
A PyMPI-based Approach for Parallel Interactive MD Simulations

Eduardo R. Rodrigues, Airam J. Preto, Stephan Stephany

Brazilian Institute for Space Research (INPE)
CP 515, 12245-970 S. J. Campos SP, BRAZIL

E-mail:{erocha, airam, stephan }@lac.inpe.br

Abstract

A PyMPI-based approach for parallel interactive
molecular dynamics (MD) simulations is proposed,
derived for the ADKS sequential MD software. The
ADKS software allows the simulation and interactive
visualization of complex phenomena as fractures and
grain boundary behaviour in solids. The simulation
engine was parallelized using the MPI (Message Pass-
ing Interface) communication library. A finite au-
tomata model represents the interaction between the
user interface and the simulation engine. The PyMPI
extends the Python language for the MPI environment
and it is used to integrate the user interface and the
parallel simulation engine. Performance results are
shown without/with visualization for execution in a
distributed memory parallel machine.

Palavras-chave: High Performance Cluster Comput-
ing, Molecular Dynamics, Python, MPI, Interactive
Simulations

1 Introduction

Molecular Dynamics (MD) is a technique used to
simulate particles such as atoms and molecules in or-
der to compute equilibrium and non-equilibrium prop-
erties of matter. That simulation consists of a set of
particles distributed in a space region interacting with
each other through a certain potential characteristic of
the system being simulated. Resulting forces are cal-
culated for each particle in order to estimate its motion
according to classical mechanics. Macroscopic system
properties can thus be obtained. MD has been used to
study microscopic system ignoring quantical effects.
However, semi-classical corrections can be employed
in order to to include those effects. Many areas em-
ploy MD, as nanotecnology, biochemistry, molecular
biology and material science.

MD implementations are CPU-bound and the high
number of particles and timesteps present a heavy pro-
cessing load. Typically, simulations involve many

thousands or millions of particles modelling only pi-
coseconds of sub-micron scale phenomena. When
short range potentials are used in MD simulations,
algorithms such as cell-subdivision and neighbor-list
can be employed to improve the efficiency of the com-
putations. Even using these algorithms, large systems
require the use of parallel machines to produce re-
sults in a feasible time. The most common parallel
programming paradigms are the distribution of atoms,
cells or force calculations among processors.

These simulations can be executed in batch mode,
as a sequence of steps such as: definition of input data,
execution of the simulation engine, output of data to a
storage device and post-processing analysis. The last
simulation results can then be used with redefined in-
put data to begin a new cycle. This approach has some
disadvantages: the first one is that the amount of data
stored may increase very rapidly and the second one
is that the results are only avaliable after the end. An-
other approach, used in simulations, is to have visual
interactive capabilities. Therefore the parameters of
the simulation can be changed on the fly, allowing the
visual feedback at run-time. Complex phenomena that
could not be observed in a real experiment or in the
post-mortemanalysis of data obtained from a batch
simulation, can thus be studied in interactive computa-
tional environment [4]. The need of parallel comput-
ing is emphasized, in order to have interactive simula-
tions with execution times that are confortable for the
user.

In parallel simulations with visual interactive ca-
pability it is difficult to control the execution of the
simulation engine, that must be synchronized with the
particle visualization. Some solutions have been pro-
posed, for example, the Falcon system [3] that is based
on a set of tools and libraries, and an user interface that
provide means to gather processed data, analyse data
and change simulation parameters in execution time.
Another system is based on the SPaSM (Scaleable,
Parallel, Short-Range Molecular Dynamics) code [2].
SPaSM creates an interactive environment employing
the Python extensible scripting language that supports
the inclusion of visualization and user-developed mod-

Figure 1. Lennard-Jones Potencial

ules.
This work presents a PyMPI implementation of a

parallel MD simulator with interactive visual capabil-
ity based on ADKS. The simulation engine, that was
written as a library, was parallelized using the MPI
communication library. The proposed scheme for the
integration of the parallel simulation engine and the
visualization module to the interactive environment
PyMPI are also shown.

