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Abstract With the proliferation of Geographic Information Systems (GIS) and spatial re-
sources over the Internet, there is an increasing demand for robust geospatial
information services that allow federation/interoperation of massive repositories
of heterogeneous spatial data and metadata.

However, interoperating GIS poses several challenges. First, there is no ac-
cepted standard for spatial or geographic data representation. Second, each GIS
provides its own proprietary format as well as its specific query language; while
geographic resources are designed for a variety of different purposes. Finally,
orthogonal directions in the design of geographic resources may affect the se-
mantics of the data they contain and impair their integration.

The purpose of this paper is to show how mediation - a data integration tech-
nique - can help in building a Web-based geospatial service. This technique has
been fully implemented in the context of a geographic mediation/wrapper sys-
tem that provides an integrated view of the data together with a spatial query
language. As a proof of concept, we deployed the service in building a proto-
type for an interoperability application involving several catalogues of satellite
images.
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1. Introduction

The proliferation of spatial data on the Internet is beginning to allow a much
larger audience to share data currently available in various Geographic Infor-
mation Systems (GIS). As spatial data increases in importance, many public
and private organizations need to disseminate and have access to the latest data
at a minimum (right) cost and as fast as possible. In order to move to a real
Web-based spatial data system, we need to provide flexible and powerful GIS
data integration solutions. Indeed, GIS are highly heterogeneous: not only they
differ by their data representation, but they also offer radically different query
languages. The two main problems resulting from the data integration are the



data modeling (how to integrate different source schemas) and their querying
(how to answer correctly to the queries posed on the global schema).

The purpose of this paper is to show how mediation - a data integration
technique - can help in building a Web-based geospatial service. This tech-
nique has been implemented in the VirGIS system [Boucelma et al., 2004]
which uses Geography Markup Language (GML) [Cox et al., 2001] for the
encoding and the transport of geographic information, and the WFS interfaces
[OpenGIS, 2002] to access GIS features.

2. Problem Statement

Interoperating geographic information systems is an important problem that
raises many issues. Surveying the research that has been conducted in this area
is definitely out of the scope of this paper. Conferences series such [Vckovski
et al., 1999] contains a comprehensive list of issues, while a paper such as [De-
vogele et al., 1998] provides a clear understanding of the (geographic) schema
integration problem.

The work described in this paper is directly related to data mediation and
its applicability to the GIS world: and this is where our contribution fits.
Mediation systems provide users with a uniform interface to access differ-
ent data sources via a common global (mediated) schema. The main issues
of the schema integration problem are as follows : sources heterogeneity,
global schema modeling and definition, definition and management of map-
ping rules that express the correspondence between the global schema and the
local source ones, source semantics and schema evolution.

The global schema definition, that provides an uniform view of the different
resources, can be done using two different approaches. The first, Global As
View (GAV), consists in defining the global schema as a set of views made on
the local sources. This approach is used, for example, in the TSIMMIS [Garcia-
Molina et al., 1997] integration systems. The second, Local As View (LAV),
used in particular in the projects Information Manifold [Kirk et al., 1995] and
Picsel [Lattes and Rousset, 2000], consists in defining the local sources as a
set of views made on the global schema.

To compensate the insufficiency of the two approaches, other approaches
come into existence like Global Local As View (GLAV) [Friedman et al., 1999]
or Both As View(BAV) [Boyd et al., 2004]. The GLAV approach combines the
expressive power of both LAV and GAV, allowing flexible schema definitions
independent of the particular details of the sources. The BAV approach is based
on the use of reversible schema transformation sequences.

In mediation systems, the result of a user query is impacted by the rewriting
process. Several approaches have been followed in different mediation systems
like TSIMMIS, PICSEL [Lattes and Rousset, 2000], Xyleme [Aguilera et al.,



2001] or MOMIS [Lattes and Rousset, 2000]. In the VirGIS mediation system,
we are concerned about completeness, i.e., we explore the real sources in order
to return a maximum number of tuples and to look for the missing properties
in some sources.

As in any mediation system, a mapping between real data sources and the
mediation schema is needed. One of the main issues faced when integrat-
ing geographic domain data is ontological heterogeneity. As a matter of fact,
each geographic data source is an abstraction of the real world according to a
particular point of view and purpose. A data source may represent regular to-
pographic maps (IGN, Ordinance Survey, etc.) or a statistical survey (national
Census), or even a satellite image (weather forecast or land-cover oriented).
For each dataset, the underlying motivation leads to a particular representation
of geographic objects. As a result, depending on the source point view, its
scale, its producer and its final user, the data source has its own way of clas-
sifying geographic objects. In the sequel , we do not care about the mapping
issues between the real data sources and the mediation schema, then we chose
a simple example with (simple) one-to-one mappings.

