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ABSTRACT

Context. Although the theoretical understanding of nonlinear gravitational clustering has greatly advanced in the last decades, in
particular by improvements in numerical N-body simulations, the physics behind this process is not fully elucidated.
Aims. The main goal of this work is the study of the possibility of a turbulent-like physical process in the formation of structures,
galaxies and clusters of galaxies, by the action of gravity alone.
Methods. We use simulation data from the Virgo Consortium, in ten redshift snapshots (from 0 to 10). From this we identify galaxy-
sized and cluster-sized dark matter haloes, by using a FoF algorithm and applying a boundedness criterion, and study the gravitational
potential energy spectra.
Results. We find that the galaxy-sized halo energy spectrum follows closely a Kolmogorov power law, similar to the behaviour of
dynamically turbulent processes in fluids.
Conclusions. This means that the gravitational clustering of dark matter may admit a turbulent-like representation.
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1. Introduction

In a general framework, the standard model of structure forma-
tion is based on the gravitational Jeans instability criterion (e.g.
Linder 1997) which neglects viscous, turbulence and diffusion
effects. In this model, gravity acts to amplify the tiny random
fluctuations in the primordial density field to the significantly
overdense structures we see today (galaxies, groups, clusters and
superclusters). As long as the density contrast of the fluctua-
tions remains small (δ � 1) – in early times for small spatial
scales (like the ones of galaxies) and until the present time for
the largest scale structures – the amplitude of these fluctuations
grows linearly. In this regime all scales evolve independently
(e.g. Sahni & Coles 1995), and the random-phase nature of the
initial density field is preserved. Analytically, the equations of
motion of the particles that compose the “cosmic fluid” can be
successfully solved by means of the perturbation theory. It turns
out that, in the hierarchical scenario, fluctuations of increasing
spatial scale successively enter a nonlinear regime, collapse and
evolve to the virial equilibrium. Conversely to the case of the
linear regime, there is no general exact analytic solution for the
evolution of structures at this stage (e.g. Padmanabhan 2006).

The search for a theoretical understanding of nonlinear grav-
itational clustering has greatly advanced in two distinct direc-
tions: by constructing analytical approximation schemes and by
evolving numerical N-body simulations. While the attempts at
the first approach are limited to the domains of validity of the ap-
proximations, attempts at the second reproduce quite well most

� Part of the calculations made use of the NEC SX4/8A supercomputer
at the CeNaPAD Ambiental, CPTEC/INPE, Brasil.

of the observed properties of the actual structures (see, for in-
stance, Springel et al. 2005), but do not clarify completely our
understanding of the physics behind them.

On the analytical front, the most appealing proposals have
been the ones based on a hydrodynamical approach. The original
and simplest model of this type is the Zel’dovich Approximation
(ZA, Zel’dovich 1970), which considers that the velocity of
the fluid elements can be expressed at any time in terms of
the initial gravitational potential, that is, they move in the
field without modifying it. Remarkably this model predicts the
walls (pancakes), filaments, clumps and voids that characterize
the large scale structure. Nevertheless, the lack of self-gravity
leads to the dissolution of the structures after the first cross-
ing of the particles. Further progress was achieved with a se-
ries of approximations referred to as adhesion models (Gurbatov
et al. 1989; Shandarin & Zel’dovich 1989; Ribeiro & de Faria
2005). Mathematically, these models are based on the three-
dimensional Burgers’ equation (Burgers 1940) which introduces
an ad hoc artificial viscosity that slows down the particles as they
approach the pancakes and filaments. The alternative schemes
are mostly extensions of the ZA, among which are the more re-
cently proposed Lagrangian approximations (see, e.g., Sahni &
Coles 1995; Makler et al. 2001; Bernardeau et al. 2002, and
references therein).

One possibility that has not been explored much is that the
formation of structures is more closely related to hydrodynam-
ics, for example, by the existence of a “turbulent-like” behaviour
of the dark matter clustering process. The idea comes from the
characteristic pattern of the large scale structure that resem-
bles the turbulent pattern of fluids, although collisionless dark
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matter is responsible for such a pattern (baryonic matter effects
take place mostly on smaller scales, while dark energy effects
are expected to be present more recently).

