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Abstract: Elevation information plays a crucial role in simulations of geophysical flows 
providing the slope and curvature information required to solve a series of 
differential equations. Digital Elevation Models (DEMs) used as simulation 
input diverge in resolution, acquisition time and generation methodology. 
When more than one elevation data set is available, they can be analyzed to 
provide an estimate of the uncertainty. This work present a method to estimate 
elevation uncertainty based on at least two elevation data sets. Cluster analysis 
of uncertainty is also carried out and a strong correlation between uncertainty 
and terrain curvature is found. The results of this study can be used to modify 
the available DEMs along ridge and valley lines, to create a quality of DEM 
information based on the curvature, and to provide a valuable quality measure 
for the input and the effect on the geophysical flow model results. 
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1. INTRODUCTION 

Environmental process models using elevation data derive products to be 
used in supporting decision makers in major problems, ranging from 
flooding risk areas, volcanic hazards, man-made structures positioning to 
ecological studies. 
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In hazard mapping models, such as simulation models for geophysical 
mass flow, the use of a certain elevation data set may result in mapping areas 
with none or low risk for a given hazard. However, these areas may turn into 
high risk areas with a small difference in the elevation data. In a similar way, 
a model that predicts values at a particular point to have a magnitude that is 
below a safe threshold may exceed the threshold to an unsafe value. This 
phenomenon is very common in cone-shaped volcano landscapes where data 
resolution and the initiation point for the debris flow determine the flow path 
down the slopes. In contrast to the high density of ridgelines of a volcano 
landscape, the surface flow path in watersheds in a non-cone shaped 
landscape have a low ridge density and the flow ends up almost 
automatically at a particular watershed outlet along the major drainage 
pattern. To overcome these limitations, a process-based mathematical model 
should be able to perform, in this case, hazard maps taking into account the 
uncertainties that exist in elevation data.  

Uncertainty is known to be present in digital elevation models (DEMs) 
(Hunter and Goodchild 1997; Canters et al. 2002). The sources for elevation 
data are usually either measurements taken in-situ by surveys or by remote 
sensing. Any of these measurement methods has an uncertainty attached to 
it. The measurements are transformed in a common standardized digital data 
structure and the additional processing in the processing algorithms will add 
even more uncertainty (Renschler In Press). Elevation data from United 
States Geological Survey (USGS) DEM (USGS 2003), laser altimetry, radar 
interferometry (Hodgson et al. 2003), and Global Positioning System contain 
an uncertainty component.  

Unfortunately, there is no spatially distributed information about the 
elevation uncertainty. If the uncertainty is available at all, it is specified as a 
global measure, and not a distributed quantity for every location covered by 
the DEM. For example, 10 and 30 meters resolution DEM from USGS 
specify the error in terms of a Root Mean Squared (RMS) for few locations 
(USGS 2003). This uncertainty could and should be estimated when the 
acquisition instrument, pre-processing, and interpolation methods used to 
create a particular DEM are available. This information about the DEM 
production is usually not attached to the data set released.  

Given the constraints, a method that defines uncertainty in DEM by 
taking advantage of the existence of more than one data set for the same 
region is required. Since more than one observation about a phenomenon in 
a particular location should lead to a better understanding of the measured 
value, two or more DEMs from different sources can be used to estimate 
their uncertainties. 

When an uncertainty value is attached to each location inside the 
coverage region of the DEM, the correlation between uncertainty and 
morphological feature can be defined. If such correlation exists, uncertainty 
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for DEMs where only one data is available can be estimated from DEM 
morphology. Such estimation will only be possible if the differences 
between the DEMs are not randomly distributed. Therefore, a method to 
divide regions with random distribution of high differences in elevation from 
areas with clustered high differences values is essential. 

In this paper, a method to estimate the uncertainty in a DEM is presented, 
and to comprehend the uncertainty, clusters of high values of differences 
between two DEMs are defined and correlated with DEM morphology. 