As an example, consider the global (mediation) relation
satellite(ID, Name, SatID, Elevation, Date, Geom, Url)

describing a catalogue of satellite images. A user may pose a query against
the satellite relation schema, asking for a satellite image (stored at Url address)
that cover a location described by Geom (coordinates or bounding box), the
image (shot) being taken by a satellite named Name and whose id is SatID, at
a given Date and a given sun Elevation.

Relation satellite resulted from the integration of three relations stored in
three different data sources as illustrated in Figure 1. The three relations are as
follows:

the SPOT database, stored in the geographic shape format, that contains
images taken by French SPOT satellite, and whose relation is

SPOT(key, Satellite, Sat ID, Sun elev, Date , The Geom).

the ikonos database stored in PostGIS format, that supplies IKONOS
images and whose relation is

ikonos(key, Satellite, Sat ID, Sun el, Date acqui, Geometry),

the preview database stored in PostGRES, that contains images, and
whose relation is preview(key, filename).

As illustrated in Figure 1, arrows indicate the schematic mappings between
the three (local) schemas and the global (mediated) one.
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Figure 1. Sources and Mediation Schema Mappings

3. Processing User’s Queries

In this section, we first give an overview of the VirGIS integration system
and the query languages being used. Then we describe the internals of a user’s
query processing.

3.1 Mediation System Overview

Figure 3 illustrates the current system architecture, that complies to the ap-
proach described in this paper. VirGIS is in charge of processing (geographic)
users’ queries that are expressed either in GQuery [Boucelma and Colonna,
2004] –a query language we purposely developed, or in XML/KVP (Keyword-
Value-Pair) according to the OpenGIS WFS specification. Sources are pub-
lished on the VirGIS portal via WFS servers. An admin interface allows the
addition, modification or deletion of sources located by their WFS addresses.
Local schemas and capabilities are extracted automatically using WFS opera-
tors such as (GetCapabilities and DescribeFeatureType). The satellite global
schema is described as an XML Schema Description [W3C, a].

The (global) user query is written in terms of the global schema. As this
query may include several entities of the global schema, the first step consists
in decomposing it into a set of sub-queries dealing with one entity at a time. We
call this kind of sub-queries elementary queries. The decomposition module is
in charge of transforming a query into a set of elementary queries, which leads
to a a first execution plan called global execution plan. Note that the global
execution plan is composed of a set of elementary queries expressed in terms
of the global schema.

Now, the goal is to produce an execution plan for each elementary query.
This is done by the Rewriting module in using a set of mapping rules and
sources’ capabilities. The process is repeated for each elementary query and



results in an elementary execution plan that corresponds to the set of candi-
date queries that need to be executed to answer an elementary query. Finally
the final execution plan (the one that corresponds to the global user query) is
obtained by replacing each elementary query of the global execution plan by
its elementary execution plan. Figure 2 illustrates the way the final execution
plan is calculated. In this figure EQ1 stands for elementary query1 and EEP1

stands for elementary execution plan1.
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Figure 2. Query Processing

The final execution plan contains three types of queries:

1 HTTP queries are WFS queries in charge of extracting a feature from a
local source.

2 GQuery queries are (mainly) used to express spatial operations, and are
processed by the GQuery Engine.

3 JOIN queries play a central role in the execution plan. Since we are han-
dling a large amount of data, and because execution of joins in current
XQuery implementations is prohibitive, we are using a specific SortJoin
algorithm. The WFS join Engine module is responsible for processing
this kind of queries.

The final execution plan is then processed by the execution module which
is in charge of sending subqueries to the appropriate engine according to their
type. This module uses a cache repository to save temporary results generated
by the different queries. When the execution is finished, the recomposition
module processes the result in removing duplicates (if any), before returning
a GML stream as an answer, the stream can be either displayed or a passed to
another program.
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Figure 3. The VirGIS Architecture

3.2 Query Language

We are using GQuery [Boucelma and Colonna, 2004], a query language
based on XQuery [W3C, b] that allows users to perform both attribute and
spatial queries against GML [Cox et al., 2001] documents. Spatial semantics is
extracted and interpreted from XML tags without affecting XQuery syntax, i.e.
a spatial query is a pure FLWR (Flower) expression, hence looks like a regular
XQuery expression. GQuery may be used either as a stand-alone program, or
as a query language in the context of an integration system, to query several
heterogeneous GIS data sources disseminated over the Web.

