
INPE-15379-TDI/1398

WEB-PERFORMCHARTS: A WEB-BASED TEST CASE

GENERATOR FROM STATECHARTS MODELING

Alessandro Oliveira Arantes

Dissertação de Mestrado do Curso de Pós-Graduação em Computação Aplicada,

orientada pelo Dr. Nandamudi Lankalapalli Vijaykumar, aprovada em 11 de agosto

de 2008.

Registro do documento original:

<http://urlib.net/sid.inpe.br/mtc-m18@80/2008/07.14.19.42>

INPE

São José dos Campos

2008

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3945-6911/6923

Fax: (012) 3945-6919

E-mail: pubtc@sid.inpe.br

CONSELHO DE EDITORAÇÃO:

Presidente:

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Membros:

Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dr. Haroldo Fraga de Campos Velho - Centro de Tecnologias Especiais (CTE)

Dra Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Dr. Ralf Gielow - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Dr. Wilson Yamaguti - Coordenação Engenharia e Tecnologia Espacial (ETE)

BIBLIOTECA DIGITAL:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Jefferson Andrade Ancelmo - Serviço de Informação e Documentação (SID)

Simone A. Del-Ducca Barbedo - Serviço de Informação e Documentação (SID)

REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Marilúcia Santos Melo Cid - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

EDITORAÇÃO ELETRÔNICA:

Viveca Sant´Ana Lemos - Serviço de Informação e Documentação (SID)

INPE-15379-TDI/1398

WEB-PERFORMCHARTS: A WEB-BASED TEST CASE

GENERATOR FROM STATECHARTS MODELING

Alessandro Oliveira Arantes

Dissertação de Mestrado do Curso de Pós-Graduação em Computação Aplicada,

orientada pelo Dr. Nandamudi Lankalapalli Vijaykumar, aprovada em 11 de agosto

de 2008.

Registro do documento original:

<http://urlib.net/sid.inpe.br/mtc-m18@80/2008/07.14.19.42>

INPE

São José dos Campos

2008

Dados Internacionais de Catalogação na Publicação (CIP)

A14w Arantes, Alessandro Oliveira.
WEB-PerformCharts: a web-based test case generator from

statecharts modeling / Alessandro Oliveira Arantes. – São José
dos Campos: INPE, 2008.

86p. ; (INPE-15379-TDI/1398)

Dissertação (Mestrado em Computação Aplicada) – Instituto
Nacional de Pesquisas Espaciais, São José dos Campos, 2008.

1. Colaborativo. 2. Statecharts. 3. Verificação e validação.
4. Casos de testes. 5. Testes de software. I. T́ıtulo.

CDU 004.05

Copyright c© 2008 do MCT/INPE. Nenhuma parte desta publicação pode ser re-

produzida, armazenada em um sistema de recuperação, ou transmitida sob qualquer

forma ou por qualquer meio, eletrônico, mecánico, fotográfico, microf́ılmico, repro-

gráfico ou outros, sem a permissão escrita da Editora, com exceção de qualquer

material fornecido especificamente no propósito de ser entrado e executado num

sistema computacional, para o uso exclusivo do leitor da obra.

Copyright c© 2008 by MCT/INPE. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted in any form or by any means, eletro-

nic, mechanical, photocopying, microfilming, recording or otherwise, without written

permission from the Publisher, with the exception of any material supplied speci-

fically for the purpose of being entered and executed on a computer system, for

exclusive use of the reader of the work.

 “Não sabendo que era impossível, ele foi lá e fez.”.

Lao-Tsé (filósofo chinês)

Aos colegas, docentes e discentes da Pós-Graduação do INPE.

AGRADECIMENTOS

Primeiramente, o maior dos agradecimentos ao Prof. Vijaykumar por ter

disposto de seu tempo e dedicação para ser meu orientador e por todas as

contribuições que foram fundamentais no desenrolar deste trabalho; assim

como, também, estou muito grato ao Prof. Valdivino que acompanhou

atenciosamente o processo e teve uma participação essencial para o

direcionamento e andamento do trabalho.

Gostaria de agradecer também às colegas Ana Silvia e Danielle que muito

ajudaram no desenvolver do trabalho, à Mônica que dedicou muito de sua

atenção sendo minha orientadora no IEAv; e também à Maria de Fátima que

me deu um apoio fundamental para o ingresso no curso.

