
 1

International Journal of Geographical Information Science, in press, 2006

Efficient regionalisation techniques for socio-economic geographical

units using minimum spanning trees

RENATO MARTINS ASSUNÇÃO
1

MARCOS CORRÊA NEVES
2

GILBERTO CÂMARA
3*

CORINA DA COSTA FREITAS
3

1Federal University of Minas Gerais (UFMG),

Department of Statistics,

Av. Antônio Carlos, 6627 - Pampulha

31270-901, Belo Horizonte, MG, Brazil

Tel: (031) 3499 5920 , Fax: (031) 3499 5924

assuncao@est.ufmg.br

2Brazilian Agricultural Research Corporation (EMBRAPA),

Naticonal Centre for Environmental Monitoring (CNPMA),

P.O. Box 69, 13820-000 Jaguariúna, SP, Brazil

Phone: +55-19- 38678700

marcos@cnpma.embrapa.br

3National Institute of Space Research (INPE),

Image Processing Division (DPI),

P.O.Box 515, 12227-001, São José dos Campos (SP), Brazil.

Phone: +55-12-39456499 Fax: +55-12-39456460

 gilberto@dpi.inpe.br; corina@dpi.inpe.br

* Corresponding author.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

1

 2

Abstract

Regionalisation is a classification procedure applied to spatial objects with an areal

representation, which groups them into homogeneous contiguous regions. This paper

presents an efficient method for regionalisation. The first step creates a connectivity

graph that captures the neighbourhood relationship between the spatial objects. The cost

of each edge in the graph is inversely proportional to the similarity between the regions

it joins. We summarise the neighbourhood structure by a minimum spanning tree

(MST), which is a connected tree with no circuits. We partition the MST by successive

removal of edges that link dissimilar regions. The result is the division of the spatial

objects into connected regions that have maximum internal homogeneity. Since the

MST partitioning problem is NP-hard, we propose a heuristic to speed up the tree

partitioning significantly. Our results show that our proposed method combines

performance and quality and it is a good alternative to other regionalisation methods

found in the literature.

Keywords: regionalisation, constrained clustering, graph partitioning, optimisation,

zone design, census data analysis.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

2

 3

1 Introduction

In a significant number of geographical applications, such as socio-economic, health

and census data analysis, data is organised as a large set of spatial objects represented

by areas. Examples of these spatial objects include census tracts, health districts and

municipalities. In many circumstances, it is desirable to group a large number of spatial

objects into a smaller number of subsets of objects, which are internally homogeneous

and occupy contiguous regions in space. This procedure is called regionalisation, which

results in new areas (called regions) with a more comprehensive geographic extent. The

idea of regionalisation applied to socio-economic units (also called zone design) was

pioneered by Openshaw (1977). Grouping a set of homogeneous areal units to compose

a larger region can be useful for sampling procedures (Martin, 1998). Regionalisation is

especially valuable for dealing with large data sets of areal units, removing fine scale

variations and preserving relevant patterns. If properly carried out, it can produce

entities that are more useful for spatial pattern discovery than the original data set

(Openshaw and Alvanides, 1999).

 There are three types of regionalisation techniques proposed in the literature.

The first one is a two-step procedure that applies a nonspatial clustering algorithm,

followed by a neighbourhood-preserving classification. The second one uses the

geographical coordinates of the location as extra attributes in the clustering procedure

(Haining et al., 2000). In these two techniques, the clustering procedure is not

constrained by the neighbourhood relationship between the areal units, being introduced

either as a second step in the method or as an indirect constraint when using coordinates

as attributes. Therefore, the resulting clusters may not properly depict the inherent

spatial patterns of the data set (Openshaw and Wymer, 1995). In the third approach, the

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

3

 4

neighbourhood relationship between the spatial objects is used explicitly in the

optimisation procedure. The best-known approach to regionalisation of socio-economic

units based on the latter approach is the AZP algorithm (Openshaw and Rao, 1995).

While the original AZP algorithm used ‘Monte Carlo’ optimisation, Alvanides et al.

(2002) developed an alternative implementation of AZP using simulated annealing.

 In this paper, we follow the third approach, aiming for an efficient

regionalisation procedure. We represent the objects by a graph, and our proposed

algorithm prunes the graph to get contiguous clusters. The advantage of graph-based

techniques is to make spatial adjacency an essential part of the clustering procedure.