In this paper we use an N-body simulation from the Virgo
Consortium to look for signatures of a turbulent-like process in
the formation of structures. We investigate systems of different
scales, from galactic size subhaloes to supercluster size super-
haloes, study some of their evolutionary properties, and evaluate
the gravitational energy of bound systems.

2. The Virgo N-body simulation

Our data are from the intermediate scale cosmological N-body
simulations run by the Virgo Consortium1, reported in Jenkins
et al. (1998). Below we briefly describe the main steps and char-
acteristics of these simulations (for an extensive review see, for
instance, Bertschinger 1998, and references therein).

As usual, the fundamental properties of the N-body simu-
lations of structure formation in the Universe are defined by the
background cosmological model and the initial perturbations im-
posed on this background. Four versions of the cold dark matter
model are available from the Virgo Consortium project, from
which we chose the ΛCDM one, with cosmological parame-
ters (ΩM, ΩΛ, h, σ8)2 = (0.3, 0.7, 0.7, 0.9). Among the addi-
tional (numerical) parameters that characterize the simulation
are a simulation box of side 239.5 h−1 Mpc and the number of
particles, 2563, with individual masses of 6.86 × 1010 h−1 M�.
Comoving spatial coordinates and periodic boundary conditions
were also used (see Jenkins et al. 1998, for details). Ten snap-
shots are available, at redshifts: 10.0, 5.0, 3.0, 2.0, 1.5, 1.0, 0.5,
0.3, 0.1 and 0.0.

The initial conditions are set by assigning a position and ve-
locity to each particle using an algorithm imposing perturbations
on an initially uniform state represented by a “glass” distribu-
tion of particles (see, e.g., White 1996). A convenient and ef-
ficient method (Efstathiou et al. 1985) for converting the early
density fluctuations into these perturbations can be derived from
the Zel’dovich (1970) solution:

x = r/a = q + D p u =
dr
dt
− Hr = a

dD
dt

p (1)

where x is the comoving Eulerian coordinate of a particle, r
is its proper Eulerian coordinate, a(t) is the expansion factor
(which satisfies the Friedmann equation), q is the Lagrangian
coordinate of the particle denoting its initial unperturbed posi-
tion, D(t) is the growth factor of the linear growing mode, p(q)
is the displacement field, u is the peculiar velocity of the parti-
cle, and H(t) = d ln a/dt is the Hubble parameter. The first term
of the displacement equation describes the cosmological expan-
sion, and the second denotes the perturbation. The initial veloc-
ity field is defined by the initial density fluctuations:

∇.p = −δ/D (2)

where δ(x, t) = [ρ − ρ̄]/ρ̄, ρ(x, t) is the local mass density and
ρ̄(t) is the spatial mean density.

Since cosmological N-body simulations are intended to fol-
low the evolution of the dark matter from the linear regime into
the deeply nonlinear regime, they must begin with the expected

1 Available from the web-page http://www.mpa-garching.mpg.
de/Virgo/data_download.html
2 ΩM = ρ̄/ρc = 8 πG ρ̄/(3 H2); ΩΛ = Λ c2/(3 H2); h =
H0/100 km s−1 Mpc−1; and σ8 is the rms mass fluctuation within a top-
hat radius of 8 h−1 Mpc.

distribution of matter, at some early epoch, produced by the lin-
ear evolution of primordial fluctuations. If these fluctuations are
Gaussian, they can be fully described by the density fluctua-
tion power spectrum (PS), P(k, t) = 〈|δk(t)|2〉. This PS can be
written as the product of an initial power law, produced by the
process that generated the fluctuations (typically the amplifica-
tion of quantum fluctuations during inflation), a transfer func-
tion T (k) representing the linear evolution of each mode through
the early expansion history (matter domination, baryon-photon
decoupling, etc.), and the growth factor D(t) governing the later
linear evolution after decoupling:

P(k, t) = AknT (k)2D(t)2 (3)

where A is a normalization factor encoding the overall amplitude
of the initial fluctuations (usually determined from σ8).