Não posso deixar de agradecer a minha esposa Érica que não se deixou

incomodar (muito) com as minhas noites de trabalho em casa; e também meus

pais, familiares e amigos que sempre torceram incondicionalmente por mim.

Também agradeço a Deus por ter me dado saúde e disposição para que eu

pudesse atingir esse importante marco em minha vida.

Da mesma forma, fico muito grato aos colegas do IEAv (Charbel, Afonso,

Walter Jr. e Remo) que permitiram minha dedicação ao curso e me auxiliaram

muito em minhas tarefas diárias.

E por último, mas não menos importante, eu ficarei eternamente grato a todos

aqueles que de alguma forma contribuíram com o trabalho, ou mesmo aos que

somente contribuíram para que minha passagem pelo curso fosse

inesquecível.

WEB-PerformCharts: GERANDO CASOS DE TESTES VIA WEB
A PARTIR DE ESPECIFICAÇÕES EM STATECHARTS

RESUMO

O desenvolvimento distribuído de software é uma realidade cada vez mais
comum onde equipes espalhadas por um país ou mesmo pelo mundo podem
trabalhar juntas no desenvolvimento de um produto. Nesse sentido, a utilização
da internet é o recurso o qual possibilita o trabalho cooperativo entre
profissionais geograficamente distantes. A presente dissertação propõe uma
ferramenta acessível pela internet, WEB-PerformCharts, que adapta as rotinas
da ferramenta PerformCharts possibilitando a geração e armazenamento de
casos de teste remotamente via internet pelos testadores de software. O
funcionamento da ferramenta proposta se baseia na especificação de sistemas
reativos utilizando a técnica Statecharts e na geração de casos de teste para a
mesma de acordo com alguns métodos disponíveis. A maior contribuição deste
trabalho diz respeito ao estudo de métodos apropriados para a geração de
casos de teste aplicados a software embarcado, além de propiciar a utilização
da WEB-PerformCharts remotamente com o objetivo de dar suporte aos
processos de testes em um ambiente de desenvolvimento distribuído.

ABSTRACT

Distributed development of software is an increasing approach where teams
spread over a country or even over the world can work together in order to
develop the product. Web appears as a valuable resource enabling the
cooperative development of software by professionals geographically distant
from each other. This dissertation proposes a web-based tool, WEB-
PerformCharts, which implements PerformCharts tool by adapting it to enable
test designers to achieve generation of test sequences remotely via Internet.
The goal of this proposed tool is to specify a reactive system in Statecharts,
using the Web, and to generate test sequences according to a test case
generation method. The main contribution of this dissertation is to investigate a
test case generation method appropriate for space software specifications,
besides enabling the use of WEB-PerformCharts through remote access with
the objective of supporting the test process in a distributed development
environment.

SUMMARY

Page

LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVIATIONS

1 INTRODUCTION.. 23
1.1 Objective.. 26

2 RELATED WORK.. 29
2.1 Tests for Verification and Validation Activities ... 29
2.2 Software Modeling ... 32
2.3 FSM and Statecharts ... 33
2.4 PerformCharts ... 35
2.5 Testing Critical Systems within a Collaborative Scenario 37

3 WEB-PERFORMCHARTS... 41
3.1 Architecture.. 41
3.2 Methods for Test Case Generation.. 43
3.2.1 Transition Tour (T-Method) .. 44
3.2.2 Switch Cover.. 46
3.3 Methodology used in WEB-PerformCharts .. 50

4 RESULTS .. 57
4.1 First Case Study .. 57
4.2 Second Case Study ... 58
4.3 Third Case Study ... 59
4.4 Fourth Case Study... 63
4.5 Fifth Case Study .. 67
4.6 Sixth Case Study ... 70
4.7 Seventh Case Study .. 73

