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Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by
extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the
correlation length of phase variables in the full equilibrated system shows that the critical temperature
vanishes with a power-law divergent correlation length and critical exponent vy, in agreement with recent
results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different
critical exponent »,,, suggesting that there are two distinct correlation lengths associated with a decoupled

zero-temperature phase transition.
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Josephson-junction arrays at irrational frustration have
attracted considerable interest, both experimentally and
theoretically, as a possible physical realization of a two-
dimensional vortex glass or a pinned incommensurate
vortex lattice, without intrinsic disorder. Frustration with-
out disorder can, in principle, be introduced by applying an
external magnetic field in a perfect periodic array of
weakly coupled superconducting grains [1-3] and simi-
larly in superconducting wire networks [4,5]. The frustra-
tion parameter f, the number of flux quanta per plaquette,
sets the average density of the vortex lattice and can be
tuned by varying the strength of the external field [6]. At
rational f, the ground state is a pinned vortex lattice
commensurate with the array leading to discrete symme-
tries in addition to the continuous U(1) symmetry of the
phase variables characterizing the superconducting order
parameter. The phase transitions and resistive behavior of
the array are only reasonably well understood for simple
rational f. Atirrational f, however, when the vortex lattice
is incommensurate with the array, the nature of both the
equilibrium phase transition and the low-temperature state
in the thermodynamic limit remains unclear.

We consider a Josephson-junction array on a square
lattice described by the Hamiltonian [6]

H= —JZ cos(f; — 6; — Ayj). (D)
)

6, is the phase of the local superconducting order parame-
ter, J > 0 is the uniform Josephson-junction coupling, and
Ajj is constrained to be } ;;A;; = 27 f around each pla-
quette, where f is an irrational number f = (3 — v/5)/2,
related to the golden ratio ® = (1 ++/5)/2 as f=1—
1/®.

In early Monte Carlo (MC) simulations [7], the ground
state was found to consist of a disordered vortex pattern,
and a possible superconducting (vortex-glass) transition at
a finite temperature T, ~ 0.25 was proposed from the
behavior of the specific heat. On the other hand, some
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arguments suggested that the critical temperature T,
should vanish [6,8]. Simulations of the current-voltage
scaling found indeed a behavior consistent with a 7, = 0
phase transition [9] similar to the vortex-glass model in two
dimensions [10,11] but with a different correlation-length
critical exponent v ~ 1. However, since resistivity scaling
probes mainly phase coherence, the behavior of the vortex
correlation still remained to be investigated. Simulations of
the relaxation dynamics by Kim and Lee [12] of the vortex
variables found a behavior analogous to supercooled
liquids [12] with a dynamic crossover temperature close
to the apparent 7, observed earlier in the specific heat [7].
MC simulations [13], using the vortex representation for
rational f converging to the irrational frustration, sug-
gested two phase transitions at finite temperatures: a first-
order transition to an ordered vortex structure weakly
dependent on f and a phase-coherence transition at much
lower temperatures varying significantly with f. The re-
sults were in qualitative agreement with other MC simu-
lations using the phase representation [14], but different
ground states were found, and the first-order behavior was
also sensitive to the boundary conditions.

More recently, a study of the finite-size behavior of the
specific heat and relaxation time in the phase representa-
tion found an intrinsic finite-size effect [15]. The scaling
analysis confirmed the 7, = O transition scenario with v
consistent with the earlier estimate from current-voltage
scaling [9]. Other simulations agree that, below some
temperature, relaxation processes become very slow.
Very recently, the T, = 0 scenario received further support
from improved calculations using a driven MC dynamics
[16]. On the other hand, an analysis of the low-temperature
configurations for f close to the irrational value from MC
simulations in the vortex representation [17] suggested two
transitions, consistent with earlier work [13].

In view of these conflicting results, it is important to
determine the true equilibrium behavior using methods that
ensure full equilibration of the system and obtain the
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critical behavior directly from the phase and vortex-
correlation lengths within the same framework.

In this work we study phase coherence and vortex order
at irrational frustration by extensive MC simulations, using
the parallel-tempering method (exchange MC method)
[18] to obtain equilibrium configurations of the system.
This method has been shown to reduce significantly the
long equilibration times in glassy systems [18—20] and
supercooled liquids [21]. To study the equilibrium phase
transitions, we use numerical data in the temperature re-
gime in which full equilibration can be ensured and employ
a scaling analysis to extrapolate to the low-temperature and
large-system limits. Since finite-size scaling of the corre-
lation length is currently one of the most reliable ap-
proaches to demonstrate the existence of an equilibrium
finite-temperature transition for glassy systems [19,20], we
use this analysis for the phase and vortex variables. The
results indicate that the critical temperature for phase
coherence vanishes (7, = 0) with a power-law divergent
correlation length and corresponding critical exponent vy,
in agreement with recent results from resistivity scaling
[16]. Although a first-order vortex transition at finite tem-
peratures cannot be ruled out, a similar scaling analysis for
vortex variables is also consistent with 7, = O but with a
different exponent v,. These different exponents suggest
the interesting scenario where there are two distinct corre-
lation lengths associated with a decoupled 7, = 0 phase
transition.