For the Virgo simulations, a Harrison-Zel’dovich n = 1 spec-
tral index was used, and also the approximation given by Bond
& Efstathiou (1984) for the transfer function:

T (k) = {1 + [aq + (bq)3/2 + (cq)2]ν}−1/ν (4)

where q = k/Γ, a = 6.4 h−1 Mpc, b = 3 h−1 Mpc, c =
1.7 h−1 Mpc and ν = 1.13. So, the shape of the PS is determined
by the parameter Γ = Ω0 h. The amplitude A, on the other hand,
was obtained from the observed abundance of galaxy clusters
(Jenkins et al. 1998).

Given the initial conditions, that is, the initial position and
velocity vector of each particle, the simulation is run in about
one thousand timesteps from z = 30 to z = 0. Newton’s law and
Poisson’s equation, in comoving coordinates, are used to evolve
the particle trajectories forward in time:

x′′ = −∇φ(x), φ(x) = −G
N∑

j=1

m j

[(x − x j)2 + ε2]
· (5)

The parameter ε is a softening factor introduced in order to
prevent the formation of unphysical binaries and large angle
particle scatterings, and to ensure that the two-body relax-
ation time is sufficiently large to guarantee the collisionless be-
haviour (Efstathiou & Eastwood 1981). The time integration is
performed using a second order leapfrog scheme (Efstathiou
et al. 1985). At each timestep the gravitational force on ev-
ery particle, generated by all others, must be calculated. This
is a prohibitively time consuming task if done by direct sum-
mation, so that simplifying parallel algorithms may be used
to efficiently compute it. The Virgo Consortium used a par-
allel adaptive P3M algorithm (Couchman et al. 1995; Pearce
& Couchman 1997), which computes long range gravitational
forces by smoothing the mass distribution in a mesh (particle-
mesh, PM), short range gravitational forces by direct summation
(particle-particle, PP), and applies high resolution refinements
around strongly clustered regions.

3. Identification of dark matter structures

There are many methods for detecting dark matter haloes in
N-body simulations. The most simple, well used and tested
ones are the percolation algorithm (or “Friends-of-Friends”,
dubbed FoF, Huchra & Geller 1982; Einasto et al. 1984; Davis
et al. 1985), the “Spherical Overdensity” method (Lacey &
Cole 1994) and the “DENMAX” sliding scheme (Gelb &
Bertschinger 1994).

The FoF algorithm groups together particles that have pair
separations smaller than a chosen linking length, 
. This linking

http://www.mpa-garching.mpg.de/Virgo/data_download.html
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length is frequently referred to as b times the mean interparticle
separation. The resulting “groups” are bounded by a surface of
approximately constant density:

n
n̄
=

2
(4/3)π
3

1
n̄
=

3
2π
3

̄3 =

3
2π

1
b3
∼ 1

2b3
· (6)

Assuming that the density profile of these groups can be approx-
imated by isothermal spheres, the average density contrast in-
ternal to this surface is given by about 3 times the surface den-
sity. The larger the 
 (or b), the lower is the density contrast
and the higher is the number of particles linked to the groups.
In general the value of b is chosen to give a mean overdensity
close to the value expected for a virialized object in the frame-
work of the spherical collapse model, ∼179. This gives b = 0.2,
which seems to be an appropriate value for detecting cluster-
sized haloes (Lacey & Cole 1994; Eke et al. 1996; Governato
et al. 1999). The main advantages of the FoF method are the sim-
plicity (only one free parameter), the reproductibility (a unique
group catalog for any chosen value of 
) and the capability of
detecting haloes of any shape.