2. UNCERTAINTY ESTIMATION AND 
CORRELATION ANALYSIS 

The proposed uncertainty estimation procedure is divided in three phases: 
descriptive statistics based on two or more DEMs; definition of a clustering 
map; and correlation with terrain morphology. 

2.1 Statistical Analysis of Two or More DEMs 

This study suggests that the uncertainty in a DEM can be estimated by 
taking advantage of the existence of more than one data set for the same 
region. In this context, elevation at one location is not the true value, but a 
random variable. From a set of observations at that particular location, a set 
of data values are recorded, and represent the variable. If only one 
observation is available, the variable description is poor. However, if more 
than one observation is available, descriptive statistics will better 
characterize the random variable and inferential statistics have the potential 
to estimate the true value within a confidence interval. 

The range, standard deviation, and coefficient of variation measures of 
dispersion and variability can be used to assess the uncertainty. However a 
comparison of spatial variability requires the use of a measure that does not 
take into account the magnitude of the elevation, given that the variation in 
magnitude may be high. Therefore, coefficient of variation is selected to 
provide the relative measure. Coefficient of variation for every location in a 
DEM is defined by: 

100
X
SCV =  1 

Where S and X  are respectively the standard deviation and the mean of 
the independent elevation measures at the same location. Coefficient of 
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variation is usually multiplied by 100 to represent a percentage of standard 
deviation in relation to the mean. 

2.2 Clustering Analysis 

If the uncertainty in the DEM is randomly distributed, measures from the 
descriptive statistics of elevation values in the region are expected to be 
similar. To test this hypothesis, the coefficient of variation measure of 
variability is calculated and analyzed for spatial clustering. If there are 
clusters of high coefficient of variation, a correlation analysis with the DEM 
morphology is executed on the clusters. 

The cluster detection method is based on finding the significant peaks of 
a surface that results from the application of a smoothing filter based on 
Gaussian kernel (Rogerson 2001). The Gaussian kernel is applied on a 
standardized measure; therefore a z-score statistics is calculated on the 
coefficient of variation data. The clusters of significant high values of 
coefficient of variation are found where the smoothed grid value is greater 
than a critical value. 

2.2.1 Z-Score Calculation 

The z-score is calculated for coefficient of variation data using the mean 
and standard deviation of the whole area. Then, at every point of the DEM 
grid, the z-score is calculated by: 

CV

rc
rc S

CVCVz −
=  2 

Where zrc is the z-score at row r and column c, CVrc is the coefficient of 
variation in percentage at row r and column c, CV  and SCV are respectively 
the mean and the standard deviation of coefficient of variation in percentage 
for the whole region. 

2.2.2 Gaussian Kernel  

The search for significant clusters of high values of coefficient of 
variation requires the use of Gaussian kernel for smoothing. The standard 
deviation of the Gaussian kernel is selected based on the desired smoothing, 
with low values yielding less smoothing and high values generating more 
smoothing. 
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The Gaussian kernel is built by applying the weights calculated 
accordingly to the distance of each neighbor cell of the coefficient of 
variation grid to the center cell. The weights wij are calculated using: 

πσ
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=  3 

Where σ is the standard deviation of the Gaussian kernel and dij is the 
distance from the center cell i to neighbor cell j. The weights are used to 
smooth values at i using: 
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Where yi is the smoothed value at cell i, wij is the weight for the cell at 
the distance from center cell i to neighbor cell j, and zj is the z-score of cell j. 
Note that since z-score is being used, the distance used here is in the cell 
units, i.e. if cells are neighbors in the same grid row or column, the distance 
between them is one. 

The selection of the standard deviation parameter of the Gaussian kernel 
is based on the ability to overcome the random differences, to enhance the 
clusters, and to obtain an adequate smoothing. To avoid using all the grid 
cells for each cell under calculation, the maximum distance at which a 
neighbor cell influences the center cell must also be defined. 