The challenge for graph-based regionalisation techniques is twofold: to bring down the

computational cost of the optimisation procedure and to reduce the sensitiveness on the

choice of the initial position for tree partitioning. To address these questions, we present

a technique for graph-based regionalisation in two steps. In the first step, we create a

minimum spanning tree (MST) from the neighbourhood graph. This MST represents a

statistical summary of the neighbourhood graph. Then we employ a heuristic to prune

the MST and get a set of spatial clusters. In the paper, Section 2 presents a review of the

literature. Section 3 describes the proposed method, showing how to build the MST and

describing how to partition the tree efficiently. In Section 4 we apply the method on a

case study on the city of São Paulo. Section 5 presents a performance analysis in

comparison with AZP method.

2 Regionalisation approaches: a review of the literature

There are three main approaches to regionalisation. The first approach is a two-step

algorithm. In the first step, a conventional clustering procedure is performed using

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

4

 5

nonspatial attributes. In the second step, objects in the same cluster with no spatial

contact will be split, forming different regions. This solution enables a quick evaluation

of spatial dependence among objects. However, this method does not capture the spatial

adjacency condition directly, resulting in limited capacity to capture spatial patterns.

Another inconvenience of this approach is the lack of control on the resulting regions.

Data sets with low spatial autocorrelation will result in more regions then desirable

(Haining et al., 2000).

The second approach used in regionalisation considers both the geographical

position and nonspatial features of those objects. The clustering algorithm uses the

coordinates of the area’s centroid as extra attributes, and measures similarity between

objects as a weighted mean of nearness in the feature space and nearness in the

geographical space. To work well, the algorithm needs a choice of weights that

produces connected clusters. The analyst has to perform the procedure several times,

trying different weights until she gets connected regions. This weighted means approach

is used by the regionalisation method of the SAGE system (Spatial Analysis in a GIS

Environment) (Haining et al., 2000). SAGE employs an iterative k-means clustering

procedure whose objective function has three terms: a) homogeneity: similarity in the

feature space; b) compactness: nearness in the geographical space, based on centroid

coordinates; c) equality: similarity of values of a selected attribute in the resulting

clusters (population, for example). SAGE employs the equality measure to produce

balanced regions for a given attribute, to allow proper comparisons across resulting

regions. Typical control attributes are total population or population at risk for a given

disease. Martin (1998) uses a similar approach to produce output areas for the analysis

of UK census data.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

5

 6

 Openshaw et al.(1998) criticise the weighed means regionalisation algorithm,

since the three conditions (homogeneity, compactness, and equality) are not strictly

comparable. According to them, a better and simpler strategy would be to select

homogeneity as the sole basis for the objective function. Compactness and equality are

constraints, and should not be combined with homogeneity measures. Instead,

compactness and equality should be handled by defining their expected values

(example: minimum population within a region).

 The third approach includes algorithms that use adjacency relations as constraints

to the clustering procedure. The AZP (Automatic Zoning Procedure), proposed by

Openshaw (1995) is an example. This method starts with performing a random partition

of n objects in k regions. Then, through trial and error, it seeks to reallocate objects over

regions to minimise an objective function, subject to the adjacency constraint.

Improvements to AZP led to the ZDES automatic zoning system (Alvanides et al.,

2002). Since the AZP algorithm is computationally expensive, it is useful to consider

other techniques that use the adjacency relations of the objects and are computationally

efficient. This interest leads to the authors’ proposal, described in the next section.

3 Regionalisation through graph partitioning

3.1 General strategy

In this section, we describe our strategy for transforming the regionalisation problem

into a graph partitioning problem. We refer to the algorithm as SKATER (Spatial

‘K’luster Analysis by Tree Edge Removal). We use a connectivity graph to capture the

adjacency relations between objects, as shown in Figure 1a. In the graph, each object is

associated to a vertex and linked by edges to its neighbours. The cost of each edge is

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

6

 7

proportional to the dissimilarity between the objects it joins, where we measure

dissimilarity using the values of the attributes of the neighbouring pair. By cutting the

graph at suitable places, we get connected clusters. In this way, we transform the

regionalisation problem in an optimal graph partitioning problem. Since optimal graph

partitioning is an NP-hard problem, we need a heuristic applicable to large spatial data

sets to achieve suboptimal solutions in acceptable time. For a general discussion on

heuristics for graph partitioning for other types of application, see Even at al (1997) and

Karypis and Kumar (1998).