The other approach, the SO algorithm, identifies density
peaks and puts spheres around them, increasing the radius of
the spheres until the average density contrast reaches a chosen
value. It was proposed to overcome the problem of FoF that may
accidently link two distinct lumps if they are connected by a low
density bridge of particles. However, it tends to lose the outer
portions of ellipsoidal haloes due to the assumption of spherical
symmetry (Lacey & Cole 1994).

The DENMAX algorithm, on the other hand, “moves” par-
ticles along local density gradients toward density maxima, sep-
arating halo candidates by three-dimensional density valleys.
The improvement of this method is the application of a self-
boundedness check by eliminating particles with positive total
energy. Unfortunately, this scheme has the drawback that the re-
sults depend on the level of smoothing of the density field (Gelb
& Bertschinger 1994).

Nevertheless, the three methods above are found to give
similar results (Lacey & Cole 1994; Eke et al. 1996; Audit
et al. 1998). The main limitation of these algorithms for detect-
ing structures on N-body simulations appears for small masses
(like the ones of galaxies): they do not properly resolve “sub-
haloes” embedded in host (cluster-sized) haloes with the usual
parameters. Improved versions of FoF, SO and DENMAX, re-
spectively the hierarchical FoF (HFoF, Klypin et al. 1999), the
Bound Density Maxima (BDM, Klypin et al. 1999) and the
HOP (Eisenstein & Hut 1998), and two step algorithms like
the SUBFIND (Springel et al. 2001) and the Physically Self-
Bound (Kim & Park 2006), have been proposed to better identify
sub-haloes in crowded regions.

Here we use a different approach. It works, in some sense,
like the HFoF algorithm. Since the FoF with b = 0.2 was shown
to successfully detect cluster-sized haloes, we use this scheme.
A cut in a minimum number of particles is used to eliminate
haloes with masses smaller than the ones expected for cluster-
sized haloes (see Table 1). For galaxy-sized haloes (including
sub-haloes) we use FoF with a smaller linking parameter (b =
0.1). This results in a catalog of haloes smaller and denser than
the cluster-sized haloes. Also, the equivalent mean density con-
trast (∼1300) is close to the one expected for the Milky-Way if
one considers the mass estimate of 1.5 × 1012 h−1 M� and the ra-
dius of 150 h−1 kpc (e.g. Smith et al. 2007; Dehnen et al. 2006;
Sakamoto et al. 2003). So, this is appropriate for identifying
sub-haloes and also for isolated galaxy-sized haloes. cD galaxies

Table 1. Halo identification and selection parameters ( f is the mean
density contrast).

Halo size b 
 f Mass
(Mpc) (Npart) (M�)

Galaxies 0.1 0.10 1300 2–150 >1 × 1011

Groups/Clusters 0.2 0.18 180 >100 >7 × 1012

Superclusters 1.0 0.92 1.5 >15 000 >1 × 1015

Fig. 1. Distribution of galaxy-sized halo masses (Npart) with their re-
spective velocity dispersion (σhalo), for redshift 0. The solid line is the
fit to the points in the main ridge (a power law σhalo ∝ Npart

1/2 is used),
while the dashed one represents a 2.5 rms of dispersion above this fit.

are the most massive galaxies and, since they are transition ob-
jects (their halo may be indistinguishable from their parent clus-
ter halo), they are detected as overmassive galaxy-sized haloes.
They also coincide with their parent cluster position. For some
analyses we excluded these special galaxies by introducing a
maximum mass limit. We also tentatively identify supercluster-
sized haloes by relaxing the linking parameter to b = 1.0 (den-
sity contrast about 1.5). Superclusters are not virialized systems,
but structures that probably have just detached from the Hubble
flow. The volume of the simulation is small for accurate statistics
of superclusters, but we can select some typical cases for further
analysis (to be published elsewhere).