2.2.3 Selection of Gaussian Kernel Standard Deviation  

Gaussian kernel used for smoothing requires the selection of the kernel 
standard deviation. The selection criteria consider the result of the kernel 
application, with the goals for the kernel being to remove the random 
variations and to enhance the clusters of extreme values. The following 
criteria are used: 
• Few clusters with areas smaller than five grid cells. This criterion 

contemplates the insignificance of small clusters to the overall objective 
of applying correlation analysis. 

• Proportion of the area of clusters in relation to total area of all cells 
sufficiently small. When Gaussian kernel standard deviation is too high, 
the clusters will tend to occupy the whole region. 
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2.2.4 Maximum Distance 

Considering the case when all the neighbor cells have the same value, the 
maximum distance to be considered in the Gauss kernel can be defined when 
a given percentage of the maximum value for a smoothed grid cell is 
reached. The reached percentage should be high enough to permit the use of 
small number of cell as the neighborhood instead of the whole region. This 
approach is possible given that the weights decrease exponentially with 
distance to the center cell. 

The use of the autocorrelation matrix calculated on the coefficient of 
variation grid allows the use of a distance smaller than defined considering 
all cells with the same value. The influence of each cell is weighted by the 
corresponding value in the correlation matrix. Therefore, the maximum 
distance is calculated by: 

min3max 100
2

p
aw

dd jj
j >∋= ∑

πσ
 5 

Where dmax is the maximum distance to be considered, dj is the distance 
of neighbor cell j to center cell wj, is the weight of the Gaussian kernel for 
cell j, aj is the autocorrelation value at cell j, σ is the Gaussian kernel 
standard deviation, and pmin is the selected percentage of the maximum value 
(given by 32 πσ ). 

2.2.5 Critical Value 

The clusters of significant values of coefficient of variation are found 
based on the critical value M*, that makes the probability of finding a value 
greater than M* equal to a selected significance level α. The critical value M* 
is calculated using the following equation (Rogerson 2001): 

( ) ( ) ( ) ( )[ ]∗
∗∗∗

∗ Φ−++=> MMDMAMMzp i 1
4

max 2 σπ
ϕ

πσ
ϕ  6 

Where A is region area (in cell size units, i.e. one cell area is one), D is 
the caliper diameter, σ is the Gaussian kernel standard deviation, φ is the 
probability density function of the normal distribution, and Φ is the 
cumulative distribution function of the normal distribution. For a rectangular 
grid, D is half of the sum of the rectangle height and width. 

The contribution of the third term in (6) to the result is sufficiently small 
to be discarded (Rogerson 2001), resulting in the simplified equation: 
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Furthermore the following approximation can be used: 
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M

281.14ln σαπ  8 

The approximation of M* given in (8) is valid only if A is smaller than 
10000 or if σ is not smaller than one (Rogerson 2001). When A is greater 
than 10000, the approximation can be used if: 

01.0>
A

tσ  9 

Where σt is the total smoothing given by 22
0 σσσ +=t

, with σ0 equal to 
10/9 for a square grid. 

For most cases using elevation data, A is greater than 10000, and the 
selected σ is expected to be between 1 and 4. In these conditions, the 
restriction of (9) is not satisfied. However, the critical value obtained by 
using the approximation of (8) is only slightly smaller than the value 
calculated using (7). Moreover, the difference in cluster area size is not 
significant due to the high incline of the smoothed grid in clustered regions. 

2.3 Correlation with Terrain Morphology 

Although the coefficient of variation indicates uncertainties in the DEM, 
additional knowledge about the structure of a DEM quality can be extracted 
if correlation between uncertainty and morphological features of the DEM is 
obtained. The correlation with uncertainty is searched for the surface 
geometry represented by slope and curvatures. 

2.3.1 Correlation with Slope 

Slope is defined by the angle of the plane tangent to the surface z(x,y) at a 
given location (x0,y0) and the plane z=0. Using the gradient of the surface, 
the slope at (x0,y0) is: 

22
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The partial derivatives δz/δx and δz/δy are estimated using a third order 
finite difference method  (Horn 1981), using 8-neighborhood. The method is 
consistently considered one of the best estimation methods for elevation data 
(Skidmore 1989; Hodgson 1998; Jones 1998). 

