

Threshold Aggregate Query in Spatio-temporal Network
Databases

Panfeng Zhou, Jun Gong

College of Computer and Information Science
Northeastern University, Boston, MA, USA, 02115

{zhoupf,gjoliver}@ccs.neu.edu

Abstract. Aggregate R-B-tree (aRB-tree) provides a framework for supporting
OLAP operations over spatio-temporal data. Although existing aRB-tree
implementations process sptio-temporal aggregate queries pretty efficiently, it
is hardly applicable for online processing due to the excessive accesses to the
aggregate B-trees of the entries in the R-tree and the overlap in the R-tree.
This paper addresses these problems by proposing several techniques that
completely avoid the overlap in the R-tree and significantly reduce the
excessive accesses to the B-trees during the update. We further extended
original aRB-tree to aRBB+-tree which can process the threshold aggregate
queries more efficiently.

1. Introduction
Aggregate R-B-tree (aRB-tree) [6] provides a framework for supporting OLAP
operations over spatio-temporal data. Efficient update is very important for real-time
calculation in the OLAP operations. We address efficient update methods that will have
less page accesses than the original methods proposed with aRB-tree.

 Many research literatures assume that objects can move only along the fixed
static spatial network (e.g., road network). We can optimize the index methods and
query processing techniques to handle this important movement scenario. In the real-life
applications, we often want to find the aggregate data with some threshold meeting
certain spatio-temporal conditions. This special type of OLAP operations can be called
threshold aggregate queries. We will use Crowded Roads Query (CRQ) as an example
to illustrate the efficient processing of threshold aggregate query in spatio-temporal
network databases. The input of the CRQ consists of a query spatial range S, a query
time interval T and a density threshold α. The output of the query contains the IDs of all
the road segments whose densities had ever been bigger than α during time interval T in
the spatial range S.

 In this paper, we assume that each road segment will report its density data with
the form (ti, rj,MBR,Data), where ti is the sample time instant, rj is the road segment ID,
MBR is the minimum bounding rectangle and Data is the road segment’s density data.

 The key contributions of this paper are as follows:

1) We introduce the RB-tree to avoid the overlap in the R-tree; we propose
bulk-update and lazy update to reduce the accesses to the B-trees of index
and leaf entries of the R-tree.

318

2) We introduce an important type of OLAP operations, threshold aggregate
queries, which requires the aggregate result for some spatio-temporal
conditions plus certain threshold.

3) We provide detail theoretical analysis to support our claims.

2. Related Work
This section first describes how to index the road network with an R-tree and how to
index time-evolving density data with the aggregate B-tree. It then proposes how to use
aRB-tree to solve the CRQ problems and limitations of original aRB-tree.

2.1. Road Network R-tree and Aggregate B-tree

Road network can be indexed with spatial index methods [2]. Given a road network,
junction nodes, start/end nodes of a road segment and application dependent nodes (e.g.
the turning points) can be identified. The road segment is defined as the road between
two nodes. The road segment is not necessarily a line segment, it can be a poly-line or
curve. We can use an R-tree [3, 1] to index the road segments due to its popularity in
both commercial DBMS and academic researches. Specifically, the summary data of the
sub B-trees are stored at the index entry of the R-tree as it is described in [5].

R5R4R3

R2R1

R3

R1

r1

R4

R6

R2

R6
r2

r8

r7r5

r6R5r4

r3

r8r7r6r5r4r3r2r1

Figure 1: Index road network with R-tree

 Figure 1 shows an example road network and its corresponding R-tree structure.
Junction nodes, start/end nodes, and application dependent node are colored black,
white, and gray respectively. The road network is divided into 8 road segments (r1 to
r8). Each road segment r is enclosed by an MBR (Minimum Bounding Rectangle) and
each road segment corresponds to one leaf node in the R-tree. Each road segment
should be assigned a unique ID. We can order the road segments in Hilbert order
according to the middle points of the road segments.

41

t5

Density 35 35
t2 t3

40
t4
32

t5
41

t1Time
t1 40 t4

t1 35 t3 40 t4 32 41
Figure 2: Max Density B-tree

 In [8], Salzberg and Tsotras surveyed common temporal access methods in
detail. For road segment r here, r's own density data needs to be stored; for spatial
region R, the aggregate value of all the road segments inside R needs to be stored. As [7]
suggested, if the value of density does not change in the consecutive sample time
instants, no new leaf entry will be inserted into the B-tree. More details about
processing the aggregations over general temprol data can be found in [4, 9]. Figure 2
illustrates the density change of one road segment r and r's max density B-tree.