 Our proposal is to limit the complexity of the graph by pruning edges with high

dissimilarity. The pruning produces a reduced graph that defines a smaller class of

possible partitions and whose edges join similar areas. In the reduced graph, further

removal of any edge splits the graph into two unconnected subgraphs. To carry

out this idea, we take our reduced graph to be a minimum spanning tree (MST), defined

in the next section and shown in Figure 1b. After creating the MST, we get clusters by

partitioning the tree. Since the optimal solution for partitioning an MST is also an NP-

hard problem, we propose a heuristic procedure for tree partitioning that produces good

quality clusters at acceptable computational costs. We describe the method in detail

below.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

7

 8

Figure 1.a - Connectivity graph. Figure 1.b - Minimum spanning tree.

3.2 Definition of an MST

In this section, we define a minimum spanning tree and discuss the conditions for its

uniqueness. Consider a set of areal spatial objects O with a set of attributes {A1,..., An}.

All objects have an attribute vector x = (a1, …, an) where ai is a possible value of the

attribute Ai. The topology of the set determines a connectivity graph G = (V, L) with a

set of vertices V and a set of edges L. There is an edge connecting vertices vi and vj if

areas i and j are adjacent (see Figure 1A). We associate a cost d(i, j) to the edge (vi,

vj) by measuring the dissimilarity between objects i and j using their attribute vectors xi

and xj. The dissimilarity measure is context dependent. When the attributes have

comparable scales, such as when they are measured in standard deviation units, a usual

choice is the square of the Euclidean distance between the attribute vectors xi and xj :

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

8

 9

∑
=

−==
n

l

jlilji xxdjid
1

2)(),(),(xx

 A path from node v1 to node vk is a sequence of nodes (v1, v2, . . . , vk) connected

by edges (v1, v2), . . . , (vk−1, vk). A graph G is connected if, for any pair of nodes vi and

vj there is at least one path connecting them. A spatial cluster is a connected subset of

nodes. Our aim is to partition the graph G into C disjoint spatial clusters G1,. . . GC,

where their union is G and each one of them is a connected subgraph. This is an NP-

hard optimisation problem whose objective function is based on a measure of within-

cluster homogeneity.

 A circuit is a path where the first and the final nodes are the same, and a tree is a

connected graph with no circuits. A spanning tree T of a graph G is a tree containing all

n nodes of G, where any two nodes of G are connected by a unique path and the number

of edges in T is n − 1. The removal of any edge from T results into two disconnected

subgraphs that are spatial clusters candidates. A minimum spanning tree is a spanning

tree with minimum cost, where the cost is measured as the sum of the dissimilarities

over all the edges of the tree. The minimum spanning tree is unique if the costs

between any node and all its neighbours are distinct (Aho et al., 1983). Should the

dissimilarity measure use categorical attributes, many edges would have the same cost

and this could lead to more than one minimum spanning tree. In spatial applications

involving socio-economic units, we expect the attributes to be random variables with

continuous variation, resulting in a unique minimum spanning tree for the usual choices

of dissimilarity measures. The algorithm used to build the minimum spanning tree

makes this point clear.

(1)

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

9

 10

3.3 MST generation

In this section, we describe the algorithm for building the minimum spanning tree. We

build the MST in a recursive way, based on Prim’s algorithm (Jungnickel, 1999). Given

a connectivity graph G = (V, L) with a set of vertices (V) and a set of edges (L), the

algorithm starts with one T1 tree, containing only one vertex. At each iteration, we add a

new edge and a new vertex to the tree. In iteration n, the Tn tree contains all n vertices of

V and a subset Lm of L with n-1 edges. The sum of costs associated to edges in Lm is

minimal. The steps for MST generation are:

Step 1: Choose any vertex iv in the complete set of vertices (V), setting

).},{(1 φik vTT ==

Step 2: Find the edge of lowest cost (l’) in L that connects any vertex of

kT to another vertex, jv , belonging to V but not to kT .

Step 3: Add jv and l’ to the tree kT , creating a new tree 1+kT .

Step 4: Repeat Step 2 until all vertices have been included in the tree (Tn).

Figure 2 shows the procedure for MST construction, showing the first three and the last

iteration. If more than one edge of lowest cost could be inserted in step 2 of the

algorithm, the MST would not be unique. In these cases, the MST would be dependent

of the choice of the vertex iv (Step 1) and of the order of evaluation of the links costs in

the Step 2. However, as explained above, in the graphs associated to socio-economic

data, this is unlikely to happen.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

10

 11

First iteration:

Set),(111 LVT = , where }{ 11 vV = and

.1 φ=L

Find the edge of lowest cost (fa ll 〈).

Step 3: ⇒2T },{ 312 vvV = e }{2 alL = .

Step 4: Repeat Step 2.

