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Abstract. This work analyzes the superadiabatic temperature for laminar stationary lean premixed flames within porous
inert media. The analysis is based on the excess enthalpy function previously defined in the literature applied to the
one-dimensional volume-averaged equations. The flame structure is analyzed in three distinct length-scales, the solid-
phase length-scale, the gas-phase length-scale and the reaction length-scale. Discrepancies among the characteristic
lengths justify the application of asymptotic expansions to determine an approximated (analytical) solution. The excess
enthalpy function formulation allows the solution of the problem including the interphase heat transfer at the gas-phase
length-scale. Then, the model is valid over a large range of equivalence ratios at the lean side of the stoichiometric ratio
spectrum. The results show explicitly a limit for the superadiabatic temperature for lean mixtures.
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1. INTRODUCTION

The premixed combustion in inert porous media has received much attention in the last decades as a way of extending
flame stability, burning fuel lean mixtures and providing radiant heating [1, 2]. The heat recirculation induced by the
porous media adds to the energy released by combustion resulting in local temperatures in excess of the adiabatic flame
temperature for the gas-phase, a phenomenon that has been called superadiabatic combustion [3]. This high temperature
in the reaction region increases the reaction rate and allows for combustion of low heat content gas mixtures whose
stoichiometric ratio lies under the flammability limit in laminar free-flames.

Some asymptotic analysis have been proposed to the problem of premixed gas combustion within inert porous media
[4, 5, 6, 7, 8, 9, 10] for semi-infinite and finite length burners. All these models divide the flame in a preheating region, a
thin combustion region and a pos-combustion region. Expressions for the gas and solid temperatures and flame position
are obtained as a function of an imposed flame velocity.

In a previous work [11] an asymptotic solution is proposed taking advantage of the large difference between the
thermal conductivity of the solid and gas phases. In this solution a two equation model for the energy conservation is used
with effective properties and a diffusion approximation for the intramedium radiation. The flame structure is divided in
three characteristic length scales. The two innermost length scales are the same scales defined in the classical premixed
flame structure analysis. The outermost length scale is related to the heat conduction in the porous matrix. The results
of the model show that the influence of the porous medium on the flame is to increase its temperature and velocity and
that this influence is more pronounced for leaner mixtures, higher solid-phase thermal conductivities, lower porosities
and lower fuel Lewis numbers. It is also shown that the reaction region is shorter in flames within porous media since
higher flame temperatures are found. The model is valid for equivalence ratios ranging from 0.60 to 0.80. The upper
bound is a result of the simplifications made in the one-step kinetic mechanism used. The lower bound is related to an
interphase heat transfer parameter defined as N ≡ λshv/(ρn sF cp)2, where λs is the solid-phase thermal conductivity,
hv is the volumetric heat transfer coefficient, ρn is the unburnt gas-phase density, sF is the flame velocity, measured in
the unburned stream, and cp is the gas-phase heat capacity. In this work the condition N � Γ is imposed, were Γ is
the thermal conductivities ratio (Γ = λs/λg , where λg is the gas-phase thermal conductivity). With this condition the
interphase heat transfer at the gas-phase and at the reaction length-scales is negligible. Then, the flame structure at the
inner scales is similar to that of a free-flame. This will not hold for extremely lean mixtures where lower flame velocities
are found.

In a subsequent work [12], an analysis of adiabatic stationary planar premixed flames within porous inert media is
proposed for the conditions of N ∼ O(Γ) and ε/(1 − ε) ∼ O(1). The condition N ∼ O(Γ) is characterized by an
intense interphase heat transfer and is found for extremely lean mixtures. These flames present a wide region of local
thermal equilibrium between the phases and the superadiabatic effect is limited by the intense interphase heat transfer at
the gas-phase length-scale. The analysis shows that the superadiabatic temperature decreases as φ is decreased (as the
interphase heat transfer becomes more intense). Since in the previous model (for higher equivalence ratios) the supera-
diabatic temperature increases when φ is decreased, a point of maximum nondimensional superadiabatic temperature in
the lean side of the equivalence ratio spectrum is expected to exist. The model also shows the existence of a flammability
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limit for extremely lean mixtures. This limit shows that the gas-phase temperature at the flame must reach a minimum
superadiabatic temperature for the flame propagation to be possible.