319

2.2. aRB-tree and its limitation

The aRB-tree [6] provides a framework for supporting OLAP operations over spatio-
temporal data. It indexes the spatial regions with an R-tree. Each entry of the R-tree
(both leaf entry and index entry), has a pointer to an aggregate B-tree. R-tree’s entry r
has the form <r.MBR, r.pointer, r.BTree, r.aggr[]>, where MBR and pointer have the
same meaning as they are in the normal R-tree [3, 1]; r.aggr[] keeps the aggregate data
of r over all time stamps; r.BTree is a pointer to the aggregate B-tree which keeps
historical data of r. Each aggregate B-tree entry b has the form <b.time, b.pointer,
b.aggr[] >, where b.aggr[] is the aggregate data for b.time as it is illustrated in figure 2.

t1 t4

t1 t2 t4 t5

70 72

70 65 72 67

Max Density B−tree for R6

t1 t3

t3 t4t1 t2

Max Density B−tree for R5

46

4649

4349 45

r8r7

R4R3

R1

r6r5r4r3r2r1

R6R5

R2

t1 t4

t1 t2 t4 t5

Max Density B−tree for R2

70

70 65 72

72

67

t1 t4

64627075

6475

Max Density B−tree for R3

t5t4t2t1

t1

Max Density B−tree for R1

6575t1

64t565t470t375

t4 t1 t4

t1 t3 t4 t5

Max Density B−tree for the Whole Space

72

7275

7075 67

t1 t3 65

t1 626570

Max Density B−tree for R4

75

t5t375t2
Figure 3: Max Density aRB-tree

 In Figure 3, we show an example aRB-tree, Because of the space limitation, the
max density B-trees of the leaf entries are not shown in the figure.

 Let us now consider that one CRQ is looking for all the road segments (IDs),
who intersect with the query spatial range S(dashed), and whose densities during the
time interval [t1,t3](T) are bigger than the density threshold 50(α), as illustrated in
Figure 4.

R3

R4

r2

r1 r3

r4 R5 r6

r5

r8

r7

R6

R2

R1

Query Range (S)

Figure 4: CRQ spatial range

 Search starts from the root of the R tree. Entry R1 is outside the query spatial
range S, so its subtree can be pruned. Entry R2 partially overlaps with the S, so its max
density B-tree is retrieved. We find R2's max density during T is 70 which is bigger
than α, so we need to access R2's subtree. Similarly, R5's subtree can be pruned, R6's
subtree and r7, r8 are retrieved. The final result is r7,r8. The query algorithm can be
summarized as only visiting r's subtree when r's MBR intersects with S and r's max

320

density during T is bigger than α. We will address an alternative method which can
prune more branches in the later sections.

 The aRB-tree update includes the update of both R-tree and B-trees. If there is
not any overlap in the R-tree, we only need three page accesses to locate r5's position in
the R-tree. But due to the overlap, we may only update R-tree’s index entries while
tracing back, thus many extra page accesses are needed. We introduce a new RB-tree to
completely avoid such overlap problem for the update of the static road network R-tree.
On the other hand, the update of all the density data requires another excessive accesses
to the B-trees of R-tree's index entries. We will use bulk update to solve this problem.
Finally, in real-life applications, the density data will not change all the time. We will
use lazy update to take advantage of this characteristic.

3. aRBB+-tree

3.1. RB-tree

As we already mentioned, each road segment should be assigned a unique ID. If we
assign random IDs to the road segments before we create the R-tree, the IDs of the road
segments in the same leaf page will be discrete, so when new density data arrives, due
to the overlap in the R-tree, we can not decide which subtree the upcoming road
segment belongs to. In order to solve this problems, we use a simple, but effective
method: label the road segments with consecutive integers after we create the R-tree
and store the ID range in the index entry. Each index entry r has the form <r.MBR,
r.pointer, r.BTree, r.aggr[], r.startID, r.endID>, where startID and endID record the
smallest and biggest road segment ID in r's subtree.

 When a new density data arrives, we can compare its road segment ID with the
ID range of each index entry and decide which subtree to go down. This will completely
avoid visiting multiple pathes in the R-tree since the ID range in each entry do not have
any overlap and we only need one travel from root to leaf to update the corresponding
B-trees. Since this method combines the R-tree and B-tree in the same tree structure, we
name it as RB-tree

3.2. Bulk Update

The density B-tree of the index entry r will be accessed multiple times at each time
instant since r needs to keep the update density information of its subtrees. We hereby
introduce three new fields to the index entry to solve this problem. These three fields
are TotalCount, CurrentCount and CurrentMax. For each index entry r, TotalCount
records the number of road segments in r's subtree. CurrentCount records the number of
road segments in r's subtree that have been updated for the current time instant.
CurrentMax records the maximum density for current time instant. TotalCount will not
change during the lifetime of an R-tree. CurrentCount is initially set to 0 and be
increased by 1 each time a road segment in r's subtree get updated. CurrentCount will
be reset to 0 when it equals to TotalCount. CurrentMax keeps track of the biggest
density data seen so far. Therefore the maximum density data only needs to be updated
once after all the data have arrived instead of being updated each time when a new data
arrives before.

321

3.3. Lazy Update

Bluk Update aims at reducing the accesses to the B-trees of the index entries in the R-
tree. This section introduces Lazy Update which will benefit the B-tree accesses of both
index entries and leaf entries in the R-tree. There are some unnecessary page accesses
for the B-trees if the density does not change in the consecutive time instant. In order to
solve this problem, we will change the usage of the field , r.aggr[] in the original aRB-
tree. The r.aggr[] in the original aRB-tree stores the summarized data of r accumulated
over all the time stamps. But the aggregate value over all the time stamps is not so
useful in practice since we rarely ask for the highest density over the whole time
interval. We will use r.aggr[] to store the most recent density value which has been
inserted into r's B-tree. For each index entry r, when TotalCount = CurrentCount, we
will compare CurrentMax with r.aggr[]. If they are equal, we do not need to update r's
B-tree. We only update r's B-tree when the max density changed since the last time
instant. For each leaf entry, we do similar change.

