

Designing and Performing Geographic Analysis Processes
with GISCASE

Cirano IOCHPE, Guillermo N. HESS, Cláudio RUSCHEL, Alécio P. D.
BINOTTO, Márcia A. S. de ALMEIDA, Luciana V. da ROCHA 1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{ciochpe,hess,claudior,abinotto,marcia,vargas}@inf.ufrgs.br

Abstract. This work presents GISCASE, an UML CASE tool based on the
conceptual framework GeoFrame-A to aid GIS users to model their
geographical analysis processes. Starting from a graphical specification of the
geographic process, the tool generates an XML intermediate code free of
platform and then creates the specific programs for a GIS system. In addition,
GISCASE is entirely developed using free software and technologies,
independent of GIS platform and has a modular architecture, which means it
is easy to develop modules to support a wide range of GIS Software.

Resumo. Este trabalho apresenta o GISCASE, uma ferramenta CASE UML
baseada no framework conceitual GeoFrame-A para auxílio aos usuários de
SIG na modelagem de seus processos de análise geográfica. A partir de uma
especificação gráfica do processo geográfico, a ferramenta gera um código
XML intermediário independente de plataforma, criando programas
específicos para um sistema de SIG. Adicionalmente, o GISCASE é todo
desenvolvido utilizando software e tecnologias livres, independente de
plataforma de SIG e tem sua arquitetura dividida em módulos, o que significa
que é simples desenvolver módulos com suporte a uma vasta gama de
programas de SIG.

1. Introduction

Users of Geographic Information Systems (GIS) may come from different professional
areas, such as geography, geology, urban planning, etc. This leads to a scenario where
these users may not be familiar with the database and process modeling. Furthermore,
they may know very well a specifi GIS software. However if the GIS platform is
changed the process and data design may be lost.

 For these reasons, there is a need for models and tools to aid the definition and
design of both geographic data and geographic analysis processes in a language that all
kind of users may understand. The tools used in software engineering more specifically
those used in Geographic Database (GDB) design can be considered as candidates to
supply this need. Some related works proposed data models and frameworks to guide
the GDB design, such as MADS [Parent et al. 1998], GeoFrame [Rocha et al. 2001] and
GeoOOA [Köesters et al. 1996]. However, these data models and frameworks provide
support only for the description of static components of the GIS, i.e., the data.
Therefore, there is a gap in terms of models and tools for the dynamic GIS components,

82

that is, the processes. Even though some GIS software provide tools for the processes
definitions they are platform dependent, designed for specific GIS software.

 Therefore, we propose GISCASE, a software tool to guide the design of
Geographical analysis Processes (GP), based on a conceptual framework called
GeoFrame-A [Ruschel et al. 2005]. The goal is to provide a graphical interface, using a
formal semantics, to allow users that are not very familiar to the GIS language to define
their own processes for different GIS softwares, as GISCASE has a platform
independent architecture. From this formal definition, it generates source code
compatible with the chosen platform.

 The paper is organized as follows. In section 2 we present an overview of the
GeoFrame-A framework, the GISCASE basis. In section 3, we directly present the
GISCASE architecture, especially the Graphical Editor, GPtoXML and XMLtoGIS
modules. In section 4, the implementation of the proposed technique using the TerraLib
GIS API is described. Finally, in section 5, we discuss the results of our work,
conclusions and directions for future work.

2. The framework GeoFrame-A

GeoFrame is an object oriented conceptual framework which makes use of the Unified
Modeling Language (UML) [Fowler 2000]. The GeoFrame allows the GDB design, by
providing a set of classes to be instatiated, specialized and extended (that covers the
geographical data features, such as spatiality and temporality), beyond the descriptive
attributes of the non-geographic data. Continuous efforts were made recently by Ruschel
(2003) who developed GeoFrame-A (GeoFrame with Action), extending GeoFrame to
support geographic analysis processes modeling.