2 Molecular Dynamics

MD simulations can model the particles in differ-
ent ways. The simplest model represents the parti-
cles as spheres that interact with each other accord-
ing to a potential that depends only on the distance
between each pair of particles. The potential must be
selected according to the system being simulated. In
the case of electrically neutral molecules, the interac-
tion is characterized by a strong short-distance repul-
sion due to the Pauli exclusion principle and by a weak
attraction that starts from a certain distance due to the
van der Waals forces. Therefore, a possible potential
for noble gases or generic substances is the Lennard-
Jones short-range potential [6], defined in Equation 1,
in function of the distancer between particles and two
specific parameters:σ andε. This potential is shown
in figure 1.

u(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

(1)

Considering this equation, it can be shown that the
Lennard-Jones potential is negligible forr > 3σ.
Thus, a cut-off distancerc can be defined in order to
haveu(r) = 0 for r > rc. The interaction forcef
derives from the potential according tof = −∇u(r).
Therefore, the number of calculations can be drasti-

cally reduced sincerc is very small in comparison with
the dimension of the system of particles. For each par-
ticle, the interaction forces with all surrounding parti-
cles has to be computed in order to obtain the resul-
tant force. Newton’s 2nd law is then employed to cal-
culate the acceleration and sucessive numerical inte-
grations updates velocity and position using the finite-
difference method. Two simple schemes can be em-
ployed for these updating, the Verlet or the Leap-frog
with good accuracy in comparison to more sophisti-
cated schemes [6].

The relationship between the microscopic informa-
tion that results from MD simulations and the macro-
scopic properties of the system is made by means of
Statistical Mechanics. The termodynamical state can
be described by a set of parameters as termperature,
pressure and number of particles. At microscopic level
a particles system can be descripted by its positions
(coordinates x, y and z) and momenta (directions x,
y and z), thus N particles can be represented a space
with 6N dimensions that is called phase space. A set
of points in this phase space that satisfy the conditions
of a particular thermodynamic state is called a ensam-
ble. Molecular Dynamics generates points in the phase
space that belong to one ensemble, thus properties of
the ensemble can be obtained.

The limit of computations imposed by the hardware
restricts the number of particles that can be simulated
and consequently the complexity that can be handled
[6]. For short range potential the time spend to test the
particles distance may consume up to 99%, thus some
algorithms like cell subdivision and neighbors list are
used to reduce that number of tests [6]. Nevertheless
the independency among particles that are far from
each other and the necessity to simulate large systems
point to the need for parallel processing. The most
common forms to parallelize MD are atom decompo-
sition, force decomposition and space decomposition
[5].

The ADKS is an interactive MD software with vi-
sulization capability that can simulate fractures and
grain boundary behaviour in solids. It was developed
for a event-driven environment provided by X11 Win-
dow System and the Motif library. In ADKS, the sim-
ulation parameters can be changed on the fly, thus the
effects of these modifications can be visualized during
the simulation.

3 Interactive MD simulation in a parallel
environment

In an interactive simulation, executed on a se-
quential machine, a simple event-driven programming
model allows simulation steering, i.e. the modification
of simulation parameters without restarting it from the
beginning. A parallel version of this model for shared

Figure 2. Finite automata model.

memory machines would simply require to decouple
the visualization interface from the simulation engine.
Similarly to the sequential model, events can modify
parameters of the simulation that is executed by multi-
ple threads, provided that race conditions are avoided.
However, in a distributed memory parallel machine,
this strategy can not be used. When a message pass-
ing program is run, multiple independent processes are
started in different nodes.

A possible scheme for a distributed memory archi-
tecture is to assign the user interface and the coupled
visualization to a specific processor, and to execute the
simulation engine in the remaining processors. The
visualization processor also collects the results of the
simulation from the other processors at every timestep.
User interface allows the modification of simulation
parameters. In this case, messages are sent to the other
processors. The simulation engine can thus be mod-
eled as a finite automata, being its state transitions trig-
gered by user commands.