We also applied a boundedness check for galaxy-sized
haloes, evaluated in a statistical way. Figure 1 shows the distribu-
tion of galaxy-sized halo masses (by the number of grouped par-
ticles) with their respective velocity dispersions. From the Virial
Theorem we expect that, for relaxed bound structures, these two
parameters are correlated, that is, the velocity dispersion is pro-
portional to the square root of the mass. The ridge of points in
the lower part of the figure follows this relation closely, as can be
seen by the fit (solid line). So, we considered the haloes below
the dashed line (about 2.5 rms above the fit) as bound. For z =
0.0, 50.7% of the particles remained isolated after the applica-
tion of the FoF algorithm to search for galaxy-sized haloes, and
10.6% were excluded as unbound haloes. These isolated parti-
cles and the particles of excluded haloes are probably associ-
ated with galaxies smaller then our detection limit. A similar
behaviour was found for the other redshift snapshots.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079105&pdf_id=1
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Fig. 2. Correlation functions for dark matter particles.

4. Correlation functions

In this section we discuss the clustering properties of the galaxy-
sized and cluster-sized haloes found by our percolation scheme
in order to check the consistency of our object catalogs. We mea-
sure the two-point (auto)correlation function using the Landy &
Szalay (1993) estimator:

ξ(r) =
1

RR
[DD(nR/nD)2 − 2DR(nR/nD) + RR] (7)

where DD, DR and RR are the pair counts in the data-data, data-
random and random-random catalogs, and nR and nD are the
mean number densities in data and random catalogs. We used
nR = nD in all cases. We also applied the Davis & Peebles (1983)
and Hamilton (1993) estimators to our data and found very sim-
ilar results in the sampled ranges.

Figure 2 shows the two point correlation functions for the
dark matter particles in the simulation (DMCF), for redshifts be-
tween 0.0 and 5.0. The results for redshifts 0.0, 0.3, 0.5 and 1.0
are very close to the ones presented by Jenkins et al. (1998) in
their third top panel of Fig. 5, as expected. The z = 0.1 correla-
tion function has a slightly different behaviour on scales larger
than 1 h−1 Mpc. It is a well established fact that the dark matter
(mass) correlation function has a very complex shape and can-
not be represented by a single power law in a significant range
(e.g. Jenkins et al. 1998; Pearce et al. 1999; Benson et al. 2000;
Springel et al. 2005). Another known property that can be clearly
seen is that the amplitude of the DMCF evolves considerably
with time. Also its slope changes systematically with z.

The correlation functions for galaxy-sized haloes (GHCF)
are presented on Fig. 3, for the same range of redshifts. Unlike
the DMCF, it shows a shape that resembles closely a power law
in all redshifts and over a large range of pair separations (here
we display the range adequately sampled by our data, 0.5 < r <
20 h−1 Mpc). This behaviour has been pointed as a coincidence
(see, e.g. Springel et al. 2005), but, as we will see in Sect. 5, this
might be related to the emergence of a turbulent-like process in
the halo clustering. On small scales (less than a few Mpc) and
low redshifts, the GHCF has less power than the DMCF, and
the GHCF is said to be “antibiased”. On larger scales, on the

Fig. 3. Correlation functions for galaxy-sized haloes. Line types are the
same as in Fig. 2.

Fig. 4. Correlation functions for cluster-sized haloes. Line types are the
same as in Fig. 2.

other hand, the GHCF shows similar amplitudes to the DMCF
for lower redshifts, thus it is “unbiased”. Furthermore, the GHCF
evolves very little with redshift (its amplitude grows slightly
with time).

Figure 4 displays the correlation functions for cluster-sized
haloes (CHCF). One can readily see that, up to redshifts z ∼ 1,
it evolves even slower than the GHCF. At higher redshifts, the
CHCF begins to increase. This is a consequence of the correla-
tion between the correlation function of clusters and their mass
or richness: at higher redshifts, only the most massive clusters
are detected and they are more clustered (Mo & White 1996;
Bahcall et al. 2004; Younger et al. 2005).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079105&pdf_id=3
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Fig. 5. Evolution of the amplitude (panel a)) and slope (panel b)) of the
power law fit to the correlation functions of galaxy-sized haloes and
cluster-sized haloes. The dotted lines are the linear fits to the data.