Correlation of uncertainty in elevation of a DEM and slope is expected 
given that a difference on the horizontal location (∆x,∆y) will lead to: 

( ) ( ) ),(,, yxzyxzyyxxz ∆∆∆+=∆+∆+  11 

Where: 
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Therefore, the uncertainty in elevation is expected to be correlated to the 
slope. 

2.3.2 Correlation with Curvature 

A surface curvature is not unique and differs with direction, which is 
selected accordingly to the application. For this study, the selected directions 
are the maximum slope direction and the perpendicular to the maximum 
slope direction. The curvatures on these directions are respectively the 
profile curvature and tangential curvature (Zevenbergen and Thorne 1987; 
Mitasova and Hofierka 1993; Schmidt et al. 2003). Tangential curvature is 
preferred here instead of contour curvature, which has the direction of the 
contour line as the direction of interest, given that the contour curvature is 
more sensitive to errors in elevation (Schmidt et al. 2003) and converges to 
infinite at locations where the contour line radius tends to zero, such as at the 
top of hills or bottom of pits (Shary et al. 2002). 

The profile curvature is given by: 
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And the tangential curvature is given by: 
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Where δz/δx, δz/δy, δ2z/δx2, δ2z/δy2, δ2z/δxy are the partial derivatives of 
first and second order of the surface z(x,y). The curvatures calculated by (13) 
and (14) have positive values for concavity and negative values for 
convexity. 

Elevation differences between the DEMs are expected to be correlated to 
changes in slope at its maximum and orthogonal to maximum directions 
given that elevation values of DEM are obtained at a resolution that may not 
capture the rapid changes in the gradient of elevation. Therefore, in regions 
where curvatures are close to zero, elevations differences should be low, 
while where convexity is high, elevation values are expected to be in average 
higher for high resolution DEMs compared to low resolution ones. 
Conversely,  areas with high concavity, elevation values are expected to be, 
in average, lower for high resolution DEMs compared to low resolution 
ones. 

3. CASE STUDY – COLIMA VOLCANO 

Models of mass flows related to volcanic activities require terrain 
elevation data. The model used in the TITAN simulation (Patra et al. In 
Press) treats flows as averaged granular flows governed by Coulomb type 
interactions where elevation information plays a crucial role. The elevation 
model used is considered to be a perfect representation of the topography. 
Estimates of the uncertainty in a DEM could be used in the simulation model 
if they were available. Volcan de Colima is a validation site for the TITAN 
mass flow model and its DEM is used in this test case, comprising an area of 
approximately 38 squared kilometers, between coordinates 635030, 2144510 
and 665990, 2170250 (easting and northing in meters, respectively), in 
Universal Transverse of Mercator (UTM) map projection. 

For the TITAN mass flow simulation at Volcan de Colima, a DEM 
available at Arizona Image Archive (www.aria.arizona.edu) was used. A 
second DEM was obtained from the Shuttle Radar Topography Mission 
(SRTM) data (available at ftp://edcsgs9.cr.usgs.gov/pub/data/srtm/North_ 
America/3arcsec/). The DEM from Arizona Image Archive will be named 
ARIADEM, and the DEM from SRTM, SRTMDEM, from here on. 
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To allow the analysis of differences between the DEMs, they must use 
the same mapping references obtained from a published map. For the Colima 
site, four maps (Comala (INEGI 1999b), San Gabriel (INEGI 1999d), 
Cuauhtemoc (INEGI 1999c), and Ciudad Guzman (INEGI 1999a)), in 
1:50000 scale using UTM projection and ITRF92 datum, were used as base 
maps. ARIADEM is available in UTM projection with NAD27 datum and 
SRTMDEM is available in a 3-arc second grid using WGS84 datum. Thus, 
both DEMs were reprojected and resampled to a 90 meter resolution grid in 
UTM with ITRF92 datum from their original projections. SRTMDEM 
contains grid points with no values, where the interferometric process of 
generating elevation data failed due to low reflectance, shadowing, or 
layover effects. 