A simplified model is depicted in Fig. 2. Initial
stateC represents the starting of a new simulation that
can be changed to the execution stateE. The E to
C transition is used to interrupt the current simula-
tion and to start a new one. A transition to the state
S causes the simulation to end. Theadjust transi-
tion allows to change parameters during execution, for
example temperature and pressure, while theconfig-
ure transition deals with “static” parameters, that can
be configured only before the simulation starts, as the
number of particles or spatial domain. In this way,
the complete system models the interaction between
an user interface executed in a terminal-provided node
and a set of finite automata being executed in the pro-
cessing nodes (see Fig. 3).

Figure 3. Interaction between user interface
and a set of finite automata.

4 The Simulation engine

The ADKS sequential code employs the cell subdi-
vision algorithm. The most intuitive way to parallelize
is to use the domain decomposition approach. The 2D
domain is divided in constant-width bands and each
band is assigned to a processor. This distribution min-
imizes the number of processors that a processor com-
municates with.

A key issue is how to deal with the interaction be-
tween particles in the interband border. As the width
of the cells is the cut-off distance, the borders are com-
posed of two columns of cells, each of them in a dif-
ferent processor. Therefore, in order to calculate inter-
action forces and update particle positions in its part
of the border, a processor must have particle positions
of its neighboring part of the border. One possible ap-
proach is to communicate border particle positions be-
tween neighboring processors. However, this does not
take advantage of Newton’s 3rd law and force interac-
tions between border particles of neighboring proces-
sors are calculated twice. A better approach is to have
a sole processor calculating interaction forces for each
border. For each border, the right side processor send
its left border particle positions to the left side proces-
sor that calculates interaction forces and send results
back. Considering a generic processorPn with a left
neighborP(n − 1) and a right neighborP(n + 1), it
sends its left border toP(n − 1) and concurrently re-
ceives the left border from processorP(n + 1). Then,
it calculates interaction forces for its right border and
then send the results toP(n + 1) while receives inter-
action forces of its left border fromP(n− 1).

Assynchronous comunication was used to improve
performance in the comunication of the borders. The

main ideia is to initiate the sending and receiving as-
synchrounously and compute the data that do not de-
pend on node local data. After the communication has
been accomplished, the dependent data is computed.

A further improvment of this scheme is as follows:
processorPn initiates force calculation and sends as-
synchronously its left border particle positions to pro-
cessorP(n−1) and receives assynchronously the right
border particle positions from processorP(n + 1).
Concurrently with the communication,Pn calculates
interactions of its local particles away from the bor-
ders. As soon as the particle positions from the pro-
cessorP(n + 1) are received,Pn calculates the inter-
action forces in its right border cells using the received
data. Then, these calculated forces are send assyn-
chronously toP(n+1) while the results fromP(n−1)
are being received. Again, during the communication
of forcesPn calculates the remaining interactions be-
tween its local particles that are far from the border.
When communication ends at that iteration,Pn up-
dates all local particle positions. This is followed by
the updating of the cells according to the particles that
have moved to/from each cell. Eventually, communi-
cation is required when migration of particles occurs
between cells in different processors.

Performance results for the simulation engine with-
out any visualization are shown in Table 1 and Figure
4 (p denotes the number of processors andN , the
number of particles. Execution times refer to 1000
timesteps of a simulation of a micro-canonical ensem-
ble. The parallel machine is an Itautec cluster based
on Intel Pentium III Xeon 1.26 GHz dual processors
and a Gigabit Ethernet standard network.

