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Abstract. Aggregate R-B-tree (aRB-tree) provides a framework for supporting 
OLAP operations over spatio-temporal data. Although existing aRB-tree 
implementations process sptio-temporal aggregate queries pretty efficiently, it 
is hardly applicable for online processing due to the excessive accesses to the 
aggregate B-trees of the entries in the R-tree and the overlap in the R-tree. 
This paper addresses these problems by proposing several techniques that 
completely avoid the overlap in the R-tree and significantly reduce the 
excessive accesses to the B-trees during the update. We further extended 
original aRB-tree to aRBB+-tree which can process the threshold aggregate 
queries more efficiently. 

1. Introduction 
Aggregate R-B-tree (aRB-tree) [6] provides a framework for supporting OLAP 
operations over spatio-temporal data. Efficient update is very important for real-time 
calculation in the OLAP operations. We address efficient update methods that will have 
less page accesses than the original methods proposed with aRB-tree. 

 Many research literatures assume that objects can move only along the fixed 
static spatial network (e.g., road network). We can optimize the index methods and 
query processing techniques to handle this important movement scenario. In the real-life 
applications, we often want to find the aggregate data with some threshold meeting 
certain spatio-temporal conditions. This special type of OLAP operations can be called 
threshold aggregate queries. We will use Crowded Roads Query (CRQ) as an example 
to illustrate the efficient processing of threshold aggregate query in spatio-temporal 
network databases. The input of the CRQ consists of a query spatial range S, a query 
time interval T and a density threshold α. The output of the query contains the IDs of all 
the road segments whose densities had ever been bigger than α during time interval T in 
the spatial range S. 

 In this paper, we assume that each road segment will report its density data with 
the form (ti, rj,MBR,Data), where ti is the sample time instant, rj is the road segment ID, 
MBR is the minimum bounding rectangle and Data is the road segment’s density data. 

 The key contributions of this paper are as follows: 

1) We introduce the RB-tree to avoid the overlap in the R-tree; we propose 
bulk-update and lazy update to reduce the accesses to the B-trees of index 
and leaf entries of the R-tree.  
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2) We introduce an important type of OLAP operations, threshold aggregate 
queries, which requires the aggregate result for some spatio-temporal 
conditions plus certain threshold. 

3) We provide detail theoretical analysis to support our claims. 

2. Related Work 
This section first describes how to index the road network with an R-tree and how to 
index time-evolving density data with the aggregate B-tree. It then proposes how to use 
aRB-tree to solve the CRQ problems and limitations of original aRB-tree. 

2.1. Road Network R-tree and Aggregate B-tree 

Road network can be indexed with spatial index methods [2]. Given a road network, 
junction nodes, start/end nodes of a road segment and application dependent nodes (e.g. 
the turning points) can be identified. The road segment is defined as the road between 
two nodes. The road segment is not necessarily a line segment, it can be a poly-line or 
curve. We can use an R-tree [3, 1] to index the road segments due to its popularity in 
both commercial DBMS and academic researches. Specifically, the summary data of the 
sub B-trees are stored at the index entry of the R-tree as it is described in [5]. 
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Figure 1: Index road network with R-tree 

 Figure 1 shows an example road network and its corresponding R-tree structure. 
Junction nodes, start/end nodes, and  application dependent node are colored black, 
white, and gray respectively. The road network is divided into 8 road segments (r1 to 
r8). Each road segment r is enclosed by an MBR (Minimum Bounding Rectangle) and 
each road segment corresponds to one leaf node in the R-tree. Each road segment 
should be assigned a unique ID. We can order the road segments in Hilbert order 
according to the middle points of the road segments. 
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Figure 2: Max Density B-tree 