 In GeoFrame-A, specifically in the class diagram where the spatio-temporal and
descriptive data are designed, the GP is represented as an Activity Class, defined by
UML 2 specification. Taking advantage of the UML concepts, the behavior of an
Activity is characterized as a sequence of subordinated units where each individual
element is an Action. A stereotype like a gear identifies such class, while other
stereotypes show the spatial representation.

Basin

by Basin

<<instantiate>>

Define

Municipality

Region by

Regions

River Basin

Figure 1. A class diagram using GeoFrame-A

 Figure 1 presents a simple process definition using a class diagram with
GeoFrame-A. This process uses spatial classes represented through polygons

83

(Municipality and River Basin) to define a new kind of region (Region by Basin) which
considers both political and natural aspects.

 Moreover, the UML activity diagram details the GP specification and we can
define data and control flows during the GP, as well as the inputs needed for each
operation and the outputs expected. In addition, data is represented as object nodes and
operations as activity nodes.

 The GeoFrame-A definition included a research and a classification of the basic
geoprocessing operations. Thus, the Geoframe catalog define operations that deals only
with non-spatial attributes, like Selection, and others that deals with spatial attributes,
such as Spatial Selection, Buffer, Overlay, Dissolve and Classification [Ruschel 2003].

 Figure 2 details the process presented in Figure 1 through an activity diagram.
The notation used is compatible with the GISCASE tool. In this diagram, one can read
that the objects of the Municipality class are aggregated through the attribute
“Id_AdmRegion” (such attribute would identify in which Administrative Region a
municipality is contained). The prefix “DS” identifies the Dissolve operation, that erase
the border line between polygons with equal values for a specified attribute. Next, the
result of this operation is intersected with the objects of the class River Basin. The
geometric intersection between these objects is performed by the geoprocessing
operation Overlay (identified with the prefix “OV”), using the Boolean operator
“AND”. The final result is a set of objects that represent a new administrative region
definition (class “Region by Basin”).

 Both the field and object visions of a geographic phenomenon spatial
representation were considered. For each operation, the entry parameters were
described. The geographic analysis operations are, in general, made with long (and even
complex) algorithms. However, many of the operations defined in GeoFrame-A are
already implemented in common GIS software, but probably not exactly with the same
names. That happens because GeoFrame-A is entirely GIS independent and the
operations name may vary from one GIS to another.

Figure 2. An activity diagram compatible with the GISCASE too l

84

3. GISCASE´S Architecture

The activity diagram semantics in a conceptual level is enough to perform an automatic
conversion to computer systems if some conventions were used. In GISCASE, it was
defined to consider that instance of spatial classes are represented through table register
in a geographic database. On the other hand, it was considered too that the operations
defined in the activity diagram have a corresponding implementation available on a GIS
software API.

 To automate such processes, we developed the GISCASE tool, which creates
those programs for the user automatically. All the concern for the user is to define his
process and then choose the desired GIS API. It consists on three main modules
(Graphical Editor, GPtoXML and XML to GIS), as Figure 3 illustrates.

Graphical Editor
GPtoXML

Poseidon

GisCase

Main Window

XMI Parser

XMIXML

GP

Rules
XML Parses

(Syntactic and

Semantic validation)

XMLtoGIS

Generator

XML

Compiler

SQL /

C++

XML

schema

GIS

data model

GIS API

Figure 3. GISCASE software architecture

 These modules are managed by a main interface (Figure 4), where the user can
view (and even edit) the results of each module. Also through this interface, the user can
define the database system and the GIS API that should be used.

85

Figure 4. A screenshot of the GISCASE interface

3.1. Graphical Editor

The Graphical Editor is an external tool that can be activated by GISCASE, in which the
user creates its GP graphically, using the UML activity diagram.

 GISCASE is capable of using generic graphical editors or CASE tools that have,
at least, the basic features of an activity diagram. The editor must be able to distinguish
Action Node and Object Node, and also represents flows between them. Each flow must
be identified as a data flow or as a control flow through stereotypes, such as their roles.
Other control flow elements, such split nodes, must be available.

 Another requisite for the editor to be used as the GISCASE’s graphical interface
is the capability of generating code in an XML like language. The reason for that is the
simple fact that the XML language (and the languages based on it) is actually a standard
for coding and sharing information [Bradley 2002].