Second iteration:

Find the edge of lowest cost (fdcb llll 〈〈〈).

Set ⇒3T },,{ 5313 vvvV = and },{3 ba llL = .

Third iteration:

Find the edge of lowest cost (fedc llll 〈〈〈).

Set ⇒4T },,,{ 54314 vvvvV = and

},,{3 cba lllL = .

Final Iteration:

VVn = .

Figure 2 - Construction of the minimum spanning tree.

v3

v1

la
lf v2

v3

v1

la
lf

v2

v5

lb

ld

lc

v3

v1

la
lf v2

v5

lb

ld

lc

le

v4

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

11

 12

3.4 MST partitioning

This section describes the partitioning algorithm for breaking up the MST into a set of

contiguous clusters. Using the MST, we transform the regionalisation problem into a

tree partitioning problem. To make a partition of n objects in k regions, it is necessary to

remove k-1 edges from the MST. Each resulting cluster will be a tree, with all vertices

connected and no circuits (cf. Section 3.2). To make a partition of n objects in k trees,

we use a hierarchical division strategy. Initially, all objects belong to a single tree. As

we remove edges from the original MST, a set of disconnected trees appears, and each

tree in this set has a univocal correspondence with a region. At each iteration, one of the

trees is split into two by cutting out an edge, until we reach the number of clusters

previously stipulated.

 The partitioning algorithm produces a graph G* that contains a set of trees

T1,…Tn where each tree is connected, but has no common edges or vertices with the

other trees. At the first iteration, G* has only one tree, which is the MST. At each

iteration, we examine the G* graph, and take out one edge that will divide the tree Ti

into two trees Ti
1 and Ti

2. This is the same as splitting a connected region into two

subregions. We select the edge that brings about the largest increase in the overall

quality of the resulting clusters. The quality measure is the sum of the intracluster

square deviations, which needs to be minimised:

∑
=

=∏
k

i

iSSDQ
0

)(,

where:

• Π is a partition of objects into k trees.

(2)

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

12

 13

• Q(Π) is a value associated to the quality of a Π partition.

• SSDi is the sum of square deviations in region i.

 The intracluster square deviation SSD is a measure of dispersion of attribute

values for the objects in a region. Homogeneous regions have small SSDs values. Thus,

the smaller Q(Π) , the better the partition. The intracluster square deviation SSD is:

()∑∑
= =

−=
m

j

n

i

jijk

k

xxSSD
1 1

2

where:

• nk is the number of spatial objects in tree k;

• ijx is the j-th attribute of spatial object i;

• m is the number of attributes considered in analysis;

• jx is the average value of j-th attribute for all objects in tree k.

At each iteration, we have to remove an edge from the graph G* that contains a set of

trees T1,…Tn. To do this, we compare the optimum solutions for each of the trees

T1,…Tn. The solution that best subdivides a tree T is the optimum solution RS* , according

to an objective function:

)()(1 TbTaT

T

l SSDSSDSSDSf +−= ,

where:

• T

lS is the arrangement produced by cutting out the edge l from the tree T.

• Ta and Tb are the two trees produced by diving T after cutting out the edge l.

(4)

(3)

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

13

 14

 At each iteration, we divide the tree Ti that has the highest value of the objective

function)(*1
TiSf . The idea is to get the greatest improvement of quality at each step.

Starting from an MST, we produce the clusters as follows:

Step 1: Start the graph G* = (T0) where T0 = MST.

Step 2: Identify the edge that has the highest objective function ToS* .

Step 3: While #(G*) < k (desired number of clusters), repeat steps 4 and 5.

Step 4: For all trees in G*, select the tree Ti with the best objective

function)(*1
TiSf .

Step 5: Split Ti into two new subtrees and update G*.

 Figure 3 pictures the method, showing the first three iterations. In the first

iteration, there is only one tree in G* (the MST). Then, we select the best objective

function ToS* and divide the tree by cutting out the edge matching ToS* . This originates

two new trees, T1 and T2. By repeating the pruning, we will create an optimal partition

of the MST. However, the exhaustive comparison of all possible values of the objective

function is expensive computationally. To speed up the choice, we propose a heuristic

described in detail in the next section.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

14

 15

Iteration 0: G* = MST. We select the edge

which has the largest objective function.

Cut out this edge leaving two trees (T1 and

T2).

Iteration 1: G* = (T1, T2). We compare the

highest objective functions for T1 and T2.