 In [8], Salzberg and Tsotras surveyed common temporal access methods in 
detail. For road segment r here, r's own density data needs to be stored; for spatial 
region R, the aggregate value of all the road segments inside R needs to be stored. As [7] 
suggested, if the value of density does not change in the consecutive sample time 
instants, no new leaf entry will be inserted into the B-tree. More details about 
processing the aggregations over general temprol data can be found in [4, 9]. Figure 2 
illustrates the density change of one road segment r and r's max density B-tree. 
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2.2. aRB-tree and its limitation 

The aRB-tree [6] provides a framework for supporting OLAP operations over spatio-
temporal data. It indexes the spatial regions with an R-tree. Each entry of the R-tree 
(both leaf entry and index entry), has a pointer to an aggregate B-tree. R-tree’s entry r 
has the form <r.MBR, r.pointer, r.BTree, r.aggr[]>, where MBR and pointer have the 
same meaning as they are in the normal R-tree [3, 1]; r.aggr[] keeps the aggregate data 
of r over all time stamps; r.BTree is a pointer to the aggregate B-tree which keeps 
historical data of r. Each aggregate B-tree entry b has the form <b.time, b.pointer, 
b.aggr[] >, where b.aggr[] is the aggregate data for b.time as it is illustrated in figure 2. 
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Figure 3: Max Density aRB-tree 

 In Figure 3, we show an example aRB-tree, Because of the space limitation, the 
max density B-trees of the leaf entries are not shown in the figure. 

 Let us now consider that one CRQ is looking for all the road segments (IDs), 
who intersect with the query spatial range S(dashed), and whose densities during the 
time interval [t1,t3](T) are bigger than the density threshold 50(α), as illustrated in 
Figure 4. 
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 Search starts from the root of the R tree. Entry R1 is outside the query spatial 
range S, so its subtree can be pruned. Entry R2 partially overlaps with the S, so its max 
density B-tree is retrieved. We find R2's max density during T is 70 which is bigger 
than α, so we need to access R2's subtree. Similarly, R5's subtree can be pruned, R6's 
subtree and r7, r8 are retrieved. The final result is r7,r8. The query algorithm can be 
summarized as only visiting r's subtree when r's MBR intersects with S and r's max 
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density during T is bigger than α. We will address an alternative method which can 
prune more branches in the later sections. 

 The aRB-tree update includes the update of both R-tree and B-trees. If there is 
not any overlap in the R-tree, we only need three page accesses to locate r5's position in 
the R-tree. But due to the overlap, we may only update R-tree’s index entries while 
tracing back, thus many extra page accesses are needed. We introduce a new RB-tree to 
completely avoid such overlap problem for the update of the static road network R-tree. 
On the other hand, the update of all the density data requires another excessive accesses 
to the B-trees of R-tree's index entries. We will use bulk update to solve this problem. 
Finally, in real-life applications, the density data will not change all the time. We will 
use lazy update to take advantage of this characteristic. 

3. aRBB+-tree 

3.1. RB-tree 

As we already mentioned, each road segment should be assigned a unique ID. If we 
assign random IDs to the road segments before we create the R-tree, the IDs of the road 
segments in the same leaf page will be discrete, so when new density data arrives, due 
to the overlap in the R-tree, we can not decide which subtree the upcoming road 
segment belongs to. In order to solve this problems, we use a simple, but effective 
method: label the road segments with consecutive integers after we create the R-tree 
and store the ID range in the index entry. Each index entry r has the form <r.MBR, 
r.pointer, r.BTree, r.aggr[], r.startID, r.endID>, where startID and endID record the 
smallest and biggest road segment ID in r's subtree. 

