
Anais do IV WORCAP, INPE, São José dos Campos, 20 e 21 de outubro de 2004, 1

CoFI: a Test Process for Space Application Service Validation

Ana Maria Ambrosio1

1Ground Systems Development
Division (DSS)
ana@dss.inpe.br

Eliane Martins3

3Institute of Computing (IC)
State University of Campinas

(UNICAMP)
eliane@ic.unicamp.br

Nandamudi L. Vijaykumar2

Solon V. de Carvalho2

2Associated Laboratory of
Computing and Applied

Mathematics (LAC)
National Institute for Space

Research (INPE)
{solon, vijay}@lac.inpe.br

Abstract

This paper presents a test process named CoFI
(Conformance and Fault Injection), which has
being defined as part of the doctorate program.
CoFI integrates two existing test approaches:
conformance test and fault injection technique.
It was conceived for validating the space
communication services being standardized by
ESA. For the test case specification activity this
process defines an approach for automatically
generating test and fault cases. The main idea
behind this process is to create a re-usable
abstract test and fault suite that may help to
improve the effectiveness of testing and allow
the space communication services evaluation
under faults. The CoFI is partially illustrated
for the telecommand verification service stated
in the ESA standard for the Telemetry and
Telecommand Packet Utilization (PUS)
services.

Keywords: testing process, conformance test,
software-implemented fault injection, space
software validation.

1. Introduction

In the 80’s software testing was widely
believed to be one of the phases within the
software development life cycle, according to
the software engineering concepts. However,
nowadays with the increase of the complexity
and importance of the computational systems,
test has gained much importance to act during

all the phases of the software development life
cycle. The software development life cycle
adopted by ESA includes a verification
approach whose test activities closely parallel
each development phase [5]. Tests are crucial
for a space application software to assure the
success of the mission. Reports summarized in
[16] illustrates space mission fails caused
mainly by ill-designed system and software
validation.

Software developed for complying with a
standard specification are generally
implemented by different manufacturers, so,
these implementations must be tested against
the specification for conformance evaluation.
This activity is known as conformance testing.
The conformance test has been strongly
explored in the telecommunication for the
protocol certification [8] and [9]. In academia,
much literature has also been published [2],
[18], [4], [10], [11], etc. However, there are yet
insufficient techniques to create tests from a
specification. Moreover, the tests may consume
up to 50% of the project resources in whole
software development project [19].

In order to reduce the test effort and yet to
improve the effectiveness of the test cases for
the evaluation of the packet utilization standard
services given in [6], we propose a test process
which includes an approach to help generate test
cases covering external failure situations. The
fault injection is an important technique for
testing space applications, as it may represent
common space environment faults under which
such kind of systems are submitted when in its

Anais do IV WORCAP, INPE, São José dos Campos, 20 e 21 de outubro de 2004, 2

operational phase [14]. Prototype tools
developed in previous research supports partly
the process automation. [15], [20].

The paper is organized as follows: section 2
presents the testing process; section 3,
summarizes the approach for test and fault case
generation; in section 4 a case study illustrates
the CoFI and finally section5 concludes the
paper pointing out future works.

2. Testing Process

A testing process is a “course of action to be
taken to perform testing”1. [3] presents a testing
process, whose activities (testing planning,
design, test case development, software
development, execution and result analysis) are
compared with the software development
activities (requirement analysis, preliminary
design, detailed design and coding/unit test).
Figure 1 summarizes this comparison.

Figure 1: Software Development vs. Testing
Process

In telecommunication, the conformance
testing process, for ISO protocol certification, is
standardized in [8]. The CoFI process presented
in this article, extends the evaluation power of
the functional conformance (given in the IS-
9646 [8]) with the software implemented fault
injection technique to accelerate the exceptional
events. Furthermore, the test activities are
closely related to the application to be tested.
Figure 2 summarizes the activities flow and
draws the parallels between the CoFI process
activities and those activities defined in
Drabick. A description of the CoFI activities,
the required, and the created artifacts are given
below.