The present study proposes a solution for the problem of premixed flames in inert porous media that is valid for lean
mixtures with the condition Γ ≥ N ≥ 1. The analysis is based on the excess enthalpy function previously defined in the
literature [13] applied to the one-dimensional volume-averaged equations. Approximations for the reactants and the solid-
phase temperature profiles are found using the asymptotic expansion method and the dependence of the excess enthalpy
function on the problem parameters is accessed. The description of the reaction region is the same as in the previous
works since the interphase heat transfer in this region is still negligible.

2. Mathematical formulation

A one-dimensional two-medium model for the conservation of mass, gas-phase energy, solid-phase energy and mass
of chemical species is written following Pereira et al. [11]. The mass conservation implies that ρnun is constant for the
one-dimensional flow with ρn and un being respectively the gas density and the gas velocity far upstream from the flame.
For a steady-state stationary flame, the laminar flame speed sF is equal to un. The gas-phase specific heat capacity cp, the
effective thermal conductivities (λg for the gas and λs for the solid) and the product ρD (gas-phase density times mass
diffusivity) are assumed uniform along the flame. The effective thermal conductivity of the solid-phase includes the pore
tortuosity and the intraphase radiation trough a radiant conductivity (Rosseland approximation). The effective thermal
conductivity and mass diffusivity of the gas-phase include the pore tortuosity and the hydrodynamic dispersion effects.
The gas-phase radiation and flame stretch effects are neglected. The pressure drop across the porous medium is assumed
negligible compared to the total pressure and the momentum equation becomes trivial.

The fuel combustion is assumed to occur following a global one-step mechanism, represented in mass variables as

F + νO2 → (1 + ν)P,

where ν is the mass of oxygen per mass of fuel ratio (stoichiometric).
The steady-state volume-averaged mass, energy and species conservation equations (omitting for simplicity the volume-

averaging notation) then become

ερu = ερnsF , (1)

ερnsF
dYF

dx
= ερDF

d2YF

dx2
− εAρ2YOYF T a

g e−Ea/RuTg , (2)

ερnsF
dYO

dx
= ερDO

d2YO

dx2
− ενAρ2YOYF T a

g e−Ea/RuTg , (3)

ερnsF cp
dTg

dx
= ελg

d2Tg

dx2
+ εQAρ2YOYF T a

g e−Ea/RuTg + hv(Ts − Tg), (4)

0 = (1− ε)λs
d2Ts

dx2
− hv(Ts − Tg), (5)

where ε is the volumetric porosity of the solid matrix, YF and YO are the gas-phase volume-averaged fuel and oxidant
mass fractions, DF and DO are de fuel and oxidant effective mass diffusivities, Tg and Ts are the gas-phase and solid-
phase phasic volume-averaged temperatures, Q is the fuel mass based heat of reaction, A is the pre-exponential factor
of the Arrhenius reaction rate, Ea is the activation energy, Ru is the universal gas constant and hv is the volumetric
surface-convection coefficient.