3.1 Coefficient of Variation between ARIADEM and 
SRTMDEM 

The coefficient of variation statistics is used to analyze the difference 
between the two DEMs since it provides a measure that does not take into 
account the magnitude of the elevation, which ranges from elevation in the 
671 and 4212 meters in the study area.  Coefficient of variation is calculated 
using (1) and requires standard deviation and mean, which are calculated on 
all grid points of the DEM, except where SRTMDEM has no values. 

3.2 Clustering Analysis 

The cluster detection method requires the generation of the standardized 
measure z-score on the coefficient of variation grid. On the created z-score 
grid of values, the Gaussian kernel is applied using discrete convolution 
using a mask with values that corresponds to the kernel weights. The mask 
size is given by the maximum distance to be considered defined using the z-
score grid autocorrelation matrix. The Gaussian kernel standard deviation 
and the critical value, used to define clustering, are selected based on the 
ability to undermine random variations and to enhance the clusters of high 
differences. 

3.2.1 Z-Score 

The standardized measure z-score for the coefficient of variation is 
calculated for every point of the grid using the mean (0.7680 meters) and 
standard deviation (0.7613), using (2). 
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3.2.2 Maximum Distance 

The autocorrelation matrix of the z-score grid is used to predict the 
maximum distance to be considered in the Gaussian kernel. Table 1 presents 
the distances for various Gaussian kernels and the distances at which 90%, 
95% and 99% of the maximum is reached considering the autocorrelation 
matrix and without considering it. 

Table 1. Distances to reach percentage of the maximum value for various Gaussian kernel σ, 
considering the autocorrelation matrix (a) and without considering it (b). 

Distance (in grid cell unit) 
90% 95% 99% σ 

(a) (b) (a) (b) (a) (b) 
1 2.23 2.23 2.24 2.24 3.00 3.16 
2 4.00 4.24 4.47 5.00 5.83 6.08 
3 5.83 6.40 6.71 7.28 8.54 9.22 
4 8.00 8.54 9.06 9.90 11.40 12.08 
The selected maximum distance is the one when 95% of the maximum 

value for the Gaussian kernel is reached, given that the 95% threshold for the 
distance, considering the autocorrelation matrix, yields a convolution matrix 
that is capable of being handled by a neighborhood operation in map algebra, 
available in most Geographic Information Systems tools. 

3.2.3 Selection of Gaussian Kernel Standard Deviation and Critical 
Value 

The z-score grid of coefficient of variation was smoothed using Gaussian 
kernel with various standard deviation to select the most appropriate 
standard deviation for detecting clusters. Using the critical values M*, the 
smoothed z-score grid of coefficient of variation is divided in regions that 
exceed M*. Table 2 presents the critical values for Gaussian kernel with 
various standard deviation, the critical values M* from (7) and (8), the 
number of grid cells exceeding M*, the difference in number of cells using 
M* from (7) and (8), the percentage of regions smaller than 5 cells, and the 
percentage of clusters area to total area of the grid. The total number of cells 
in the study region is 98384. 

Table 2 shows that the use of Gaussian kernel with standard deviation 
equal to one yields too many small regions. The proportion of cluster areas 
to total using values three and four for standard deviation of the Gaussian 
kernel is over twenty percent, which is considered too high. Therefore, the 
standard deviation selected here is two, with the critical value being selected 
by (8), given that the difference when compared to using (7) is not 
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significantly different, and (8) does not require the use of a detailed z-table 
(Rogerson 2001). 