 As, in general, UML CASE tools already support and implement the OMG XML
Metadata Interchange (XMI), it was chosen as the output needed from the graphical
editor. However, the choice for the XMI was due to some other features: The XML
Metadata Interchange Format (XMI) specifies an open information interchange model
that is intended to give developers working with object technology the ability to
exchange programming data over the Internet in a standardized way, thus bringing
consistency and compatibility to applications created in collaborative environments
(2003). Furthermore, its main purpose is exactly the feature we were looking for, which
is to enable easy interchange of metadata between modeling tools (based on the OMG-
UML) and metadata repositories (OMG-MOF) in distributed heterogeneous
environments.

86

3.2. GPtoXML Parser

The GPtoXML Parser is the module responsible for translating the geographical analysis
process (GP) into an eXtensible Markup Language (XML) encoding. This module, at
first, translates the XMI file generated by the Graphical Editor through a XMI Parser.
This parser must be customized for each specific graphical editor.

 The relevant information (elements) is coded into a new XML file, which is
based on a defined XML-Schema. The XML schema may be seen as the XML encoding
for the GeoFrame-A. All the components of the GeoFrame-A model are covered by the
XML-Schema. In the same way that the GP objetcts nodes and actions are instances of
the GeoFrame classes, the XML encoding for the GP is an instance of the XML-Schema
we defined.

 The schema has two basic components, the Object Nodes and the Actions. The
Object Nodes are the inputs as well as the outputs of each one of the operations of the
activity described by the GP. They can be spatial data, database descriptive fields,
constants or even variables.

 The actions are the operations performed during the process. They can be
defined to be executed over the descriptive part of the data, or over spatial features.
Furthermore they can be unary or binary. An action references the Object Nodes that are
its inputs and output. An action may have at least one input (or more) and exactly one
output.

 As a GP may be composed by more than one action, it is important to distinguish
the dependencies between the actions. In some cases it is only a matter of order, that is,
one action has to occur before or after another but they are independent in terms of data.
In other cases there is also a data dependency, which means that the result of an action is
the input for the next action. For that reason, when designing the GP in the graphical
editor the user has to specify the flow type when linking two actions. By default it is a
control (order) dependency (control flow). If it is a data dependency (data flow), a
stereotype <<data>> has to be included.

 When the parser finds a control flow, it only puts the actions in the specified
order. When a data flow is found, a new Object Node is created as the output of the first
action and the input of the second action.

 Once in XML the GP is parsed to check its semantic correctness, that is, verify if
the actions were correctly defined as well as the inputs and outputs (object nodes). This
verification has nothing to deal wit the XML file validation. The GP may be valid, that
is, correct when faced against the XML-Schema, but semantically incorrect. This occurs
when the user specifies incorrect parameter (object nodes) as inputs or output for an
action. The semantic checker verifies:

- If the number of inputs (object nodes) for each action is correct;

- If the data type of the inputs and output are all correct. For example, the
overlay operation requires two spatial data and one constant as inputs and
generates a spatial data as output;

87

- If the spatial data specified as inputs and outputs are geometrically
consistent. For example, in a buffer operation, the output has to be always a
polygon.

 After the semantic validation, a log file is created to allow the user to check
theerrors, if there are some.

3.3. XMLtoGIS Generator

The GP described in XML allows the storage as well as its interchange on a standard
format. However, none of the GIS solutions support the definition of a GP in that
format. Thus, this module translates the GP into a specific program for the desired GIS.
To do that, the XMLtoGIS Generator considers that all data required in the process
definition relies in a geographic database, i.e., a database system that can handle both
spatial and non-spatial data.

 Following this idea, for each GIS software, it makes necessary the development
of a specific library which maps the operations defined in GeoFrame-A to the operations
offered by the GIS software API. Therefore, the module XMLtoGIS generates the
source-code that makes reference and calls these API operations, passing all the
necessary parameters in a compatible order of process definition. As a result, only the
operations used by the defined process are included in the source-code.