We split the tree T1 since

Iteration 2: G* = (T2, T3, T4). We compare

the highest objective functions for T2, T3

and T4. We split the tree T3 since

Figure 3 – Partitioning of the MST

)()(12
*1*1
TT

SfSf ≤

)()()(342
*1*1*1
TTT

SfSfSf ≤≤

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

15

 16

3.5 A heuristic for fast tree partitioning

In this section, we describe a heuristic procedure that speeds up MST partitioning. In

section 3.4 above, we described the MST partitioning algorithm. We pointed out that,

for each subtree, we need to find the edge that best subdivides it. At each iteration, the

algorithm chooses the edge that maximises the objective function (equation 4).

However, we made no mention of the computational demands involved in choosing the

best solution. In fact, choosing the best edge to partition each subtree is computationally

demanding. In the exhaustive case, we would need to examine all the arrangements

leading to k clusters, and select the edge that leads to the optimal solution. This is an

NP-hard problem that leads to a combinational explosion. Therefore, this section

describes an efficient heuristic that approximates the optimal solution at acceptable

speeds.

 Taken as an optimisation problem, the search for the edge that best subdivides a

tree equals the search for the best candidate within a solution space S:

S = {S1, S2, ..., Sn-1} ,

where the Sl candidate is the removal of edge l from the tree. The algorithm searches for

an optimum solution by analyzing the neighbours of candidates already visited. We start

by evaluating the solution Si at the current vertex and the solutions in its neighbourhood.

Figure 4 shows how we do the expansion by neighbourhood in the solution space. In the

example, Si has four neighbours: Sj, Sk, Sl and Sm. We evaluate all five solutions, and

keep track of the solution with the highest objective function f1(Si) (cf. Equation 2).

(5)

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

16

 17

Figure 4 - Expansion by neighbourhood of a Si solution.

After finding out the best solution in a given neighbourhood, the next step is to

select a vertex for expanding our search for even better solutions. Contrary to common

sense, the proper choice is not necessarily the vertex with the highest value of objective

function. The main problem with all optimisation techniques is to avoid choosing

solutions that are local maximums, instead of the desired global maximum, by also

examining candidates that do not bring an immediate improvement to the objective

function. To do this, we use a second objective function f2, which selects solutions that

will divide the tree into two groups that are more homogeneous and balanced. The f2

function prevents the generation of subtrees that are very uneven in size. Its value for a

vertex is the smaller of two differences between the SSD value of the current tree and

SSD values of the two subtrees resulting from cutting out this vertex:

)](),min[(2 TbTTaT SSDSSDSSDSSDf −−= .

A good choice for the starting point can reduce the iterations needed for the search

strategy to find the optimum solution. Considering the character of hierarchical division

(6)

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

17

 18

methods, a satisfactory starting point is a vertex located in the centre of the tree. To find

out the central vertex, we go over all edges until we identify the edge that best splits the

tree into two subtrees of similar sizes. Then we continue with the optimisation using the

two objective functions. The stopping condition (SC) of the exploration strategy is the

maximum number of iterations without growth in the value of f1. In summary, the

optimisation heuristic is:

Step 1: Start from the central vertex, Vc. Insert solutions associated to edges

incident in Vc in the list of potential solutions, Sp. Set n* = n =0 and f1(S*) = 0.

Step 2: Evaluate solutions in Sp and store them in the list L.

Step 3: Update the information on best available solution. Select the solution

Sj in Sp with the highest objective function f1(Sj). If f1(Sj) > f1(S*), then S* =

Sj and n* = n.

Step 4: Set n = n + 1. Based on the balancing function f2(Sj), select in the list

L a solution that will have its neighbourhood expanded, originating a new list

of potential solutions Sp.

Step 5: Check the stopping condition (n - n* > SC). If it is false, go back to

Step 2. Otherwise, choose S* as the best available solution and finish.

In this procedure, we take:

• S* is the best interim solution, which on completion will represent the chosen

solution;

• n is the number of iterations;

• n* is the last iteration where an improvement of the objective function f1 has

occurred;

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

18

 19

• Sp is the list of potential solutions in the current iteration;

• L is the list of candidates that have been evaluated but not yet expanded;

• Sj is the best solution in the current list of potential solutions Sp. We identify this

solution after considering all solutions in Sp.

• SC is the stopping condition for the search, defined as the number of iterations

without improvements in f1.

To show the behaviour of the heuristic, we present one experiment where we chose

a vertex far from the best solution as the starting point. Figure 5 presents a bar chart

with the values of the f1 objective function. We can note a local maximum, which was

reached in the seventh iteration. To go beyond it, the search strategy had to insist along

six iterations before the value of the objective function started to increase again. We

found the optimum solution at the fourteenth iteration. In this experiment, the stopping

condition was eight iterations without improvement in the f1 objective function.