In the numerical simulations, we use periodic boundary
conditions on lattices of linear sizes L and corresponding
rational approximations ®, = F,,,/F,, where F, are
Fibonacci numbers (5, 8, 13, 21, 34, 55), with L = F,,.
Additional calculations using periodic (fluctuating twist)
boundary conditions [16] or the exact value of f did not
change the results.

To study phase coherence, we consider the overlap order
parameter [22] of the phase variables defined as gp,(j) =
exp(if} — i67), where 1 and 2 denote two thermally in-
dependent copies of the system with the same parame-
ters J and f. At high temperatures, where each copy is
thermally disordered, the correlation function Cp,(r) =
#Z #q@on()qpn(j + 1)) is short-ranged, decaying exponen-
tially with r, while at low temperatures it is long-ranged if
an ordered phase exists, including the possibility of a
glassy-ordered phase. The corresponding correlation
length in the finite-size system £, can be obtained from

a second moment calculation using the correlation function
as [19]

En(L) = 1 (Sph(o) _

1/2
1) , 2
2sin(k,,/2) Sph(ko) ) ( )
where S,(k) is the Fourier transform of C,,(r) and k, =
(ZT”, 0) is the smallest wave vector in the finite system. The
same expressions are used to determine the correlation

length for vortex variables &, in terms of the vorticity
v,, replacing g, by ¢,(p) = v,v3. The vorticity is de-
fined as v, = >;;(0; — 0; — A;;)/2m and is a measure of
the local vortex density, where the summation is taken over
the elementary plaquette p of the lattice and the gauge-
invariant phase difference is restricted to the interval
[—a, 7]

We use the parallel-tempering method [18] to obtain the
equilibrium configurations. Many replicas of the system
with different temperatures are simulated simultaneously,
and the corresponding configurations are allowed to be
exchanged with a probability satisfying detailed balance.
The exchange process allows the configurations of the
system to explore the temperature space, being cooled
down and warmed up, and the system can escape more
easily from metastable minima at low temperatures. With
this method, full equilibration can be ensured in finite-size
systems [18,20,21]. Without the replica exchange step, the
method reduces to conventional MC simulations at differ-
ent temperatures. We performed MC simulations using the
heat-bath algorithm for each replica, simultaneously and
independently, for a few MC passes. Then an exchange of
pairs of replica configurations at temperatures T; and T
and energies E; and E; is attempted with probability
min(1, exp(—A)), where A = (1/T; — 1/T,)(E; — E;), us-
ing the Metropolis scheme. The equilibration time to reach
thermal equilibrium can be measured as the average num-
ber of MC passes required for each replica to travel over
the whole temperature range. We used typically 4 X 10°
MC passes for equilibration with up to 100 replicas and an
equal number of MC passes for calculations of average
quantities. Nevertheless, for the largest system sizes L =
21-55, equilibration was possible only for temperatures
above Ty~ 0.145. This can be inferred from the time
evolution, in the temperature space, of a replica initially
at the highest temperature, as shown in Fig. 1. The replica
configuration starting at 7 = 0.3 is able to explore only the
temperature space containing 100 temperatures down to
T; ~ 0.145. Below this temperature, the replicas cannot be
warmed up and cooled down. Thus, T can be regarded as a
freezing temperature, below which the system remains
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FIG. 1. Trajectory in temperature space of a replica starting at

temperature 7 = 0.30, for system size L = 55. The simulation
included 100 replicas in the range 7 = 0.30 to T = 0.096.
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trapped in metastable configurations within the available
time scale of the present simulation. In fact, below Ty the
numerical results for £, and £, are sensitive to the initial
conditions, while above T they are not. Our estimate of 7'
is well below the apparent glass temperature 7',, observed
in earlier MC simulations [7].

For the finite-size scaling analysis of the correlation
length [19,20], we consider the dimensionless ratio &/L,
which, for a continuous transition, should satisfy the scal-
ing form

&/L = G((T — T, L"), 3)

where v is the critical exponent of the power-law divergent
correlation length & o [T — T,|™", T, is the critical tem-
perature, and G(x) is a scaling function with G(0) = C a
constant and G(x) — x~” as x — oo. This scaling form
implies that data for the scaled correlation length £/L as
a function of temperature, for different system sizes L,
should come together for decreasing temperatures and
cross at the same temperature 7 = T,. In addition, the
data should splay out for different system sizes with slopes
determined by the critical exponent ».

Figure 2 shows the temperature dependence of the
scaled correlation length for phase variables &, /L in the
temperature range where full equilibration was possible
and for different system sizes. This quantity increases
faster on lowering the temperature as the system size L
increases, indicating a divergent length scale for decreas-
ing temperature. However, for fixed temperature it de-
creases with L even at the lowest available temperature,
and therefore the curves do not cross at a common tem-
perature. If a phase-coherence transition takes place, then it
should occur at some unknown critical temperature 7
much below Ty ~ 0.145, which is not accessible in our
calculations for larger system sizes, or else only at 7 = 0.
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FIG. 2. Scaled correlation length of phase variables &, /L for
different system sizes L. Inset: Scaling plot according to Eq. (3),
assuming T, = 0 with v, = 1.2.