Table 2. Clusters characteristics for various Gaussian kernel and critical values M*. 
Clusters Above M* 

σ M* using # of Cells Underestimated 
% 

Small 
Region 

(%) 

Prop. 
Total 
(%) 

(8): 5.032 5600 33.2 5.7 1 (7): 4.709 6370 87.91 28.8 6.5 
(8): 4.739 13480 12.6 13.7 2 (7): 4.546 14122 95.45 12 14.4 
(8): 4.562 19435 4.4 19.8 3 (7): 4.414 19896 97.68 4.4 20.2 
(8): 4.436 23470 2.6 24.4 4 (7): 4.308 23921 98.11 5.4 24.3 

3.3 Correlation with Terrain Morphology 

Tests of linear correlation between coefficient of variation grid and each 
of the terrain morphology measures indicates that the highest correlation is 
between slope and coefficient of variation, as indicated in Table 3, where 
Bonferroni adjustment for spatial autocorrelation was not used, although the 
rank of correlation would not have changed with the adjustment. 

Table 3. Correlation between coefficient of variation and terrain morphology measures, using 
all grid cells. 

Terrain Morphology 
Parameter 

Correlation 
Coefficient 

Correlation t-score, N=95866, 
Critical t = ±1.98 for 95% 
significance 

Slope 0.1739 54.70 
Profile Curvature 0.0613 19.02 
Tangential Curvature -0.0131 -4.067 
 

Correlations with curvatures are distorted given that slopes and 
coefficient of variation are all positive and curvatures can be positive and 
negative. By using difference between the two DEMs, a measure that also 
has positive and negative values, the bias against curvature is eliminated. 
Table 4 presents the linear correlation coefficients between differences in 
elevations and each of the terrain morphology parameters. 

Although the correlation with slope is higher than the correlation with 
curvatures for grids of coefficient of variation and of difference in elevation, 
analysis of correlation in the clusters of high coefficient of variation provide 
information more significant on the uncertainty of the DEM. 
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Table 4. Correlation between differences in elevation and terrain morphology measures, using 
all grid cells. 

Terrain Morphology 
Parameter 

Correlation 
Coefficient 

Correlation t-score, N=95866, 
Critical t = ±1.98 for 95% 
significance 

Slope -0.1284 -40.11 
Profile Curvature -0.0486 -15.08 
Tangential Curvature 0.0738 22.93 

The clustered areas are used to define correlation of the differences with 
the surface geometry represented by slope and curvatures to find which 
parameter of the DEM contributes most for high uncertainty. For each 
cluster of high coefficient of variation, the mean difference between 
ARIADEM and SRTMDEM, the mean slope, and mean curvatures from 
ARIADEM are obtained. Table 5 shows linear correlation coefficients 
between the mean differences and slope, profile curvature, and tangential 
curvature, with the respective t-score statistics. 

Table 5. Correlation between mean differences in elevation and mean terrain morphology 
measures, using clusters. 

Terrain Morphology 
Parameter 

Correlation 
Coefficient 

Correlation t-score, N=117, 
Critical t = ±1.98 for 95% 
significance 

Slope -0.1175 -1.269 
Profile Curvature -0.1096 -1.183 
Tangential Curvature 0.3622 4.168 

The results from Table 5 indicates that tangential curvature has a 
significant linear correlation with difference in elevation between 
ARIADEM and SRTMDEM, when comparing the mean for the cluster 
regions, while the other surface morphology parameters have no significant 
correlation with mean difference. Figure 1 presents the scatter plot of 
differences in function of tangential curvature. 

The regression line of the correlation is given by: 

33*23020 −= tkDiff  

Where Diff is the difference in elevation between ARIADEM and 
SRTMDEM and kt is the tangential curvature. 

The equation of difference in function of tangential curvature is used to 
define the expected difference for each cluster region. The map showing the 
regions with high difference between the observed and expected differences 
is presented in Figure 2. 
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Figure 1. Scatterplot of differences in elevation between ARIADEM and SRTMDEM (in the 
vertical axis) in function of tangential curvature (in the horizontal axis). 