5 The PyMPI environment

Python is an interpreted, object-oriented program-
ming language, that has gained popularity because of
its clear syntax and readability. Python is said to be
relatively easy to learn and portable to a number of
operating systems. Its source code is freely available
and open for modification and reuse. Python offers

Table 1. Parallel performance of the ADKS
simulation engine (Intel PIII Xeon cluster).

speed-up efficiency
N 2p 4p 8p 2p 4p 8p

32857 1.76 3.62 7.23 0.88 0.90 0.90
58855 1.71 3.39 6.53 0.85 0.85 0.82
91487 1.70 3.30 6.37 0.85 0.83 0.80
130899 1.70 3.25 6.38 0.85 0.81 0.80

Figure 4. Execution times of the ADKS with-
out pyMPI (Intel PIII Xeon cluster).

dynamic data type, ready-made class, and interfaces
to many system calls and libraries.

Two important Python features are (i) a command
driven user interface, that allows interactive execution
of commands, and (ii) the dynamic extensibility of the
language with codes written in C and C++, like func-
tions and objects, that can be incorporated as Python
commands. Those features are useful to prototype de-
velopment since it provides a simple interactive envi-
ronment and a way to dynamicaly integrate modules,
as long as the modules have a well defined interface.
PyMPI extends Python to be executed in a distributed
memory architecture using the MPI library. In PyMPI,
each node of the cluster executes an image of Python,
but the user interface executes in a master node. Any
command input at that node is sent to all the nodes
by means of MPI calls. The PyMPI also initiates the
MPI environment, and a SPMD approach is used to
assign the tasks to the processors according to their
ranks. Modules that are loaded in PyMPI can call MPI
routines provided the MPI environment is initiated.

The interfaces that allow Python to be extended
with C and C++ codes can be made by hand, as de-
scribed in [7], or generated automatically [1]. In both
cases, it is important to determine which objects and
functions will be available for the Python environment
as commands. In order to integrate the parallel sim-
ulation engine and the PyMPI environment interfaces
are created for the main functions of the simulation
engine, like the functions to run one timestep, config-
ure initial particle positions and set initial conditions.
Besides, specific functions and their respective inter-
faces were created to set or get simulation parame-
ters. These interfaces compose a set of low level rou-
tines used to implement a Python object that repre-
sents a simulation. Each processor will have an in-

stance of this object that communicate with other pro-
cessors using the MPI environment. Thus when a par-
ticular method of an instance of simulation is called in
the PyMPI command driven user interface, the corre-
sponding low level routines are executed in each node.
The advantage of this approach is the simple imple-
mentation of the finite automata, since the states of the
simulation object and the messages to make the tran-
sitions of the automata are provided by the PyMPI en-
vironment. The disadvantage is the command-driven
user interface, that must be integrated to a simulation
engine that is event-driven.

Performance results of the simulation engine with-
out visualization, but integrated to the PyMPI environ-
ment, are shown in Table 2 and Figure 7 for the same
test cases of the previous section. Here,p denotes the
number of processors executing the simulation engine,
i.e. there is another processor in charge of the PyMPI
user interface. A slight improvment of performance
can be noted forp = 2 with PyMPI, in comparison
to the same test case without PyMPI. This is probably
due to the use of processors that are not from the same
node in the latter case.

6 The visualization module

The integration of the visualization module to the
parallel simulation software was implemented by a
configurable processor scheduler in order to select spe-
cific set of processors for the modules. During the ini-
tialization of the simulation, each module determines
how many processors are required and the scheduler
assigns a specific MPI communicator to that module.
However, in the current work, only the simulation en-
gine module was executed in parallel, since the visu-
alization was not processing demanding and could be
executed sequentially in the master processor.

The visualization was written based on the Motif
library, but other libraries could be employed and in-
tegrated without affecting the simulation engine. Con-

Table 2. Parallel performance of the ADKS
simulation engine inside pyMPI (Intel PIII
Xeon cluster).

speed-up efficiency
N 2p 4p 8p 2p 4p 8p

32857 1.82 3.58 7.21 0.91 0.90 0.90
58855 1.79 3.28 6.53 0.89 0.82 0.82
91487 1.77 3.31 6.39 0.89 0.83 0.80
130899 1.78 3.26 6.38 0.89 0.81 0.80

Figure 5. Execution times of the ADKS inside
pyMPI (Intel PIII Xeon cluster).

sideringp processors, the visualization module is ex-
ecuted by the master processor, and the remaining
(p − 1) processors are used by the simulation engine.
The visualization module is composed of two parts: an
interface to the simulation engine and the graphic vi-
sualizer itself. This interface sends configuration pa-
rameters to the simulation engine, in order to run the
simulation for a specified number of timesteps, and
also collects particle data from it. Such data is then
displayed by the visualizer.