 As a final step, the source code generated must be compiled and linked with the
required GIS libraries, or interpreted within the GIS software environment. When the
program is executed, the process will read the required data in the database, perform the
geographic operations as defined, and store the results in existing or new tables. Note
that the actual names of tables and fields must be used in the activity diagram, so it can
be recognized in the process execution and the intermediate data generated in the
process execution is deleted at the end of the process.

4. Implementation

To implement a first prototype of GISCASE, we decided to make use of an existing
UML CASE tool called Poseidon (2005). The reason for choosing Poseidon was
because our entire CASE Tool must be based on free software and also because it is
possible to export the diagram into the XML Metadata Interface (XMI), enabling to
parse this XML based file. We are using the version 3.1 of the Community Edition and
it is activated from our tool as GISCASE subprocess when the user wants to graphically
edit the activity diagram.

 At the moment, our tool supports one API called TerraLib (2005) (a Brazilian
geographic library). This library is based on an on-going project and classified as open
source, free software and developed completely as object-oriented. The main goal of
TerraLib is to supply the absent of libraries that covers the growing treating complexity
of spatial information.

4.1. Operations

In the first implementation of the GISCASE’s prototype only the representations of
point, line and polygon are supported, as a limited number of operations, which are:

88

- GcSelection: select objects by attributes;

- GcRegionSelection: select objects that fall inside a region defined by a
polygon;

- GcSpatialSelection: select objects that have a spatial relationship to a
reference set of objects;

- GcBuffer: creates a polygon with a specified distance from input objects;

- GcOverlay: creates a new set of objects through the overlay of two set of
objects;

- GcDissolve: creates a new set of objects through the generalization of input
objects;

- GcCentroid: return the centroid of a polygon;

- GcAlgebra: in this implementation performs a SQL Update command;

- GcDistance: calculate the distance of two geometries.

 These operations are already implemented in the TerraLib API and tested in
TerraView (2005), a desktop GIS built for the TerraLib. The TerraView is operated
through a menu interface and does not have a macro language for processes execution
yet. Hence, GISCASE offers to the TerraView users a way to generate executable
programs for frequently executed processes.

 The GISCASE was almost entirely implemented in Java, using the Eclipse IDE.
The choice for the Java language was due it is free, platform independent and easy to
parse XML files.

 As mentioned, we developed specific source code for translating the XML GP
definition into TerraLib classes and methods, organized as a library named
“GcGeoOperations for TerraLib”. For each operation that could be defined in the
activity diagram, a function was written calling the respective TerraLib function. This
code was written in C++ because it is the language of the TerraLib API.

 The final product of the GISCASE is a source code, also in C++ that makes
reference to this library.

 The reason for creating this intermediate layer is simple. When extending the
GISCASE to cover other GIS APIs, the only effort will be on creating specific libraries
for the new APIs. The library functions will have the same names for the same
operations, and thus it will not be necessary to change the code generated by GISCASE.

4.2 Case Study

To verify the functioning of the GISCASE tool, we ran tests with all the operations
implemented, in different scenarios. We tested the operations alone as well as combined
with other operations. Also GP incorrect definitions were tested. In all cases the
GISCASE results were correct.

 To illustrate the process of generating a TerraLib source code from a graphical
specification, the GP used here is the one presented by Figure 2.

89

 The listing presented in Table 1 shows the GP’s XML code generated by the
GPtoXML Parser module.

Table 1. Example of XML code generated by GISCASE

 The listing of Table 2 is part of the C++ source code corresponding to the GP, as
defined in the XML file presented in Table 1, generated by XMLtoGIS Generator
module. This main procedure creates the connection with the database and calls the
GcDissolve and GcOverlay functions with the necessary parameters. The code for
establish the connection with the database is also specific to the TerraLib API, which
requires the use of its own classes, like “TeDatabasePortal”, for instance. The code that
implements the GISCASE operations is read from the “GcGeoOperations for TerraLib”
library and appended in the same text file of the main procedure.