2.1 Non-dimensionalization

Defining the non-dimensional variables [14]

yF ≡
YF

YFn
, yO ≡

YO

YOn
, θ ≡ cp(T − Tn)

YFn Q
=

T − Tn

Tr − Tn
and ζ ≡

∫ x

0

ερnsF

(1− ε)λs/cp
dx,

Eqs. (2) to (5) become

dyF

dζ
=

1
LeF Γe

d2yF

dζ2
− ΓeDa yOyF exp

[
− β(1− θg)

1− α(1− θg)

]
, (6)

dyO

dζ
=

1
LeO Γe

d2yO

dζ2
− ΓeφDa yOyF exp

[
− β(1− θg)

1− α(1− θg)

]
, (7)
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dθg

dζ
=

1
Γe

d2θg

dζ2
+ ΓeDa yOyF exp

[
− β(1− θg)

1− α(1− θg)

]
+ Ne(θs − θg), (8)

0 =
d2θs

dζ2
−Ne(θs − θg), (9)

where

Γe ≡
(1− ε)λs

ελg
, φ ≡ YFnν

YOn
, α ≡ (Tr − Tn)

Tr
, β ≡ Ea(Tr − Tn)

RuT 2
r

,

Le ≡ λg

ρ cp D
, Da ≡

A ρ2 λg YOn T a
g exp(−β/α)

(ρ2
n s2

F cp)
,

and Ne ≡
(1− ε)λshv

(ερn sF cp)2
.

The parameter Γe is the effective thermal conductivities ratio, φ is the equivalence ratio, α is the dimensionless
heat release, β is the Zel’dovich number, Le is an effective Lewis number that accounts for the thermal and species
hydrodynamic dispersions, Da is the Damköhler number and Ne is the effective interphase heat transfer parameter.

2.2 Excess enthalpy formulation

The problem can be rewritten in a compact form summing up Eqs. (6) to (9)

Γe
d

dζ
(θg + yF ) =

d2

dζ2

(
θg +

yF

LeF
+ Γeθs

)
(10)

Rewriting the overall energy balance cp(T−Tn) = Q(YFn−YF ) in non-dimensional variables one finds yF +θg = 1.
Then, one can define a new variable called excess enthalpy function as follows [13]

H = θg + yF − 1. (11)

This function accounts for the total enthalpy of the gas, including the thermal and chemical enthalpies. Substituting
Eq. (11) into Eq. (10) one finds

Γe
dH

dζ
=

d2H

dζ2
+

(
1

LeF
− 1

)
d2yF

dζ2
+ Γe

d2θs

dζ2
(12)

The boundary conditions for the problem are

ζ → −∞

 H = θg = θs = 0
yF = 1
dH/dζ = dθg/dζ = dθs/dζ = 0

ζ → ζf


H = Hf

θg = θgf

θs = θsf

yF = 0

ζ → +∞

 θg = θs = 1
H = yF = 0
dH/dζ = dθg/dζ = dθs/dζ = 0

The H function will have a positive or negative source term depending on the signs for the diffusion-like terms
involving the non-dimensional fuel mass fraction and solid-phase temperature distributions.

In the following, a solution for the excess enthalpy function is obtained.
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2.3 Approximated closed form solution for the excess enthalpy function

Equation (12) is a linear non-homogeneous first order ordinary differential equation that can be solved using an inte-
gration factor e−Γeζ . To perform this integration, approximations for the fuel mass fraction and solid-phase temperature
are required. Theses solutions can be brought from the previous asymptotic analisys of the combustion of premixed flames
in porous media [11]. In that work the following solution for the solid-phase temperature is found

θs =
{

θsf er1(ζ−ζf ), for ζ ≤ ζf

1 + (θsf − 1)e−r2(ζ−ζf ), for ζ ≥ ζf
(13)

in which

r1 =
Ne

2

[
(1 + 4/Ne)

1/2 + 1
]

and

r2 =
Ne

2

[
(1 + 4/Ne)

1/2 − 1
]

The solid-phase temperature at the flame, θsf , is givem by

θsf =
r2

r1 + r2

The solution for the fuel fraction profile is

yF =
{

1− eLeF Γe(ζ−ζf ), for ζ ≤ ζf

0, for ζ ≥ ζf
(14)

The integration of (12) with the approximations for the solid-phase temperature (13) and fuel mass fraction (14)
submitted to the proper boundary conditions give