 

Figure 2. Clusters of high coefficient of variation, with differences between predicted and 
observed differences in elevation for each cluster. Background image is a pseudo-shaded 
image of the ARIADEM. 
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4. DISCUSSIONS 

Correlation between coefficients of variation from DEM and slope is 
significant when the whole grid is considered. However, a significant source 
of uncertainty is not considered, as it can be asserted through the 
visualization of the observed coefficient of variation and the difference 
between observed and expected coefficient of variation, where they look 
similar. A further analysis using scatter plot of the differences on elevation 
in function of slope supports the previous finding. The correlation is 
statistically significant but there are other sources of uncertainty that are 
revealed only by the clusters analysis. 

4.1 Discussions on Clusters 

The correlation results on clusters show that the differences between 
ARIADEM and SRTMDEM are linearly correlated with tangential curvature 
inside the 117 clustered area units, when average of the area is considered. 
The statistical significance of the correlation using t-statistic is 99.99994% 
(the calculated t-statistic is 4.168). 

To predict differences between ARIADEM and SRTMDEM at each 
cluster, the regression line is used, resulting in an average difference of 0.85 
meters, with standard deviation of 25.51 meters. Of the 117 clusters, nine 
have differences between predicted and observed greater than two standard 
deviations and an analysis of the spatial context of the clusters is presented 
next. 

4.1.1 Clusters with High Differences between Predicted and 
Observed Values 

Three of the nine clusters with differences between predicted and 
observed higher than two standard deviations are located at the edges of the 
DEM, indicating that the cluster analysis is not efficient at these regions. 
This result is expected since the Gaussian kernel relies on the neighborhood 
that cannot be correctly defined at the limits of the DEM. 

Other three of the nine clusters have areas smaller than 5 grid cells, 
indicating that clusters must have a minimum size to provide useful analysis, 
through a representative average values. 
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4.1.2 Other Clusters with High Differences between Predicted and 
Observed Values 

There are seventeen clusters with differences between one and two 
standard deviations. From this set, four are located close to the Colima 
Volcano, in an unstable area with prevailing block-and-ash flow (Saucedo et 
al. 2002), and, since there is a time difference between acquisitions of data, 
the underperformance of the correlation may be related to erosion and 
deposition of material in the region of the cluster. 

5. SUMMARY 

The importance of elevation information as model input and the effects 
on simulating geophysical flows for hazard mapping demonstrates the need 
for knowledge and understanding of dealing with uncertainties. We present 
an estimation procedure to describe uncertainties in Digital Elevation 
Models by taking advantage of the availability of an additional elevation 
data set for the same area. Since only two samples of elevation are available, 
the coefficient of variation is used here as an uncertainty measure. 

A cluster analysis of uncertainty is also carried out to determine the 
significant regions of high coefficient of variation using a cluster detection 
method. This approach is required given that the correlation of the 
uncertainty measure with slope considering individual cell of the DEM grid 
does not provide all the knowledge about the DEM parameters that affect its 
uncertainty. 

Correlation analysis considering the average difference between 
elevations and average curvature within a cluster region is the method 
proposed here. Using this approach, the influence of the slope and random 
variations between DEMs are diminished and a strong correlation between 
averaged uncertainty and averaged terrain tangential curvature is found. 
Given that the extreme values of tangential curvature are found along ridge 
and valley lines, the available DEM can be modified in these regions by 
incorporating additional elevation information. 

With the cluster analysis, the focus is placed on regions where estimated 
uncertainty is high and clustered allowing a study that goes beyond the 
expected influence of slope on elevation uncertainty. Using the results of the 
cluster analysis, one can evaluate either if additional information has to be 
collected when the cluster region coincides with the study area, or if there is 
no need to spend resources on additional data gathering. 

The uncertainty of a DEM can be defined when an additional DEM is 
available. The importance of the existence of a global coverage DEM 
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provided by the SRTM dataset is highlighted in this paper, even with the 
limitations of having gaps in the data and the relatively lower resolution of 
three arc-second. 

ACKNOWLEDGEMENT 

The National Science Foundation is acknowledged for providing funds 
through the research project “ITR/AP+IM: Information Processing for 
Integrated Observation and Simulation Based Risk Management of 
Geophysical Mass Flows”, ITR-0121254. 