5 CONCLUSION... 79

REFERENCES... 83

LIST OF FIGURES

1.1 - Fault, error and failure differences ... 24
2.1 - Statecharts representation of equipment with a repairer 36
2.2 - FSM of the example in Figure 2.1 .. 37
2.3 - Example of cooperative work. .. 40
3.1 - WEB-PerformCharts architecture... 44
3.2 - Transition Tour algorithm ... 45
3.3 - Example of a simple FSM .. 46
3.4 - Demonstration of Switch Cover method. .. 47
3.5 - Graph eulerized by Condata tool.. 48
3.6 - Switch Cover algorithm .. 49
3.7 - PcML specification of modeling in Figure 2.1 ... 50
3.8 - Upload interface in web server... 51
3.9 - FSM specified in XML .. 52
3.10 - Base of Facts for Condata tool. .. 55
4.1 - Statecharts representation of TCP protocol behavior............................... 59
4.2 - FSM generated from Figure 4.1 ... 60
4.3 - Statecharts representation of Producer-Consumer problem 63
4.4 - FSM generated from Figure 4.3 ... 64
4.5 - Statecharts representation of APEX system .. 69
4.6 - FSM generated from Figure 4.5. .. 69
4.7 - Statecharts representation of OBDH system.. 72
4.8 - Statecharts representation of APEX system detailed............................... 74

LIST OF TABLES

3.1 - Test Cases generated by Transition Tour method 53
3.2 - Test Cases generated by Switch Cover method 54
4.1 - Results obtained in first case study.. 58
4.2 - Results obtained in second case study .. 58
4.3 - Results obtained in third case study... 60
4.4 - Test cases from Transition Tour in third case study................................. 61
4.5 - Test cases from Switch Cover in third case study.................................... 62
4.6 - Results obtained in fourth case study .. 64
4.7 - Test cases from Transition Tour in fourth case study............................... 65
4.8 - Test cases from Switch Cover in fourth case study.................................. 66
4.9 - Results obtained in fifth case study.. 68
4.10 - Results obtained in sixth case study .. 71
4.11 - Results obtained in seventh case study ... 73
4.12 - Test cases from Transition Tour in fifth case study 76
4.13 - Test cases from Switch Cover in fifth case study 78

LIST OF ABBREVIATIONS

AGEDIS – Automated Generation and Execution of test suites for DIstributed
component-based Software
APEX – Astrophysical Experiment
ASML – Abstract State Machine Language
CTA – Comando-Geral de Tecnologia Aeroespacial
DFD – Data Flow Diagram
ERD – Entity-Relationship diagram
FSM – Finite State Machine
HTML – HyperText Markup Language
INPE – National Institute for Space Research
IUT – Implementation Under Test
OBDH – On-Board Data Handler
PCML – PerformCharts Markup Language
PHP – Hypertext PreProcessor
SDL – System Design Languages
SQL – Structured Query Language
STD – State-transition Diagram
UML – Unified Modeling Language
UNICAMP – State University of Campinas
V&V – Verification and Validation
XML – eXtensible Markup Language
XSLT – Extensible Stylesheet Language Transformations

23

1 INTRODUCTION

Nowadays, it turns out to be more difficult to measure the importance of the

software that surrounds the population. At the same time, it is quite impossible

to imagine how complicated life would be without software. Software is

embedded in computers, cell phones, production systems and many electronic

equipment that employs some kind of control. There is no way to disagree that

software is indeed in every aspect of modern life.

With the availability of modern technologies, it has become common for people

to entrust several responsibilities in embedded software and they are also

aware of the importance of its reliability as software is more and more used in

independent decisions within important processes (SOMMERVILLE, 2003).

However, in order to make the software more reliable, all functional and non-

functional requirements to operate the software in the most varied platforms and

under several conditions must be taken into consideration. This is the reason

why software companies assign a significant amount of their budget to activities

related to software tests or at least they should.

Historically in computing, tasks of software tests were left to a minor level plan

and moreover it was not used to be considered as an attractive task being

known as a tedious activity. However, this perception has been changing

quickly among computing professionals and nowadays testing plays an

extremely important role within the software’s life cycle. Therefore, software

developers must not save efforts to achieve a product with a maximum failure-

proof feature. This role becomes even more critical when considering

applications such as avionics and space as they involve significant amount of

resources. Added to this fact are the eventual risks to human life and threats to

environment.

Many professionals understand and use the terms fault, failure or error

interchangeably; but in software engineering there are many references that

distinguish these terms as in (BINDER, 2000) or (SOMMERVILLE, 2003) with

24

different definitions. Within the context of this dissertation the following

definitions illustrated in Figure 1.1 will be used:

Figure 1.1 - Fault, error and failure differences

When a fault exists in hardware or software, it can be exemplified as a defective

memory or source code mistakes. An error is the consequence of the fault

within the program data, and it can (or cannot) become a failure sensed by

user, when it is noticed that software does not match with its specification

(BINDER, 2000).

