(P) Time (s) Q(P) Time (s)     

3 403.3 216 408.1 2588.6 0.988 0.083 

6 806.6 225 869.8 3904.4 0.927 0.058 

9 1210.0 234 1324.4 6011.0 0.914 0.039 

 

Table  4 -  Comparison of AZP and SKATER for different numbers of clusters    

Data set: 415 municipalities of the state of Bahia with 3 attributes  

       

num. Clusters Skater AZP Q(P)% time% 

  Q(P) Time (s) Q(P) Time (s)     

20 403.3 216 408.1 2588.6 0.988 0.083 

40 245.7 256 314.0 4316 0.782 0.059 

60 172.9 274 254.9 7988 0.678 0.034 

 The criterion for quality comparison was the homogeneity of the resulting 

regions, measured by Equation 2 (see above), where a smaller value is better. SKATER 

was superior to AZP in all tests. The relation among the partition quality values 

[ )(/)( SKATERAZP QQ ΠΠ ] varied between 0.678 a 0.988, and the average value was 0.856.  

The processing speed of SKATER was much superior to AZP, ranging from to a gain of 

10 to almost 30 times. The relative gain in processing speed of SKATER over AZP 

improved as the number of attributes increased (Table 3). The relative advantage in 

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

25



 26 

performance of SKATER over AZP also increased with the number of resulting clusters 

(Table 4).  

6 Conclusion 

In this paper we present SKATER (Spatial ‘K’luster Analysis by Tree Edge Removal), 

an efficient method for regionalisation of socio-economic units represented as spatial 

objects, which combines the use of a minimum spanning tree with combinational 

optimisation techniques. The main algorithm has a fast convergence towards a best-cost 

solution. The heuristic optimisation techniques used in the tree partitioning step allow 

significant speedup without quality degradation. In comparison with the well-known 

AZP regionalisation method, SKATER produces good quality results and is 

significantly faster. The algorithm also allows including restrictions in the 

regionalisation procedure. In cases where homogeneity of regions is an important need, 

it produces a good quality partition in a short time. We consider SKATER to be a good 

choice for regionalisation, especially when applied to large data sets.  The algorithm is 

available as an open source software, as part of the open source GIS library TerraLib 

(http://www.terralib.org), and is included in the TerraView visualisation and analysis 

GIS (http://www.terralib.org/terraview). 
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