In order to better characterize the evolution of the correlation
strength (r0) and slope (γ) with redshift we fitted power laws to
the correlation functions of galaxy-sized and cluster-sized haloes

ξ(r) =

(
r
r0

)−γ
(8)

in the ranges 0.6–18 h−1 Mpc and 2−18 h−1 Mpc. The results
can be seen in Fig. 5. Panel (a) shows the evolution of r0,
which grows slightly with time for both galaxy-sized haloes and
cluster-sized haloes (more for the former), except for the high
redshift points for which the biased sampling towards more mas-
sive objects, as cited above, begins to dominate. Panel (b) dis-
plays the γ evolution. There is almost no change in the slope,
except for probable random noise that also grows with redshift
due to the decrease in the number of objects. The mean slope for
galaxy-sized haloes and cluster-sized haloes are, respectively,
1.53 and 1.59, with standard deviations of 0.03 and 0.09. These
values are smaller than the classical 1.8 slope, but consistent with
recent observational results, especially for galaxies (e.g. Padilla
& Baugh 2003; Hawkins et al. 2003).

5. Turbulence-like energy spectra

Now we test the hypothesis of the existence of turbulent-like
processes in the formation of structures, searching for their pos-
sible signatures. The main characteristic of 3D turbulence is the
existence of a kinetic energy cascade. According to this phe-
nomenology, kinetic energy is injected in the fluid at large scales
by an external mechanical forcing. Large scale eddies are then
deformed and stretched by the fluid dynamics, breaking into
smaller eddies. This process is repeated, through a hierarchy of
smaller and smaller eddies, until the kinetic energy is finally
dissipated into heat by the viscosity of the fluid (Frisch 1995).
Within a certain range of intermediate scales, the distribution
of energy among turbulence vortices behaves as a power law
with exponent−5/3. This is the well known Kolmogorov energy
spectrum, and represents the key signature of the “top-down”
turbulent cascade scenario. In an unbounded medium filled with

a collisionless set of particles, the emergence of a turbulent-like
behaviour would have a different physical origin than in standard
hydrodynamic turbulence. Nevertheless, the effects of particle
trajectory crossings and virialization, as well as the damping ef-
fect of the universal expansion, could lead to similar phenomena
as observed in standard turbulence. For example, the cosmolog-
ical dynamics of structure formation could exhibit a power law
scaling. In this section we will investigate the energy distribu-
tion of the cosmic structures discussed above (i.e. galaxies and
clusters) to look for the signal of such a turbulent-like behaviour
in the form of a power law scaling.

Since we are not dealing with a usual fluid (dark matter is
acollisional and, so, not viscous) and we have no energy “injec-
tion” in the strict sense, our assumption must be that the energy
that produces the turbulent-like behaviour is the gravitational po-
tential energy. Thus, with the lists of identified galaxy-sized and
cluster-sized haloes we obtained the energy spectra of the grav-
itational potential. This was done by estimating, for each halo
and in concentric shells, the gravitational energy due to all other
haloes:

U j =
1
2

Gm j

∑ mi

ri j
(9)

where ri j is the distance between the haloes i and j. Then we esti-
mate the mean energy (for all haloes) of each shell and build the
energy spectra with its cumulative value. The results of this cal-
culation are presented in Fig. 6: panel (a) for cluster-sized haloes
and panel (b) for galaxy-sized haloes. The stochastic error esti-
mations (1/

√
N) are plotted only for the first and last redshifts to

make the viewing of the figure more clear. The −5/3 power law
is represented by a solid line. One can easily notice that the
energy spectra for the cluster-sized haloes, although following
a power law, does not exhibit the Kolmogorov index. On the
other hand, the one for galaxy-sized haloes follows closely the
k−5/3 scaling in the wave number range 0.02 to 0.07 (15 to
50 h−1 Mpc).