Fault occurrence in several systems controlled by software causes

inconvenience, but not serious damages. However, in certain systems software

faults may result in significant economic losses, physical damages or threats to

human life. These systems, in general, are known as critical systems

(SOMMERVILLE, 2003).

Critical systems may be classified into three main categories (SOMMERVILLE,

2003):

I. Security Critical System: A fault which can result in human threats, death

or severe environmental damage. As an example one can cite a system

that controls chemical plants.

25

II. Mission Critical System: Faults may result in problems to achieve goals

for some activity. Examples include navigation systems.

III. Business Critical System: Faults may result in failure to finalize a trade

deal. Good examples are systems that receive payments from bank

customers.

Space software systems are classified as critical systems because their

engineering processes demand high level and high cost technologies to perform

complex tasks. Therefore, space agencies naturally demand higher software

quality in lieu of huge investments for missions with scientific satellites

(MATTIELLO et al., 2006).

For space research objectives, embedded software test planning can absolutely

make the difference between success and failure, since entire mission depends

on it. Software development for space applications is both a restricted area and

difficult to work as it deals with highly specialized hardware with physical space

limitations. For such critical systems, developers can not plan tests adopting a

low cost and fast ad-hoc solutions; it must be formalized and planned as it is

usually done during the analysis or development phases. Software testing must

be conducted as a science and must be a formal process within the software

development life cycle by assigning human and financial resources for this

activity.

Space research organizations as INPE develops software for on-board

computers embedded into satellites or stratospheric balloons that have a close

interaction with the computer hardware, sensors, actuators and other devices.

These on-board computers respond to stimuli, or events, from their devices

making the embedded software a reactive system. Since these space missions

are unmanned, the software is hard to be replaced in case of faults. Due to this

fact, verification and validation phase during the entire software development

life cycle is an important activity (SANTIAGO et al., 2006). INPE demands high

software quality as huge investments in missions with scientific satellites have

26

become a routine and, many a time, teams involved in these missions are not

exactly in one place as agencies exchange people with other national or

international research agencies. In this scenario, an on-line collaborative tool is

important to aid the software testing activities.

Collaborative work joins efforts of several members of a team to coordinate their

tasks with an objective of reaching a specific goal. In particular, for software,

collaborative web applications are powerful resources that can help different

teams to cooperatively address process activities related to the software

development life cycle, especially those related to testing.

1.1 Objectives

In order to reduce costs, many software companies around the world are using

computer-supported cooperative tools to overcome the geographical distances.

Software development in geographically distributed settings is a natural trend in

present days since internet is a powerful and a handy resource. Besides, web-

based tools can aid different teams to cooperatively address process activities

related to the software development life cycle (ARANTES et al., 2008). When

dealing with software development, in particular with testing activities, software

modeling is an important issue. Usually, formal methods are employed to

represent a software specification in order to deal with them computationally for

several purposes, such as automatic code generation, automatic test sequence

generation, etc. In the context of this dissertation, the modeling technique

employed to represent a software specification is Statecharts (HAREL, 1987)

with an objective of automatically generate test cases. However, several

methods to generate test cases have been developed as long as the

specification is provided as an FSM. Therefore, while dealing with specification

techniques such as Statecharts, they have to be converted into Finite State

Machines (FSM). PerformCharts tool (VIJAYKUMAR et al., 2002) was

developed to conduct this activity of converting a Statecharts representation into

FSM. However, it is a standalone application. Moreover, its use is very limited

for test sequence generation as it is integrated with yet another tool Condata

27

(MARTINS et al., 2000) that generates test cases and this is a very tedious and

a time consuming process.

Therefore, as a primary objective, this work adapts PerformCharts to be

implemented in a prototype tool, WEB-PerformCharts, for remote access in

order to enable testing management capabilities through the web.

WEB-PerformCharts is able to read Statecharts specifications and generate

proper test sequences according to a selected method. Another objective was

to include the implementation of a method within WEB-PerformCharts in order

to generate test sequences running independently without depending on

another tool. For this purpose two methods were chosen to be implemented: T-

Method (Transition Tour) (SIDHU and LEUNG, 1989) as it is a popular and easy

to implement method; and Switch Cover (PIMONT and RAULT, 1979), as it was

already being used through Condata.

28

29

2 RELATED WORK

2.1 Tests for Verification and Validation Activities

Software Verification and Validation (V&V) (PRESSMAN, 2000) process helps

to ensure that software has all needed requirements in order to perform desired

tasks (validation), and to ensure that all requirements are satisfied (verification).