 When a new density data arrives, we can compare its road segment ID with the 
ID range of each index entry and decide which subtree to go down. This will completely 
avoid visiting multiple pathes in the R-tree since the ID range in each entry do not have 
any overlap and we only need one travel from root to leaf to update the corresponding 
B-trees. Since this method combines the R-tree and B-tree in the same tree structure, we 
name it as RB-tree 

3.2. Bulk Update 

The density B-tree of the index entry r will be accessed multiple times at each time 
instant since r needs to keep the update density information of its subtrees. We hereby 
introduce three new fields to the index entry to solve this problem. These three fields 
are TotalCount, CurrentCount and CurrentMax. For each index entry r, TotalCount 
records the number of road segments in r's subtree. CurrentCount records the number of 
road segments in r's subtree that have been updated for the current time instant. 
CurrentMax records the maximum density for current time instant. TotalCount will not 
change during the lifetime of an R-tree. CurrentCount is initially set to 0 and be 
increased by 1 each time a road segment in r's subtree get updated. CurrentCount will 
be reset to 0 when it equals to TotalCount. CurrentMax keeps track of the biggest 
density data seen so far. Therefore the maximum density data only needs to be updated 
once after all the data have arrived instead of being updated each time when a new data 
arrives before.  
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3.3. Lazy Update 

Bluk Update aims at reducing the accesses to the B-trees of the index entries in the R-
tree. This section introduces Lazy Update which will benefit the B-tree accesses of both 
index entries and leaf entries in the R-tree. There are some unnecessary page accesses 
for the B-trees if the density does not change in the consecutive time instant. In order to 
solve this problem, we will change the usage of the field , r.aggr[] in the original aRB-
tree. The r.aggr[] in the original aRB-tree stores the summarized data of r accumulated 
over all the time stamps. But the aggregate value over all the time stamps is not so 
useful in practice since we rarely ask for the highest density over the whole time 
interval. We will use r.aggr[] to store the most recent density value which has been 
inserted into r's B-tree. For each index entry r, when TotalCount = CurrentCount, we 
will compare CurrentMax with r.aggr[]. If they are equal, we do not need to update r's 
B-tree. We only update r's B-tree when the max density changed since the last time 
instant. For each leaf entry, we do similar change. 

 So far, we optimize the update of aRB-tree in three ways: use RB-tree to avoid 
the overlap in the R-tree which in turn reduces the cost of page access for R-tree leaf 
nodes; use Bulk Update to reduce the accesses to the B-trees of the index entries in the 
R-tree; use Lazy Update to reduce the accesses to the B-trees of both leaf and index 
entries.  

3.4. Efficient Query 

In this section, we will illustrate how to further extend the original aRB-tree to make the 
query processing of threshold aggregate query even more efficiently. 
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Figure 5: Min Density aRB-tree 

 We observe that an index entry r's subtree doesn’t need to be visited if the 
minimum density of r during the query time interval T is bigger than α and r is 
completely inside the query spatial range S, since all the road segments in r's subtree 
meets the query requirements. Intuitively we can store the minimum density to speed up 
such query. The improved query algorithm can be described as follows: start from the 
root, check each entry r, if r's MBR does not intersect with S, prune r's subtree; if r's 
MBR intersects with S, but its max density during T is smaller than α, prune r's subtree; 
if r's MBR intersects with S, its max density during T is bigger than α, and its minimum 
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density during T is also bigger than α, then add all the road segments in r's subtree to 
the result set and prune r's subtree. 

 In the implementation, we choose to store the maximum and minimum values in 
one single max/min B-tree instead of saving them in two separated B-trees for the 
following two reasons: 1. Store max and min values in one single B-tree requires less B-
tree accesses during the update. 2. store maximum and minimum together will let them 
share some data such as time stamps, which will save some storage space. 

4. Conclusions 

In this paper, we address the threshold aggregate query in spatio-temporal network 
databases. The aRB-tree is extended to aRBB+-tree which can efficiently process the 
threshold aggregate query. We propose three methods for efficient update of aRBB+-
tree. The RB-tree is used to eliminate the overlap in the R-tree. The bulk update is used 
to reduce the accesses to the B-trees of the index entries in the R-tree. The lazy update 
is used to reduce the accesses to the B-trees of both index entries and leaf entries in the 
R-tree. We also propose a query method to efficiently query the aRBB+-tree. 
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