1 According to the process definition in IEEE Software
Standards.

Figure 2: Testing Process vs. CoFI process

Test Purpose definition: This activity
consists in defining the test purposes (or test
objective) based on the service standard
specification description. (See Figure 3)

Figure 3: Test Purpose Definition activity

Abstract Suite Specification: In this
activity an abstract test suite (ATS) is specified
for each test purpose. The ATS comprises
implementation-independent test and fault
cases. Both test and fault cases are limited to the
test architecture, which strongly affects the
conformance requirements that can effectively
be checked by the testing means. Furthermore,
specification is required to provide assumptions
about the service observability and testability
(the definition of the points of control and
observation (PCO)). An external fault list helps
defining the fault cases. The abstract suite is
written in a test notation, either in the ISO
standard TTCN2 or in a language supported by
an automated testing tool. Every test/fault case
is associated to an expected output. Looking at
the process automation, the test and fault cases
are derived from formal methods. Consequently
the textual description of the services must be
translated into a formal specification model. The
test approach is presented in section 3 in a step-
by-step manner. (See Figure 4)

2 In earlier versions, TTCN stands for Tree and Tabular
Combined Notation. The new meaning is Testing and Test
Control Notation apt for TTCN-3.

Requirement
Analysis

Preliminary
Design

Detailed
Design

Coding & Unit
Test

Software Development
Process

Testing
Process

Test Result
Analysis

Test Planning

Test Design

Test case
development

Test sw
development

Test Execution

Test purpose
Definition

Test
 Purposes

Services
specification

Test purpose
Definition

Abstract Suite
Specification

Report
Production

Executable
Suite

Establishement

Test
Execution

Result
Analysis

Testing
Process

Test Result
Analysis

Test Planning

Test Design

Test case
development

Test sw
development

Test Execution

CoFI
Process

Anais do IV WORCAP, INPE, São José dos Campos, 20 e 21 de outubro de 2004, 3

Figure 4: ATS Specification activity

Executable Suite Establishment: This
activity is characterized by the choice, from the
ATS, of the test/fault cases to be applied to the
implementation under test. The available test
architecture influences the test selection. Once
the tests are selected, they are completed and
parameterized with the provided
implementation details and information like
values of counters and timers reported in both
the Implementation Conformance Statement
(ICS) and the Implementation extra Information
for Testing (IXIT) documents. The
parameterized test set is named parameterized
executable test suite (PETS). In CoFI, the PETS
are supposed to be written in PLUTO [7], or any
script-like language. (See Figure 5)

Figure 5: Executable Suite Establishement
activity

Test Execution: In this activity the PETS
are already implemented and the test campaigns
are carried out over the implementation under
test. The test architecture is supposed to provide
the necessary tools for the test running including
the fault injections. All the observable reactions
of the implementation are observed for both
normal and exceptional situations. All inputs,
outputs and other test events, i.e., the read-outs
produced during the test campaigns are logged
not only for the result analysis but also for
future reference. (See Figure 6)

Figure 6: Test Execution activity

Result Analysis: This activity consists in
comparing the observable output, obtained
during the test campaigns, with the expected
outputs created during the test and fault cases

(ATS) generation in the Abstract Suite
Specification activity. (see Figure 7)

Figure 7: Result Analysis activity

Report Production: This activity consists in
attributing to each executed test/fault case, one
of the following results: pass, fail, inconclusive,
error in the abstract or executable test case or
abnormal test case termination. This
classification of the test results is according to
the IS-9646 definition. The complete analysis of
the test results leads to a verdict related to the
conformance requirements. Thanks to the
expected output obtained from the service
formal behavior model one may infer the
verdicts about the test. The verdicts are not only
related to the implementation behavior under
normal events but also under external faults.
Furthermore, statistics about the test execution
may be computed and included to the test report
for diagnostics, once the comparison between
the observable and the expected outputs is
performed. (See Figure 8).

Figure 8: Report Production activity

3. Approach for ATS specification
The approach to derive the ATS guides the

tester to translate the service specification in a
Finite State Machine.

The formal notation-based specification
allows the use of formal algorithms to
automatically generate test cases, so reducing
time and efforts with testing and assuring great
coverage of the specification with the tests.
However, to get the PUS specification in a
formal notation acceptable by the algorithms is
a hard and lengthy work, requiring many
iterations [17].