REFERENCES 

Canters, F., W. D. Genst and H. Dufourmont (2002). "Assessing effects of input uncertainty 
in structural landscape classification." International Journal of Geographical Information 
Science 16(2): 129-149. 

Hodgson, M. E. (1998). "Comparison of Angles from Surface Slope/Aspect Algorithms." 
Cartography and Geographic Information Systems 25(3): 173-185. 

Hodgson, M. E., J. R. Jensen, L. Schmidt, S. Schill and B. Davis (2003). "An evaluation of 
LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS 
Level 1 and Level 2 DEMs." Remote Sensing of Environment 84: 295–308. 

Horn, B. K. P. (1981). "Hill Shading and the Reflectance Map." Proceedings of the IEEE 
69(1): 14-47. 

Hunter, G. J. and M. F. Goodchild (1997). "Modeling the uncertainty of slope and aspect 
estimates derived from spatial databases." Geographical Analysis 29(1): 35-49. 

INEGI, Ed. (1999a). Ciudad Guzman E13B25. Mexico City, Mexico, INEGI, Instituto 
Nacional de Estadistica, Geografia e Informatica. 

INEGI, Ed. (1999b). Comala E13B34. Mexico City, Mexico, INEGI, Instituto Nacional de 
Estadistica, Geografia e Informatica. 

INEGI, Ed. (1999c). Cuauhtemoc E13B35. Mexico City, Mexico, INEGI, Instituto Nacional 
de Estadistica, Geografia e Informatica. 

INEGI, Ed. (1999d). San Gabriel E13B24. Mexico City, Mexico, INEGI, Instituto Nacional 
de Estadistica, Geografia e Informatica. 

Jones, K. H. (1998). "A comparison of algorithms used to compute hill slope as a property of 
the DEM." Computers & Geosciences 24(4): 315-323. 

Mitasova, H. and J. Hofierka (1993). "Interpolation by Regularized Spline with Tension .2. 
Application to Terrain Modeling and Surface Geometry Analysis." Mathematical Geology 
25(6): 657-669. 

Patra, A. K., A. C. Bauer, C. C. Nichita, E. B. Pitman, M. F. Sheridan, M. Bursik, B. Rupp, A. 
Webb, A. Stinton, L. M. Namikawa and C. Renschler (In Press). "Parallel Adaptative 
Numerical Simulation of Dry Avalanches over Natural Terrain." Journal for Volcanology 
and Geothermal Research In Press, Corrected Proof. 

Renschler, C. S. (In Press). "Scales and uncertainties in using models and GIS for volcano 
hazard prediction." Journal of Volcanology and Geothermal Research In Press, Corrected 
Proof. 



108 

Rogerson, P. A. (2001). "A Statistical Method for the Detection of Geographic Clustering." 
Geographical Analysis 33(2): 215-227. 

Saucedo, R., J. L. Macias, M. I. Bursik, J. C. Mora, J. C. Gavilanes and A. Cortes (2002). 
"Emplacement of pyroclastic flows during the 1998-1999 eruption of Volcan de Colima, 
Mexico." Journal of Volcanology and Geothermal Research 117(1-2): 129-153. 

Schmidt, J., I. S. Evans and J. Brinkmann (2003). "Comparison of polynomial models for land 
surface curvature calculation." International Journal of Geographical Information Science 
17(8): 797-814. 

Shary, P. A., L. S. Sharaya and A. V. Mitusov (2002). "Fundamental quantitative methods of 
land surface analysis." Geoderma 107(1-2): 1-32. 

Skidmore, A. K. (1989). "A comparison of techniques for calculating gradient and aspect 
from a gridded digital elevation model." International Journal of Geographical Information 
Systems 3(4): 323 - 334. 

USGS (2003). USGS Digital Elevation Model Data. 2003. 
Zevenbergen, L. W. and C. R. Thorne (1987). "Quantitative-Analysis of Land Surface-

Topography." Earth Surface Processes and Landforms 12(1): 47-56. 
 