H =


eΓe(ζ−ζf ) − eΓeLeF (ζ−ζf ) + θsf

(
r1Γe

r1−Γe

) (
eΓe(ζ−ζf ) − er1(ζ−ζf )

)
+

(1− θsf )
(

r2Γe

r2+Γe

)
eΓe(ζ−ζf ), for ζ ≤ ζf

(1− θsf )
(

r2Γe

r2+Γe

)
e− r2(ζ−ζf ), for ζ ≥ ζf

(15)

From (11) the solution of the gas-phase temperature is

θg =


eΓe(ζ−ζf ) + θsf

(
r1Γe

r1−Γe

) (
eΓe(ζ−ζf ) − er1(ζ−ζf )

)
+ (1− θsf )

(
r2Γe

r2+Γe

)
eΓe(ζ−ζf ), for ζ ≤ ζf

1 + (1− θsf )
(

r2Γe

r2+Γe

)
e− r2(ζ−ζf ), for ζ ≥ ζf

(16)

The gas-phase temperature at the flame is obtained imposing ζ = 0 in Eq. (16) and gives

θgf = 1 + (1− θsf )
(

r2Γe

r2 + Γe

)
. (17)

The gas-phase temperature profile given by Eq. (16) is valid over the solid- and gas-phase length-scales.

2.4 Inner zone: reaction region O(δΓ−1)

In a region of the order of δΓ−1 around the flame, the variables present a variation of the order of δ. The solution
follows the same steps already discussed in the previous works [11, 12].

The expression relating the flame velocity with the problem parameters is

s2
F =

2Aρ2
fλgYOnT a

gf exp(−β/α)
(ρ2

n cp)
[
δ2LeF (1− φ)

]
×

exp

{
−β(1− θ

(∗)
gf )

1− α(1− θ
(∗)
gf )

+ m n

}
, (18)
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in which

δ =

[
1 + α(θ(∗)

gf − 1)
]2

β
.

In Eq. 18 the parameter n is a displacement in the coordinate axis in order to match the solution in the reaction length-
scale lR with the solution in the gas-phase length-scale lG. The parameter m represents the ratio of the thermal flux
downstream from the flame to the total heat release. Liñán [15] proposed an approximate expression for the numerical
solution of the problem in the reaction region relating theses two parameters as follows

m n = 1.344m− 4m2(1−m)/(1− 2m)+

3m3 − ln(1− 4m2). for − 0.2 < m < 0.5 (19)

The value of m can be determined from the gas-phase temperature profile Eq. (16) resulting in

m =
r1r

2
2

(r2 + Γe)(r1 + r2)
(20)

As already pointed in the previous work, in combustion within a porous-medium the value of m is bounded by
0 ≤ m ≤ 0.5. The limit m = 0 corresponds to a freely propagating flame where there is no excess enthalpy. Thus, the
excess of enthalpy requires m > 0. The limit m = 0.5 corresponds to a situation in which the heat loss downstream from
the flame is equal to the heat loss upstream and under this condition the flame is not stable, i.e. there is extinction.

3. DISCUSSION

The reaction rate parameters were adjusted to give a reasonable agreement with measured laminar flame speeds for
free flames [16] with equivalence ratios ranging from 0.5 to 0.6. The heat of reaction was adjusted to reproduce the
adiabatic flame temperature for Φ = 0.5. The gas-phase properties were approximated by the air properties evaluated at
1000 K. The volumetric heat transfer coefficient hv is modeled following Fu et al. [17] which uses a volumetric Nusselt
number Nuv = C ′Rem′

, where Nuv = hvd2
m/λg and Re is the Reynolds number, Re = ρnsF dm/µn. The mean pore

diameter is modeled as dm =
√

4ε/π/(39.37ϕ), which is a uniform pore distribution model, where ϕ is the linear pore
density given in pores per inch (ppi). Transport and geometric properties of the solid-phase are typical of porous burners.
[18, 19]. Table ?? shows the parameters and properties used in the calculations and some results obtained for φ = 0.5,
Γe = 15, ε = 0.8, ϕ = 50ppi and LeF = 1.