The original ADKS software employed global stor-
age as a means to exchange data between modules.
In this implementation, an interface that employs ac-
cessor methods similar to those of object-oriented ap-
proaches, in order to obtain a better decoupling be-
tween the visualization modules and the simulation en-
gine. Consequently, a object-oriented like message in-
terchange can be performed, even with a code that was
written in C.

The standard PyMPI interface returns only after a
user command is executed by all processing nodes,
and therefore another command cannot be input. Par-
ticularly, a user command may request a graphic win-
dow output, but the user would be unable to input an-
other command while this window is open. In order
to solve this issue, a thread based approach is required
at the processor in charge of the visualization module
and the user interface. A thread is assigned to receive
user inputs and simulation data from the other proces-
sors, while another thread controls the Motif graphic
window. This scheme is shown in Figure 6, with the
threads being depicted by the outer retangles.

Figure 6. PyMPI

7 Conclusions

A PyMPI-based approach for parallel interactive
molecular dynamics (MD) simulations is presented.
This implementation is derived for the ADKS sequen-
tial MD software. A PyMPI environment was used
to integrate the visualization modules and the paral-
lel MPI-based simulation engine. A multithread ap-
proach was required for the processor in charge of
the visualization and user interface. Performance re-
sults show the suitability of the presented implemen-
tation for a distributed memory parallel architecture.
Further works include to rewrite the code in order to
enhance the object-oriented approach, and to include
some visualization improvments, such as image mag-
nification.

References

[1] Beazley, D. M. “Swig : An easy to use tool for in-
tegrating scripting languages with c and c++”. In
Fourth Annual USENIX Tcl/Tk Workshop. 1996.

[2] Beazley, D. M. & Lomdahl, P. S. “Extensible mes-
sage passing application development and debug-

Table 3. Parallel performance of the ADKS
simulation engine inside pyMPI with visual-
ization (Intel PIII Xeon cluster).

speed-up efficiency
N 2p 4p 8p 2p 4p 8p

32857 1.90 3.55 7.15 0.95 0.89 0.89
58855 1.84 3.31 5.47 0.92 0.83 0.68
91487 1.83 3.29 5.59 0.91 0.82 0.70
130899 1.85 3.30 5.51 0.93 0.83 0.69

Figure 7. Execution times of the ADKS in-
side pyMPI with visualization (Intel PIII Xeon
cluster).

ging with python”. InProceedings of IPPS’97,
IEEE Compuer Society. pp. 650–655. 1997.

[3] Gu, W.; Eisenlianer, G.; Schwan, K. & Vetter, J.
“Falcon: on-line monitoring for steering parallel
programs”. Concurrency: Practice and Experi-
ence, 1998, 10, 699–736.

[4] Merimaa, J.; Perondi, L. F. & Kaski, K. “An inter-
active simulation program for visualizing complex
phenomena in solids”.Computer Physics Commu-
nications, 2000, 124, 60–75.

[5] Plimpton, S. “Fast parallel algorithms for short-
range molecular dynamics”.Journal of Computa-
tional Physics, 1995, 117, 1–19.

[6] Rapaport, D. C. The Art of Molecular Dynam-
ics Simulation. Cambridge University Press, Cam-
bridge, UK, 1995.

[7] van Rossum, G. & Drake, F. L. “Extending
and embedding the python interpreter”. URL
http://www.python.org/doc/2.3.4/
ext/ext.html .