Figure 5 - Values of the objective function during exploration of the solution space

in the experiment

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

19

 20

 In the experiment, an MST vertex far from the ideal solution was the seed of the

exploration procedure. With this choice, we intended to show how the search strategy

escapes from local maximums. In a real case, we should select a starting point that

reduces the iterations needed to find an optimum solution. Considering the character of

hierarchal division methods, a good starting point is a vertex located in the centre of the

tree. Our tests show that adopting a central vertex as starting point reduces the number

of evaluations to find the best solution.

3.6 Performance impact of the heuristic

This section discusses the performance impact of the proposed heuristic, compared with

the exhaustive search method. The data set has 415 municipalities in the Brazilian state

of Bahia, which were grouped in 20 regions based on 3 attributes. These attributes

measure the percentage of municipality area with 3 land cover types: crops, pasture and

woods. We used two different values for the stopping condition (SC = 15 and SC = 30).

Higher values of the stopping condition SC result in the better quality partitions, at a

higher computational cost. Table 1 presents results, comparing the exhaustive search

(where no heuristic is applied) with the heuristic using two different stopping

conditions.

Table 1- Performance comparison of MST partitioning methods

 Exhaustive

search

Heuristic with

SC = 30

Heuristic with

SC = 15

Q(ΠΠΠΠ) – partition quality 380.22 380.22 390.88
Number of evaluations 8060 1818 1121
Relative performance

(no optimisation = 100)

100

31

17

 Table 1 compares the quality of the resulting partitions, the number of

evaluations and the relative performance. The quality measure is the sum of the

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

20

 21

intracluster square deviations, which needs to be minimised (equation 2). The

exhaustive search produces the best quality, at a large performance cost. The heuristic

procedure with SC=30 also achieves an optimal quality, at 30% of the running time of

the exhaustive search. The heuristic with SC=15 approximates the optimal quality at

17% of the running time. The execution time in Table 2 does not include time spent for

MST generation, which is the same for all three cases. We also provide the number of

evaluations performed by each method. An evaluation is the set of all operations in one

loop of the MST partitioning algorithm described in Section 3.4. Each evaluation selects

one possible edge to be removed.

4 Applying SKATER: a case study in São Paulo

In this section, we show how to apply the SKATER algorithm for a case study in city of

São Paulo, Brazil. The study has two parts: the first study shows results without

restrictions in the regionalisation procedure. The second part shows how SKATER can

incorporate restrictions. The data for the study consist of the “Social

Exclusion/Inclusion Map of the City of São Paulo” (Câmara et al., 2004). Based on data

from the 1991 census and the legal division of São Paulo into 96 districts, the social

exclusion/inclusion map has four socio-economic indexes: income distribution, quality

of life, human development and gender equality. The indexes are normalised in a

continuous scale of [-1, 1].

 The first study consists in getting eight homogenous regions for São Paulo,

starting from the 96 districts and using the four socio-economic indicators of the Social

Exclusion/Inclusion Map. We used the SKATER algorithm as described in the previous

section. Figure 1.a shows the districts map and the connectivity graph and Figure 1.b

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

21

 22

shows the MST. The tree partitioning requires cutting out seven edges (Figure 6.a). The

result of the unrestricted regionalisation (shown in Figure 6.a) has great variations in the

number of districts of each region. The northeastern region has one district only and has

12,408 inhabitants, which is 0.12% of total population in the municipality. The bigger

region next to it has 36 districts with a population of 3,533,082 inhabitants, which is

36.6% of total population. For many applications, this unbalance is not convenient.

Therefore, we need to add restrictions to the regionalisation procedure. In studies

involving rare events, for example, it may be necessary to establish minimum values for

the population at risk in the resulting clusters, for resulting rates to be representative.

Figure 6.a - Unrestricted regionalisation. Figure 6.b - Population-restricted
regionalisation

 A simple way to add restrictions to SKATER is to set upper and lower limits for

certain attributes of a region. If a solution is off-limits, it will be considered invalid.

Thus, the search strategy includes both a condition of homogeneity of regions and a

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

22

 23

condition for minimum or maximum value of attributes in a region. We performed a

second regionalisation procedure with a constraint of a minimum population of 500,000

inhabitants for a region. The result is shown in Figure 6.b. Regions are more balanced in

population, which now varies from 651,513 to 2,543,743 inhabitants.