Table 1. Properties and parameters used in the calculations and a few results for φ = 0.5, Γe = 15, ε = 0.8,
ϕ = 50ppi and LeF = 1.

Properties and Parameters Results
Ru 8.314 J(mol K)−1 λs 4.041 W(m K)−1

Ea 1.2× 105 J mol−1 hv 1.30× 105 W (m3 K)−1

A 1.0× 1010 m3(kg s)−1 Tr 1479 K
a 0 Tgf 1944 K
Q 4.759× 107 J kg−1 Tsf 1145 K
cp 1141 J(kg K)−1 sF 31.21 cm s−1

λg 0.06735 W(m K)−1 Ne 2.97
ρn 1.185 kg m−3 α 0.80
Tn 298 K β 7.79
C ′ 0.146 Daf 1.86
m′ 0.83 m 0.04
ε 0.8 n 1.34
φ 0.5 δ 0.22
ϕ 50 ppi θgf 1.39
Γe 15

LeF 1

Figure 1 shows the flame structure for the condition described in Table 1. This condition was not covered by the
previous models and represents a situation where the interphase heat transfer parameter Ne assumes an intermediate vale
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between 1 and Γe. The solid- and gas-phase temperatures far from the flame are close due to the intense interphase heat
transfer, but thermal nonequilibrium is still considerable at this large scale. The maximum gas-phase temperature exceeds
the adiabatic limit in 40%.

Figure 1. Flame structure for the condition described in Table ??.

Figure 2 shows the gas-phase temperature at the flame as a function of the equivalence ratio. It is possible to see that
the superadiabatic effect has a maximum around φ = 0.27. This was already pointed out in a previous work [12] and
can be understood considering two limiting cases. For Ne → 0 the two equations for the conservation of energy are
decoupled and the flame structure has the same structure of a free-flame. The solid-phase plays no role in the solution
and superadiabatic temperatures are not possible. For Ne → ∞ the two phases are in local thermal equilibrium and
the problem reduces to a one-equation model, i.e. a free-flame like structure for a homogeneous medium with effective
properties and again superadiabatic temperatures are not possible. For intermediate values of Ne thermal non-equilibrium
between the phases and superadiabatic temperatures are found and a point of maximum nondimensional superadiabatic
temperature must exist.

For higher equivalence ratios the excess temperature decreases with φ in accordance with the model developed for
Ne ∼ O(1) [11]. For lower equivalence ratios the excess temperature increases with φ in accordance with the model
developed for Ne ∼ O(Γe) [12]. This inversion happens because as φ is decreased lower flame velocities are found,
resulting in a extended time for heat transfer between the phases. For higher flame velocities (higher φ) gas and solid
phases have less time of contact at the thin region around the flame defined by the gas-phase length-scale. Then, in this
condition, the interphase heat transfer is negligible at this length-scale. For lower flame velocities (lower φ) there is more
time of contact between the phases and the interphase heat transfer becomes increasingly more important. This intense
interphase heat transfer leads to local thermal equilibrium in a large region around the flame and limits the superadiabatic
effect. The model also shows that the flame propagation is not possible for φ < 0.241. This flammability limit was
already found and discussed in a previous work [12].
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Figure 2. gas-phase temperature at the flame as a function of the equivalence ratio

4. CONCLUSIONS

In the present work an analytical model for premixed flames within porous inert media, valid for a large range of
equivalence rations, is shown. This model extends the results of previous works to the region where intermediate values
of an interphase heat transfer parameter are found. This region shows a limit for the superadiabatic temperature of the
gas-phase. This limit is related to the intense interphase heat transfer at the flame for lower equivalence ratios. The model
also shows a flammability limit for the premixed combustion within porous inert media.
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