The latter case corresponds to a transition where 7. = 0
and the correlation length &, is finite at any nonzero T but
diverges when approaching 7' = 0. In principle, requiring
that the data should satisfy the scaling form of Eq. (3)
could be used to determine 7. and consequently find out
which scenario is realized. However, for T,. > 0 such data
collapse needs two different adjustable parameters 7, and
v, which is not a sufficiently accurate method. On the other
hand, the 7, = 0 scenario can be verified more accurately
since the scaling analysis requires adjusting only the criti-
cal exponent ». In this case, the data for £, should satisfy
the finite-size scaling form of Eq. (3) with 7. = 0, and the
best data collapse provides an estimate of the critical
exponent v ;. Figure 2 (inset) shows that indeed the data
satisfy the scaling form with an exponent v, = 1.2(2).

The T, = 0O scaling behavior for phase coherence and
the exponent v, are in agreement with results obtained
from resistivity scaling using the resistively shunted-
junction model for the dynamics [9] and, more recently,
resistivity scaling using a driven MC dynamics [16].
Although 7. = 0, at finite temperatures the relevant diver-
gent correlation length determines both the linear and the
nonlinear resistivity of the array leading to a current-
voltage behavior described by the scaling theory. In the
present case, where we can define two correlations lengths
&pn and &, the relevant divergent quantity should be &,
since this is a measure of phase coherence. From the
resistivity scaling, the estimate was [16] v, = 1.4(2),
which agrees within the errors with the present direct
estimate from correlation-length calculations. This quanti-
tative agreement for the value of v, obtained from equi-
librium and dynamical calculations provides strong
support for the phase-coherence transition scenario [9,16]
with 7, = 0.

In Fig. 3, we show the finite-size behavior of the scaled
correlation length for vortex variables &,/L. This quantity
also increases faster on lowering the temperature. For
small system sizes (L = 5-13) the curves intersect at
different temperatures near 7 ~ (.18, but for larger system
sizes they all decrease with L even at the lowest available
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FIG. 3. Scaled correlation length of vortex variables &, /L for
different system sizes L.
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FIG. 4. Scaling plot according to Eq. (3), assuming T,. = 0, for
the vortex correlation length &, with v, = 2.2.

temperature. Again, the lack of intersection at a common
temperature for large system sizes suggests that vortex
order, or even vortex-glass order, may occur only at 7, =
0 or T, < Ty. Alternatively, this lack of intersection at a
common temperature may suggest a vortex first-order tran-
sition. Such a transition was proposed earlier based on
results from MC simulations in the vortex representation
[13], where also a phase-coherence transition at a much
lower temperature was observed. The first-order transition
was suggested from the observation of a double-peaked
energy distribution near the transition. These results are in
qualitative agreement with MC simulations using the phase
representation [14]. However, different ground states were
found, and the double-peaked energy distribution was also
sensitive to the boundary conditions. Moreover, to confirm
the first-order nature of the transition, a finite-size scaling
analysis of the energy distribution using much larger sys-
tem sizes would be required. Since the parallel-tempering
method used here is known to be a significant improvement
over conventional MC methods by allowing escape from
metastable configurations and reducing the equilibration
time at low temperatures [18], the lack of full equilibration
that we found for 7 <T; makes unclear whether the
double-peaked energy distributions observed in finite sys-
tems in other MC simulations [13,14] are the result of an
underlying equilibrium first-order transition in the thermo-
dynamic limit or of a (nonequilibrium) freezing transition.
Thus, although a first-order vortex transition at finite tem-
perature cannot be ruled out, the possibility remains that
this transition is second-order and actually occurs at zero
temperature. In this case, the data for £, for the largest
system sizes should satisfy the finite-size scaling form of
Eq. (3) with T, = 0, and the best data collapse provides an
estimate of the critical exponent v,,. Figure 4 shows that
indeed the data satisfy this scaling form. Surprisingly,
however, the estimated critical exponent for vortex varia-
bles v, = 2.2(3) is significantly different from the one for

phase variables v, = 1.2(2). This in turn suggests that the
T, = O critical behavior is not described by a single diver-
gent length scale and therefore that there is a decoupling of
phase and vortex correlations both diverging as a power
law as the temperature approaches zero but with different
critical exponents.

It is clear from Figs. 2 and 3 that both correlation lengths
&pn and ¢, remain finite at 7 < T, ~ 0.25, the apparent
glass temperature found in earlier MC simulations [7],
since the ratio &/L decreases with system size. There-
fore, the signature of glass behavior found in this earlier
work should be attributed to slow dynamics effects and not
an equilibrium phase transition.

In conclusion, our scaling analysis is consistent with a
T, = 0 transition [6,8,9,16], but the phase and vortex-
correlation lengths diverge with different critical exponents
suggesting a new decoupled zero-temperature transition
scenario.
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