5 Comparison between SKATER and AZP

In this section, we compare the SKATER and the AZP algorithms. We selected AZP

since it is a well-known algorithm and has been used for regionalisation of the UK

Census (Openshaw and Rao, 1995, Openshaw and Alvanides, 2001, Alvanides et al.,

2002, Martin, 2003). The AZP algorithm is also a constrained classification procedure

of the same type as SKATER. We recognise there is no decisive way to compare two

classification methods, because performance is dependent of characteristics of the data

set used in the study. Nevertheless, we can detect some trends with well-selected

experiments. We compared SKATER with AZP in a series of experiments with

different arrangements of number of objects, number of attributes, and resulting regions.

The grouping condition used by the two algorithms in the two experiments was the

internal homogeneity of the regions. We used three data sets in the comparison: 96

districts of the municipality of São Paulo; b) 415 municipalities of the Brazilian state of

Bahia state; and c) 853 municipalities of the state of Minas Gerais. The attributes used

in the experiments were socio-economic variables.

 We implemented the AZP as described in Openshaw and Rao (1995). We used

the same stopping condition for both methods in all experiments (SC = 10). In our tests,

the AZP method has shown to be sensitive to the choice of the initial partition, changing

the quality of resulting partitions in a significant way. This fact suggests that this

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

23

 24

method has a tendency to converge to local maximums. This problem has been pointed

out in Openshaw and Rao (1995). Following their suggestion, we ran the AZP method

5 times for each experiment, using different initial partitions. We took the best value of

the 5 runs as the partition quality for the AZP method.

 We compared SKATER and AZP for processing speed and quality of the resulting

partitions. We tested three cases: different number of objects, different number of

attributes, and different number of resulting regions. The first experiment used the three

data sets that have a different number of objects (96 for São Paulo, 415 for Bahia, and

845 for Minas Gerais). The number of resulting clusters and the number of attributes

were the same (20 clusters and 3 attributes). The results are shown in Table 2. The

second experiment used the same data set (415 municipalities of state of Bahia), the

same number of resulting regions (20) and varied the number of attributes (3, 6, and 9

attributes). The results are shown in Table 3. The third experiment used the same data

set (415 municipalities of Bahia state), the same number of number of attributes (3) and

varied the number of resulting clusters (20, 40, 60). The results are shown in Table 4.

Table 2 - Comparison of AZP and SKATER for different numbers of objects

Data sets: (a) 96 districts of the city of São Paulo; (b) 415 municipalities of the state of Bahia; (c)
845 municipalities of the state of Minas Gerais. All tests used 3 attributtes and 20 regions.

num. Objects Skater AZP Q(P)% time%

 Q(P) Time (s) Q(P) Time (s)

96 5.046 10 7.0584 92.2 0.715 0.108

415 403.32 216 408.072 2588.6 0.988 0.083

853 3.141 889 3.1874 9206 0.985 0.097

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

24

 25

Table 3- Comparison of AZP and SKATER for different numbers of attributes

Data set: 415 municipalities of the state of Bahia with 20 clusters

num. attributes Skater AZP Q(P)% time%

 Q(P) Time (s) Q(P) Time (s)

3 403.3 216 408.1 2588.6 0.988 0.083

6 806.6 225 869.8 3904.4 0.927 0.058

9 1210.0 234 1324.4 6011.0 0.914 0.039

Table 4 - Comparison of AZP and SKATER for different numbers of clusters

Data set: 415 municipalities of the state of Bahia with 3 attributes

num. Clusters Skater AZP Q(P)% time%

 Q(P) Time (s) Q(P) Time (s)

20 403.3 216 408.1 2588.6 0.988 0.083

40 245.7 256 314.0 4316 0.782 0.059

60 172.9 274 254.9 7988 0.678 0.034

 The criterion for quality comparison was the homogeneity of the resulting

regions, measured by Equation 2 (see above), where a smaller value is better. SKATER

was superior to AZP in all tests. The relation among the partition quality values

[)(/)(SKATERAZP QQ ΠΠ] varied between 0.678 a 0.988, and the average value was 0.856.

The processing speed of SKATER was much superior to AZP, ranging from to a gain of

10 to almost 30 times. The relative gain in processing speed of SKATER over AZP

improved as the number of attributes increased (Table 3). The relative advantage in

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

25

 26

performance of SKATER over AZP also increased with the number of resulting clusters

(Table 4).