This result differs from the one obtained for highly com-
pressible turbulence in molecular clouds (Kritsuk et al. 2007;
Padoan et al. 2007). Three-dimensional simulations of super-
sonic Euler turbulence show a velocity power spectrum that
becomes steeper as the Mach number increases, reaching the
Burgers slope of −2 asymptotically. Kolmogorov’s−5/3 scaling
is only recovered by mixing the velocity and density statistics,
through the computation of density-weighted velocity spectra.
The very different context of the present paper (namely, gravi-
tational clustering of large-scale structures, N-body simulations,
potential energy spectra) may explain this discrepancy.

To interpret this behaviour we point out that the turbulent-
like spectra shown in Fig. 6 have only the inertial regime, with-
out both the typical spectral energy-input and dissipation sig-
natures, which are usually found in standard turbulent systems.
As originally suggested by Shandarin & Zel’dovich (1989), a
simple turbulent scenario based on the ZA is compatible with a
top-down structure formation, where a large structure (pancake),
corresponding to the integral scale, forms first then fragments
into smaller objects respecting a cascade process. However, the
observations and simulations have, for many years, favored a
scenario closer to the hierarchical one. In such a way, since the
gravitational potential energy is purely attractive, its variation as
a function of the “wave number”, defined from the distances be-
tween haloes, could be interpreted as a bottom-up cascade pro-
cess. Physically, because of the attractive nature of gravity, there
is always an intermittent intrinsic instability that amplifies any

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079105&pdf_id=5
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Fig. 6. Gravitational energy spectra for cluster-sized haloes (above panel) and galaxy-sized haloes (below panel), for the sampled redshifts. A
reference −5/3 power law is plotted as a solid line.

small homogeneity deviation, as does the equivalent hydrody-
namic turbulence. Thus, interpreting the results of Fig. 6 as the
outcome of a kind of “gravitational turbulence” means that the
expansion of the universe on the largest scales is driving an in-
verse fragmentation process to compensate its deviation from
homogeneity on local scales along its evolution. Furthermore,
a turbulent-like behaviour may be a typical and essential multi-
scaling cosmological feature, requiring, for its robust character-
ization, the use of appropriate measurement techniques (Ramos
et al. 2002; Wuensche et al. 2004; Andrade et al. 2006).

6. Concluding remarks

We identified galaxy-sized and cluster-sized haloes in an inter-
mediate scale ΛCDM cosmological N-body simulation by the
Virgo Consortium. For these objects we calculated a gravita-
tional potential energy spectra and found that the one for galaxy-
sized haloes may be well described by a −5/3 power law in the
range from 15 to 50 h−1 Mpc. It is interesting to note that the
same scaling has been found in observations, for elliptical galax-
ies, between potential energy and mass (Márquez et al. 2001).

We speculate that this scaling of the energy spectrum, shown in
Fig. 6, could be a signature of the Kolmogorov universality as-
sumption (Frisch 1995), where the system dynamical structural
behaviour is uniquely and universally determined by the scaling
and its associated mean energy rate. From our results, the forma-
tion of structures in the nonlinear regime seems to be driven by a
turbulent-like mechanism, associated with irregular fluctuations
in an unstable gravitational field, characterized by combinations
of small-scale eddies and larger flow-like structures.

A power-law spectrum by itself does not mean the exis-
tence of turbulence. However, the emergence of an (approxi-
mately) scale invariant hierarchy of structures as the result of
the gravitational clustering process, together with the results
of Fig. 6, are consistent with the turbulence-like scenario sug-
gested here. Also, the space-time patterns seen in the simulated
data can be interpreted as intermittent nonlinear filaments in a
turbulent-like “gravitational” fluid (see, for phenomenological
comparison purposes, the turbulent fluid simulated by She et al.
1991). Because of its importance in our approach, we note that
there is presently no closed theoretical description of turbulence
(e.g. Sreenivasan 1995; Velho et al. 2001; Ramos et al. 2001).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079105&pdf_id=6
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Detailed studies, including analyses of higher resolution cosmo-
logical simulations and theoretical advances in the models for
the nonlinear regime and turbulence itself, are needed to advance
on interpreting the apparent turbulent-like behaviour of the struc-
ture formation processes presented here.
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