3.3 Obtaining a Global Execution Plan

The Global execution plan is the result of the decomposition of the user
query into a set of elementary sub-queries expressed in terms of the global
schema. Data sources are queried via WFS which provides access to any geo-
graphic repository that supports WFS interface. However, WFS does not han-
dle complex queries, neither it performs geographic data integration. Hence,



execution plans result from a combination (join, union and operation) of ele-
mentary queries, each one being posed against a single feature.

Figure 4 returns all SPOT pictures taken on January 1th 2004, that over-
lap IKONOS images satellite images captured during the same period, for a
location having coordinates (8,43 10,41).

let $z:=<polygon><coordinates> 8,43 10,41

</coordinates></polygon>

for $x in document(satellite),

$y in document(satellite)

where WITHIN($x, $z) = TRUE

and $x/Date/text() = ’01/01/2004’

and $x/Name/text() = ’SPOT’

and $y/Date/text() = ’01/01/2004’

and WITHIN($y, $z) = TRUE

and $y/Name/text() = ’IKONOS’

and overlap($x/Geom, $y/Geom) = true

return $x

Figure 4. Query Q0

In our approach, features are not retrieved out according to their names but
rather according to their references. For example, in Q0 we have two features
(one is referenced by x, the other by y). The decomposition process uses this
hypothesis to decompose query into a set of elementary queries.
According to these hypothesis, we can distinguish two features and seven con-
ditions in query Q0. We have two kinds of conditions:

1 Simple conditions involve properties of the same feature, e.g., $x/Date/text()
= ’01/01/2004’.

2 Complex conditions involve properties from two or more features, e.g.,
overlap($x/Geom, $y/Geom) = true.

As a result, Q0 is split into three sub-queries. The first sub-query consists
in extracting all SPOT images of the Corsica region captured on January 1th

2004. The second one extracts IKONOS images with the same conditions
and the last one consists in joining the first query and the second one with
the complex condition overlap($x/Geom, $y/Geom) = true. At the end of this
process, the elementary queries are compared and common sub-queries are
unified. Since the first two queries are similar except the condition about the
name of the satellite, they are transformed into three queries as follows: the first
one consists in extracting all satellite images of Corsica captured on January



1th 2004, the second one consists in keeping only SPOT data, and the last one
consists in keeping IKONOS data. Figure 5 illustrates the global execution
plan.

<Queries>

<Query id="query0" priority="0">

let $y:=<polygon><coordinates> 8,43 10,41

</coordinates></polygon>

for $x in document(satellite)

where WITHIN($x,$y) and $x/Date/text() = ’01/01/2004’

return $x

</Query>

-- Code for query1 returns SPOT features --

-- Code for query2 returns IKONOS features --

<Query id="query3" priority="2">

for $x in document(query1),

$y in document(query2)

where overlap($x/Geom,$y/Geom) = true

return $x

</Query>

</Queries>

Figure 5. Global Execution Plan for Q0

Figure 6 illustrates the decomposition algorithm. Functions used in this algo-
rithm have the following meaning:

ExtractElementaryQueries: extracts elementary queries from the user
query, together with their simple conditions.

SetQueryID: assigns an identifier to the query.

AddQuery: adds a query to the execution plan.

RemoveSimpleConditions: removes all the simple conditions from the
user query because they are already treated in the elementary queries.

ReplaceFeatureByQueryID: replaces the features by the id of their cor-
responding elementary query.

The execution plan is implemented as an XML document whose elements
are query nodes. Each query has an id, a priority number which indicates its
execution order (queries having the lowest priority are executed first) and other
properties that we will describe below.



Algorithm DA(in Query Q0)
ExecutionPlan GEP = φ
ElementaryQueries EQ
EQ = ExtractElementaryQueries(Q0)
for each Q in EQ

SetQueryId(Q)
AddQuery(GEP, Q)

endfor
RemoveSimpleConditions(Q0)
ReplaceFeatureByQueryID(Q0)
AddQuery(GEP, Q0)
return GEP

Figure 6. Decomposition Algorithm

3.4 Obtaining a Final Execution Plan

Once the global execution plan is computed, each subquery (except the last
one which is used to compute the final result) should be rewritten in terms of
the local schemas. To this end, we adapted the approach described in [Amann
et al., 2002]. Indeed, for each query, we start in computing its binding. A
binding of a basic query is the set of mappings that support (totally or partially)
the feature of the query. When a source supports all the properties used in the
query (totally) we say that this query has a full-binding with this source. The
binding of the query allows query rewriting into a set of sub-queries expressed
in terms of the local schemas.