6 Conclusion

In this paper we present SKATER (Spatial ‘K’luster Analysis by Tree Edge Removal),

an efficient method for regionalisation of socio-economic units represented as spatial

objects, which combines the use of a minimum spanning tree with combinational

optimisation techniques. The main algorithm has a fast convergence towards a best-cost

solution. The heuristic optimisation techniques used in the tree partitioning step allow

significant speedup without quality degradation. In comparison with the well-known

AZP regionalisation method, SKATER produces good quality results and is

significantly faster. The algorithm also allows including restrictions in the

regionalisation procedure. In cases where homogeneity of regions is an important need,

it produces a good quality partition in a short time. We consider SKATER to be a good

choice for regionalisation, especially when applied to large data sets. The algorithm is

available as an open source software, as part of the open source GIS library TerraLib

(http://www.terralib.org), and is included in the TerraView visualisation and analysis

GIS (http://www.terralib.org/terraview).

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

26

 27

Acknowledgments

Renato Assunção’s research is partially supported by CNPq (grant 305567/2004-7).

Marcos Neves’ research has been supported by EMBRAPA. Gilberto Camara’s work is

partially funded by CNPq (grants PQ - 300557/19996-5 and 550250/2005-0) and

FAPESP (grant 04/11012-0). Corina Freitas’ research has been partially supported by

CNPq (grant 305546/2003-1).

References

AHO, A. V., HOPCROFT, J. E. and ULLMAN, J. D., 1983, Data structures and algorithms.

(Reading, Mass.: Addison-Wesley).

ALVANIDES, S., OPENSHAW, S. and REES, P., 2002, Designing your own geographies. In
The Census Data System, P. Rees, D. Martin and P. Williamson (Ed.)
(Chichester: Wiley), pp. 47-65.

CÂMARA, G., SPOSATI, A., KOGA, D., MONTEIRO, A. M., RAMOS, F., DRUCK, S. and
CAMARGO, E., 2004, Mapping Social Exclusion/Inclusion in Developing
Countries: Social Dynamics of São Paulo in the 90's. In Spatially Integrated

Social Science: Examples in Best Practice, M. Goodchild and D. Janelle (Ed.)
(London: Oxford University Press).

EVEN, G., NAOR, J., RAO, S. and SCHIEBER, B., 1997, Fast approximate graph
partitioning algorithms. In Proceedings of the 8th ACM-SIAM symposium on

discrete algorithms, (New Orleans, Louisiana, United States). pp. 639 - 648.

HAINING, R., WISE, S. and MA, J., 2000, Designing and implementing software for
spatial statistical analysis in a GIS environment. Journal of Geographical

Systems, 2, 257-286.

JUNGNICKEL, D., 1999, Graphs, Networks and Algorithms. (Berlin: Springer).

KARYPIS, G. and KUMAR, V., 1998 Multilevel algorithms for multi-constraint graph
partitioning. In Proceedings of the 1998 ACM/IEEE conference on

Supercomputing, (San Jose, CA.

MARTIN, D., 1998, Optimizing census geography: the separation of collection and
output geographies. International Journal of Geographical Information

Science, 12, 673-685.

MARTIN, D., 2003, Extending the automated zoning procedure to reconcile incompatible
zoning systems. International Journal of Geographical Information Science, 17,
181-196.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

27

 28

OPENSHAW, S., 1977, A geographical solution to scale and aggregation problems in
region-building, partitioning and spatial modelling. Transactions of the Institute

of British Geographers (New Series), 2, 459-472.

OPENSHAW, S. and ALVANIDES, S., 1999, Zone design for planning and policy analysis.
In Geographical Information and Planning, J. Stillwell, S. Geertman and S.
Openshaw (Ed.) (Berlin: Springer), pp. 299-315.

OPENSHAW, S. and ALVANIDES, S., 2001, Designing zoning systems for representation
of socio-economic data. In Time and Motion of Socio-Economic Units, A. Frank,
J. Raper and J. Cheylan (Ed.) (London: Taylor and Francis).

OPENSHAW, S., ALVANIDES, S. and WHALLEY, S., 1998, Some further experiments with
designing output areas for the 2001 UK census. Report (Leeds: University of
Leeds).

OPENSHAW, S. and RAO, L., 1995, Algorithms for reengineering 1991 Census
Geography. Environment and Planning A, 425-446.

OPENSHAW, S. and WYMER, C., 1995, Classifying and regionalizing census data. In
Census Users' Handbook, S. Openshaw (Ed.) (Cambridge, UK: Geoinformation
International), pp. 239-269.

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

28

 29

INPE ePrint: sid.inpe.br/ePrint@80/2006/08.02.19.20 v1 2006-08-03

29