In order to facilitate generating the formal
specification, the CoFI approach specifies a set
of steps making use of UML notation. The test
cases are obtained from normal situation
scenarios, whereas the fault cases are obtained
from the exceptional situations. In separating
normal from exceptional part, the number of
cases generated each time is smaller than if the
global modeling were created. In short, the main
steps of the CoFI approach are:

Result
Analysis

Observable Output

Test Log

Test
ResultsExpected Output

Executable
Suite

Establishement

ATS

ICS

Test architecture

IXIT

PETS

Report
Production

Tests ReportTest
Results

Statistics

Test
Execution

PETS

Test architecture

implementation
under test

Observable
Output

Test Log

Abstract
Suite

Specificati
on

Test Purposes

External faults

Test architecture

Test Notation

ATS

Expected
Output

Anais do IV WORCAP, INPE, São José dos Campos, 20 e 21 de outubro de 2004, 4

1. describe the service as an use case: identify
the requests, the reports and operational
variables [1] handled by the service;

2. create normal and exceptional scenarios
deduced from the operational variables
whose variation of values causes a service
behavior change;

3. design Sequence Diagrams one mapping
all the normal scenarios and other the
exceptional;

4. create an event/state matrix: where a line is
an event (valid, invalid and inopportune
are represented by requests or operational
variable); a column is a state, a cell is both
an output (normal or abnormal explicitly
specified, abnormal terminations) and the
next state;

5. create a Normal Finite State Diagram with
the events triggering the explicitly
specified normal outputs;

6. generate the test cases submitting the FSM
to a tool, for example Condado [14];

7. create an Exception Finite State Diagram
mapping only the events triggering the
explicitly specified exception outputs;

8. generate the fault cases, by submitting the
exception FSM to algorithms of graph
traversing [12] for defining the set of
transitions necessary to put
implementation in the state in which the
fault has to be injected. Then the fault is
identified in the transitions leaving this
state. The fault must be executed by
special components of the test architecture.
The fault is characterized by parameters:
when (time or message identification),
what (fault type), how (mask or byte
position), where (the communication fault
is associated with a PCO).

4. Case Study

The PUS standard ECSS-E-7041A, specifies
services to be provided by the satellite at the
application process layer during its
communication with the ground control system
(service client).

The telecommand verification service
provides feedback about the execution of long
execution duration telecommands. The stages of
such deep space mission telecommands may
spend hours, so they may pass for: reception,

execution start, execution progress and
execution completion stages. Then, on requiring
this service, the client should indicate, the
reports he or she wants, in the Ack bits.

On applying the CoFI approach, one finds
the test purpose as to verify the telecommand
execution. The ATS is obtained on applying the
approach presented in section 3, which are:
1. the request and reports are directly obtained

in the capability set [6]; the operational
variables are obtained from the Ack bits,
whose four-bit combination reflects the
ground-board communication operational
scenarios. They are The use case description
is not presented here;

2. As the normal scenarios are based on the
values of the four Ack bits, there are 16
normal scenarios.; Concerning the exception
reports, there are four scenarios. All
represent the replies sent to the ground
system;

3. In mapping the scenarios to sequence
diagrams, we assumed three PCOs for this
service: PCO1 (observes the telecommand
application data arrival), PCO2 (allows to
recognize the status of the telecommand
execution) and PCO3 (allows to observe the
generated telemetry reports to be sent to the
service client).

4. Steps 3 and 4 are not shown here;

5. The Normal Finite State Machine is in
Figure 9.

6. On submitting the FSM shown in FIGURE 2
to the Condado tool [14] 38 test cases were
generated. One test case in the Condado
output format is in Table 1. The Condado
deals with only two points of control (the U
-Upper tester and L-lower tester) and this
service requires three points, then the
solution is to substitute L for PCO1

whenever the next message is Tcarriv or
receiveTC, or for PCO3 in the other cases.
The U substitutes the PCO2. The word
senddata and recdata mean respectively send
and receive the data from PCO. The same
test case is shown in TTCN notation in
Table 2.