Let us consider, for instance, an elementary query Qe and its binding B =
{Mi , i ∈ 1 . . . n} where n is the number of sources that support the feature
queried by Qe and Mi , i ∈ 1 . . . n, are their respective associated mapping.
To extract the maximum of information located in local sources we rewrite Qe

with a given mapping of the binding, then we try to look for the unsupported
properties (if any) using the other mappings of the binding. To do this we
define the notion of prefix query and suffix query. Given a mapping Mi of a
source Si, A prefix query Qp is a sub-query of Qe that consists in extracting
only the properties supported by Si. Note that Mi provides a full-binding for
query Qp. The suffix query Qs, is the sub-query consisting in extracting the
remaining properties (plus the key’s attributes).

For each mapping Mi ∈ B, the query Qe is processed as follows:

1 compute Qp and Qs of the query Qe and the mapping Mi.

2 let Bs = {Mj , Mj ∈ B , j �= i}
3 let Bi = {Mi}



4 the elementary execution plan of query Qe using the binding Bi is the
join between Qp and the execution plan of Qs using the binding Bs.

Since queries responsible for extracting information features are executed
by WFS interfaces, they are reformulated, using the mapping rules, into queries
that are expressed in terms of local schemas (each feature is replaced by the
corresponding feature and each property is replaced by the equivalent prop-
erty). Let us note that these transformed queries(the ones expressed in terms of
the local schemas) are sent to the WFS servers that execute them and send the
result expressed in the local schemas. Since the final result must be expressed
in the global schema, WFS result are translated to this schema. This is done by
an additional GQuery expression.

Let us now discuss constraints of the prefix and the suffix queries. It is easy
to see that the prefix query contains only the subset of conditions expressed
over its properties. However, the suffix query contains the subset of conditions
over properties of the suffix query extended by the set of conditions of the
prefix query. This extended set is used to refine the prefix query by adding
more conditions. This allows us to minimize the number of extracted tuples,
hence minimize the execution time. Finally, when a condition is not supported
by a data source, it is added to the GQuery expression which is in charge of
translating the result in terms of the global schema.

Figure 7 illustrates the rewriting algorithm which, given an elementary query
Qe and its binding B, computes the execution plan expressed in terms of the
local sources .

Algorithm RW(in ElementaryQuery Qe, in Binding B)
ElementaryExecutionPlan tmpEMP, EEP = φ
for each Mi in B

if ( fullbinding(Qe, Mi))
tmpEP = Qe
else {

Qp = getPrefixQuery(Mi)
Qs = getSuffixQuery(Mi)
Bs = {Mj in B , j > i}
tmpEP = join(Qp, RW(Qs, Bs))

}
endif

EEP = union(EEP, tmpEP)
endfor
return EEP

Figure 7. Rewriting Algorithm



Note that, in the rewriting algorithm, Bs is defined as {Mj ∈ B , j > i}
and not as {Mj ∈ B , j �= i} as mentioned in the beginning of this section.
We have made this change in order to eliminate duplicated answers. In fact, the
subset of mappings {Mk ∈ B , k < i} has already been treated in previous
steps. Thus, it is useless to recompute it.

To compute the final execution plan, we just rewrite the elementary queries
of the global execution plan.

As an example, let us process the first elementary query of global execution
plan of Q0. This consists in extracting all satellite images of Corsica captured
on January 1th 2004. The catalog illustrated in figure 1 shows that neither
SPOT, nor IKONOS properties do map the Url property. Hence, the query
is divided into two sub-queries. The first one (prefix query) extracts the Key,
Satellite, Sat ID, Sun elev, Date and The Geom properties satisfying the con-
dition Date = ’01/01/2004’ and WITHIN($x,$y), from the SPOT data source.
The second one (suffix query) extracts the ID (the key) and the Url properties
from the preview data source. A join is then performed between the results of
the prefix and the suffix queries in order to build the result. The same process
is done with the IKONOS and the preview data sources. Finally an union is
performed on the two results.

4. Conclusion

With the proliferation of GIS data and resources over the Internet, there
exists a huge demand for robust geospatial information services that allow in-
teroperation of massive repositories of heterogeneous data and metadata.

In this paper we described a solution and a system that address effective in-
tegration needs expressed by the GIS community, in a Web bases environment.
To avoid the pitfalls of a complex query language, we developed a user inter-
face (demonstrated at ICDE’04 [Boucelma et al., 2004]) that allows naive user
queries, i.e., there is no need for a non skilled user to invest time in learning
GQuery.

The work described in this paper fully complies with Web and GIS consor-
tia: it combines both XQuery technology, with OpenGIS ones such as WFS
and GML.
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