90

Table 2. Example of C++ code generated by GISCASE

 After compiling this code using the TerraLib API in the Visual C++ IDE and
executing it, the result can be visualized in Figure 5. It is a screenshot of the TerraView
displaying the layers generated by the execution of the GP defined in GISCASE.

Figure 5. A screenshot of TerraView’s interface displaying the result generated
by GISCASE

91

5. Conclusions and Future Work

GIS users are not used to formally design geographic process because each software
platform has its own interface and specific set of commands. GeoFrame-A and
GISCASE aim to offer a model and a tool to aid a typical GIS user to design geographic
process in a high abstraction level. An important characteristic of the GISCASE
architecture is that it uses free software principles, but it can also be used to the
development of wrappers to commercial GIS libraries. The initial implementation using
the Terralib API complements a set of application developed in Brazil using this library
[TerraLib 2005].

 Another contribution is the definition of a XML schema able to define a
geographic process. Furthermore, by storing the geographic process definition in an
XML file it is possible to share it easily, especially over the Internet.

 We also want to emphasize the relationship with the TerraLib developer team,
which we could contribute to validate the library and suggest some alternatives for the
functions.

 As future works one intends to implement other geographic analysis operations,
as well extends the tool to generate code in other GIS software platforms. It is also in
progress an interface to allow the user to define his GP in a formal grammar using a map
algebra [Camara et al. 1994], compile it and generate a XML file compatible with
GISCASE [Martins 2005]. In this way the user would choose between this language and
the UML diagram.

Acknowledgments

This paper is part of the research project “GISCASE: A CASE tool for geoprocessing
application development”, sponsored by CNPq (Brazilian National Research Council),
in the “Program of Research and Technological Development in Free Software”.

References

Bradley, N. (2002), The XML companion, Addison Wesley, 3rd edition.

Camara, G., Freitas, U., Cordeiro, J. “Towards an Algebra for Geographic Fields”. In
Proc. VII Brazilian Symposium on Computer Graphics and Image
Processing,Curitiba, 1994. p. 205-212.

Fowler, M. (2000), UML Distilled: a brief guide to the standard object modeling
language, Addison Wesley, 2nd edition.

Köesters, G., Pagel, B., Six, H., (1996), “GeoOOA: Object Oriented Analysis for
Geographic Information Systems”. In: Proc. ICRE 96 - 2nd International Conference
on Requirements Engineering, Colorado.

Martins, T. E. F. (2005), “Um Compilador para a Linguagem TerraMap”. Computer
Science Bachelor Degree Diplomation Work, UFRGS, Porto Alegre (in portuguese).

92

Parent, C. et al. (1998), “Modeling Spatial Data in the MADS Conceptual Model”. In:
Proc. SDH 98 - International Symposium on Spatial Data Handling, Vancouver,
Canada.

Poseidon web site (2005), http://www.gentleware.com.

Rocha, L. V., Edelweiss, N., Iochpe, C. (2001), “GeoFrame-T: A Temporal Conceptual
Framework for Data Modeling”. In: Proc. 9th ACM GIS, Atlanta, p. 124-129.

Ruschel, C. (2003), Extending the Framework GeoFrame for suporting Geographic
Analysis Processes. Porto Alegre: PPGC-UFRGS. Master Degree Dissertation (in
portuguese). www.inf.ufrgs.br/~ciochpe.

Ruschel, C., Iochpe, C., Lisboa Filho, J., Rocha, L. V., (2005) “Designing Geographic
Analysis Processes on the Basis of the Conceptual Framework GeoFrame”. In: Proc.
ICEIS 2005 - 7th International Conference On Enterprise Information Systems,
Miami, p. 91-97.

TerraLib Oficial Web Documentation (2005), http://www.terralib.org

TerraView Project (2005), http://www.dpi.inpe.br/terraview.

XML Metadata Interchange Specification Version 2.0 (2003).
http://www.omg.org/docs/formal/03-05-02.pdf.

93

	cb: VII Simpósio Brasileiro de Geoinformática, Campos do Jordão, Brasil, 20-23 novembro 2005, INPE, p. 82-93.