7. The Exception Finite State Machine is in
Figure 10.

8. One fault case is illustrated in TTCN in
Table 3.

Anais do IV WORCAP, INPE, São José dos Campos, 20 e 21 de outubro de 2004, 5

Figure 9 – Normal Finite State Machine

Figure 10 – Exception Finite State Machine

Table 1- Test case – Condado output

Input Output

senddata(L,TCarriv) recdata(L,receiveTC)

senddata(U,AccOK[-11--]) recdata(L,AccSucc_
Report)

senddata(U,StOK[--110]) recdata(L,StartSucc_
Report)

senddata(U,PrOK[f--01]) recdata(L,)

senddata(U,CompOK[f---
0])

recdata(L,CompSucc
_Report)

Table 2. Test case – TTCN notation

Behavior Description Constraint
PCO1 ? TCarriv
PCO2 ? AccOk
PCO3 ! AccSuc_Rep

[Ackbits = 1---]

PCO2 ? StartOk
PCO3 ! StartSuc_Rep

[Ackbits = -1--]

PCO2 ? ProgOk [Nstep =1 = Max]
[Ackbits = --01]

PCO2 ? CompOk
PCO3 ! CompSuc_Rep

[Nstep =1 = Max]
[Ackbits = ---1]

Table 3. Fault Case – TTCN notation

Behavior Description Constraint
PCO1 ? TCarriv
PCO2 ? AccOk [Ackbits = 0---]
PCO2 ? StartOk
PCO3 ! StartSuc_Rep

[Ackbits = -1--]

*Fault:
 PCO2 ? ProgNOk
PCO3 ! ProgFail_Rep

5. Comments and Future Plans

This paper presented a test process named
CoFI – Conformance and-fault-injection which
is based on the conformance test process
standardized in IS-9646, over which test
activities with software-implemented fault
injection (SWIFI) were included. An approach
to generate a set of abstract (implementation-
independent) test and fault cases is included in
the process activities looking at automation
needs. The Telecommand Verification service
defined in the ECSS-E-70-41A PUS standard,
prepared by the European Space Agency was
used to illustrate the process.

The test approach presented here does not
assure only efficiency of the testing activities
but also improves confidence in the space
application of PUS services. Additionally, it
offers a real opportunity to reduce the testing
costs in a mission once it guides the design of
the test cases that are still largely performed by
testers by interpreting specification written in
natural language.

Although the general conception for the fault
case generation has been included into the CoFI
process, the formal definition of exceptional
finite state machine and the algorithms for
automatically generating fault cases are in
progressing.

AcOK [-01--]

-

StOK[--01-]

-

AcNOK[-----]

AcFail_Rep

CoNOK[-----]

CoFail_Rep

TCarriv------------
receive TC

StNOK[-----]

StFail_RepPrNOK[-----]

PrFail_RepPrOK[f--01]

-

Progr
essin

g

TC
Acce
pted

TC
Recei
ved

Tc
Starte

d

Ini

AccOK [-01--]

-

AccOK [-0000]

-

AccOK[-11--]

AccSucc_Rep

StartOK [--000]

-

StartOK[--01-]

-

AccOK[-1000]

AccSucc_Rep

PrOK[---00]

-

CompOK[f---0]

CompSucc_Rep

TCarriv------------
receive TC

StartOK[--110]

StartSucc_Rep

StartOK[--100]

StartSucc_Rep

PrOK[f--01]

PrSucc_Rep

PrOK[f--01]

-

PrOK[v--1-]

PrSucc_Rep

PrOK[v--01]

-

PrOK[v--0-]

PrSucc_Rep

Tc
Start
ed

TC
Acce
pted

Progr
essin

g

Ini

TC
Rece
ived

Anais do IV WORCAP, INPE, São José dos Campos, 20 e 21 de outubro de 2004, 6

References

[1] Binder, R. Testing object-oriented systems
Models, patterns and tools. Boston: Addison-Wesley,
2000. 1191p.(ISBN 0-201-80938-9).

[2] Bochmann, G.; Petrenko, A. Protocol Testing:
Review of Methods and Relevance for Software
Testing. International Symposium on Software
Testing and Analysis. August 17-19, 1994. Seatle,
Washington, USA. Proceedings... 1994. p.109-124.

[3] Drabick, R. D. Best Practices for the Formal
Software Testing Process - A menu of Testing Tasks.
Dorset House, 2004.