 So far, we optimize the update of aRB-tree in three ways: use RB-tree to avoid
the overlap in the R-tree which in turn reduces the cost of page access for R-tree leaf
nodes; use Bulk Update to reduce the accesses to the B-trees of the index entries in the
R-tree; use Lazy Update to reduce the accesses to the B-trees of both leaf and index
entries.

3.4. Efficient Query

In this section, we will illustrate how to further extend the original aRB-tree to make the
query processing of threshold aggregate query even more efficiently.

38

t1 30

t1

43

t1 t4

t1 t2 t4 t5

43 39

51 43 40 39

t1 t3 30

t1 t2 44 t3 t4

44

50

t4

R2

R5 R6

r1 r2

t343t250

t3

r8r7

R4R3

R1

r6r5r4r3

38

t1 t4

t1 t2 t4 t5

55 54

56 55 54

t1 t3

t1

38

Min Density B−tree for R5

Min Density B−tree for R6

65

38

32

Min Density B−tree for R2

37

373246 t4t3t2

Min Density B−tree for R4

30

t1 t3

t1 t2 t3 t4 3746 32

32 30

30

t1

Min Density B−tree for the Whole Space

30

Min Density B−tree for R1

Min Density B−tree for R3

3732

3246 37t2t1 t4t3

t3

Figure 5: Min Density aRB-tree

 We observe that an index entry r's subtree doesn’t need to be visited if the
minimum density of r during the query time interval T is bigger than α and r is
completely inside the query spatial range S, since all the road segments in r's subtree
meets the query requirements. Intuitively we can store the minimum density to speed up
such query. The improved query algorithm can be described as follows: start from the
root, check each entry r, if r's MBR does not intersect with S, prune r's subtree; if r's
MBR intersects with S, but its max density during T is smaller than α, prune r's subtree;
if r's MBR intersects with S, its max density during T is bigger than α, and its minimum

322

density during T is also bigger than α, then add all the road segments in r's subtree to
the result set and prune r's subtree.

 In the implementation, we choose to store the maximum and minimum values in
one single max/min B-tree instead of saving them in two separated B-trees for the
following two reasons: 1. Store max and min values in one single B-tree requires less B-
tree accesses during the update. 2. store maximum and minimum together will let them
share some data such as time stamps, which will save some storage space.

4. Conclusions

In this paper, we address the threshold aggregate query in spatio-temporal network
databases. The aRB-tree is extended to aRBB+-tree which can efficiently process the
threshold aggregate query. We propose three methods for efficient update of aRBB+-
tree. The RB-tree is used to eliminate the overlap in the R-tree. The bulk update is used
to reduce the accesses to the B-trees of the index entries in the R-tree. The lazy update
is used to reduce the accesses to the B-trees of both index entries and leaf entries in the
R-tree. We also propose a query method to efficiently query the aRBB+-tree.

References

Beckmann, N., Kriegel, H., Schneider, R. and Seeger. B. (1990) “The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles”, in Proceedings of
ACM/SIGMOD Annual Conference on Management of, 322–331.

Gaede, V. and Gunther, O. (1998) “Multidimensional Access Methods”, in ACM
Comput. Surv., 30(2), 170–231.

Guttman, A. (1984) “R-trees: a dynamic index structure for spatial searching”, in
Proceedings of ACM/SIGMOD Annual Conference on Management of Data, 47–57.

Kline, N. and Snodgrass, R.T. (1995) “Computing Temporal Aggregates”, in
Proceedings of International Conference on Data Engineering, pp 222–231.

Papadias, D., Kalnis, P., Zhang, J. and Tao, Y. (2001) “Efficient OLAP Operations in
Spatial Data Warehouses”, in Proceedings of Symposium on Spatial and Temporal
Databases, pp 443–459.

Papadias, D., Tao, Y., Kalnis, P. and Zhang. J. (2002) “Indexing Spation-temporal Data
Warehouses”, in Proceedings of International Conference on Data Engineering, pp
166–175.

Salzberg, B., Jiang, L., Lomet, D., Barrena, M., Shan, J. and Kanoulas, E. (2004) “A
Framework for Access Methods for Versioned Data”, in Proceedings of International
Conference on Extending Database Technology.

Salzberg, B. and Tsotras, V.J. (1999) “Comparison of Access Methods for Time-
Evolving Data”, in ACM Comput. Surv., 31(2), pp 158 – 221.

Yang, J. and Widom, J. (2001) “Incremental Computation and Maintenance of
Temporal Aggregates”, in Proceedings of International Conference on Data
Engineering, pp 51–60.

323

	cb: VII Simpósio Brasileiro de Geoinformática, Campos do Jordão, Brasil, 20-23 novembro 2005, INPE, p. 318-323.