[4] Dssouli, H.; Salek, K.; Aboulhamid, E ; En-
Nouaary, A ; Bourhfir, C. Test Development for
Communication Protocols: Towards Automation.
Computer Networks 31, 1999. p.1835-1872.

[5] European Space Agency (ESA). ESA Software
Engineering standards. PSS-05-0 Issue 2. February
1991.

[6] European Space Agency (ESA). European
Cooperation for Space Standardization (ECSS) Space
Engineering –Ground Systems and Operations:
Telemetry and Telecommand Packet Utilization..
ECSS-E-70-41 A. January, 2003.

[7] European Space Agency (ESA). Cooperation for
Space Standardization (ECSS). Space Engineering
Procedure Language for User in Test and
Operations:PLUTO. ECSS-E-70-32A. European
Issue Draft 5, 2001

[8] International Organization for
Standardization/International Electrotechnical
Commission (ISO/IEC). ISO/IEC-9646 Information
Technology/ International Standard Conformance
Testing Methodology and Framework. Geneve, 1991.

[9] International Telecommunication Union -
Telecommunication Standardization Sector of ITU
(ITU-T). Recomendation X.290 – OSI Conformance
Testing Methodology and Framework for Protocol
recommendations for ITU-T Applications – General
Concepts. April, 1995.

[10] Kim, Y.G.; Hong, H.S.; Cho, S.M.; Bae, D.H.;
Cha S.D. – Test Case Generation from UML State
Diagrams – IEE Proceedings software, V. 146, N. 4, ,
Aug. 1999, 187-192.

[11] Lai, R. – A survey of communication protocol
testing – The Journal of Systems and Software, 62,
2002, pp. 21-46.

[12] Lee, D.; Yannakakis, M. Principles and
Methods of Testing Finite State Machines – a Survey
– Proceedings IEEE, 84 (8): 1090-1123. 1996.

[13] Madeira, H.; Some, R. R.; Moreira, F.; Costa,
D.; Rennels, D. Experimental evaluation of a COTS
system for space applications. International
Conference on Dependable Systems and Networks
(DSN'02), June 23 - 26, 2002, Washington, D.C.,
USA.
(http://computer.org/proceedings/dsn/1597/15970325
abs.htm).

[14] Martins, E. Sabião, S.B.; Ambrosio, A. M.
- ConData: a Tool for Automating
Sapecification-based Test Case Generation for
Communication Systems. Software Quality
Journal, 8 (4) (1999) 303-319.
[15] Martins, E.; Ambrosio, A.M; Mattiello-
Francisco M.F. ATIFS: a testing toolset with software
fault injection. In: Workshop UK Testing Research,
2. (SoftTest), 4-5 September 2003, York, England.
Proceedings... York: Department of Computer
Science/University of York, 2003.

[16] Mazza C. Standards: the Foundations for Space
IT. Workshop on Space Information Technology in
the 21st Century, Darmstadt, Germany, 27 sep. 2000.
Available in the digital library URLib:
<www.esoc.esa.de/pr/documents/workshops/it_2000/
it_in_future/esa_c_mazza.ppt >. Access in:02 sep.
2002.

[17] Merri, M. ; Rüting, J.; Schurman, P. Validation
of the ESA Packet Utilization Standard by object-
Oriented Analysis. In: International Conference on
Space Operations, 4, 1996. (SpaceOPs 96), 16-20
September 1996, Munich, Germany. Proceedings....
1 CD-ROM. Available in the digital library URLib:
<www.spaceops1996.org>. Access in: 2 fev.2004.

[18] Tan, Q.M.; Petrenko, A.; Bochmann, G. A Test
Generation Tool for Specifications in the Form of
State Machines. Proceedings of the International
Communications Conference ICC 96, Texas, 1996,
225-229.

[19] Tretmans J.; Belinfante, A. Automatic Testing
with Formal Methods. Conference on Software
Testing Analysis and Review, 7. (EuroSTAR´99), 8-
12 November,1999,, Barcelona, Spain. In:
Proceedings... 1999.

[20] ATIFS project. Available in the digital library
URLib: In: <http://www.inpe.br/atifs>. Access in: 5
sep.2002.