V & V is a systematic and technical evaluation where reviews and tests are

done at the end of each development phase in order to ensure that

requirements are correct and obeyed. Design, code, documentation and data

must satisfy those requirements. The major V&V activities are reviews,

walkthroughs, and testing.

Reviews are conducted during the end of each phase of the life cycle to

determine whether specifications have been met. It is most effective when

conducted by personnel not directly involved in the development. Walkthrough

is a more detailed examination based on the source code debugging with the

purpose of detecting errors. The group responsible for this is composed from

development, test, and quality assurance teams.

Testing activity is the subject discussed in this dissertation, and it is an

important phase in a V&V process because it is the software’s operation with

real or simulated inputs from real situations to demonstrate that software

satisfies its requirements or, if it doesn’t, to identify the differences between the

expected outputs and obtained results. Tests can be applied in different phases

of a system development process and there are several techniques available to

plan and evaluate test cases (MYERS, 2004). In fact they complement each

other and they can be classified as:

I. Functional Tests: known as “black box tests”, they are based on the

software’s specification but without any knowledge on its internal

structure;

30

II. Structural Tests: also known as “white box tests”, they are based on the

internal structure of a given implementation;

III. Error-Based Tests: introduction of common or typical errors into the

software under test during the development process. Many references

consider this technique from the same group of structural tests.

Generally structural tests are applied during the initial phases such as unit

(function, method or class) tests, while functional tests are applied during

integration and system testing.

Testing is specially important when dealing with complex and critical software

such as space applications. In order to minimize the costs and the impact on

the overall development process until the final product is released, modeling

software behavior turns into an important technique that allows fixing errors in

earlier phases (MYERS, 2004). A huge quantity of test sets must be applied to

validate the product, which leads to the necessity of generating proper test

sequences. Consequently the generation must rely entirely on a scientific basis

in order to avoid their (test sequences) inadequacy in revealing errors.

Models can be used to describe behavior of a system in order to provide more

resources for teams that deal with test development. Their use can be applied

during several phases of software's life cycle such as specifications, code

generation, reliability analysis and test case generation. Based on a model, the

system behavior can be understood and the issue of test generation can be

addressed (APFELBAUM and DOYLE, 1997). Test cases can be described

generically as a sequence of actions that show a proper system behavior; thus,

as the focus is in reactive systems, a test sequence is defined as an entire

sequence of events that provide stimulus to the system, and the challenge is

how to generate appropriate test sequences.

A significant number of methods to generate test sequences once the software

is somehow represented has been published in the literature. The AGEDIS

Consortium is an European agreement funded for joint cooperation research

31

programs related to software testing (HARTMAN, 2002). The objective of these

research programs is to increase efficiency and quality in software industry by

reducing costs in the testing phase through automating testing activities and this

consequently leads to developing methodologies in order to guarantee software

quality and reliability.

Also, the consortium investigates tools already developed since there are

several commercial, academic or proprietary tools around the world developed

based on some methodology and with an automatic test generation purpose.

The CONFORMIQ TEST GENERATOR, REACTIS and TAUTTCN SUITE, are

commercial tools which implement respectively UML (OMG, 2005), StateFlow

(MATHWORKS, 2008) and SDL (ELLSBERGER et al, 1997) models as an

input to generate test cases. An example of proprietary tool is ASML that

implements abstract state machines models that depend on Microsoft Visual

Studio.net. Some examples of academic tools are SPECTEST and TOSTER

which are also UML based model. All these tools use some state-machine

based specification, such as FSM, to simulate the application under test. State

machines represent a set of states and transition arcs among these states

labeled by an event, i.e., states change to other states based on the execution

of these events (HARTMAN, 2002).

Test sequences from a state machine could be defined as a path from a given

state (or configuration when parallel activities are considered) to another state

or configuration that is reachable. If the software were modeled as a FSM, for

example, some of the methods that can be applied are: T-Method, UIO-Method,

D-Method and Switch Cover (LEE and YANNAKAKIS, 1996), (MARTINS et al.,

2000), (MYERS, 2004) and (PIMONT and RAULT, 1979). However, some

features usually present in complex software, like parallel activities and

encapsulation, are very hard to model in FSM. Then, a better option when

dealing with such kind of software is to use a higher-level modeling such as

Statecharts (HAREL, 1987) and as Statecharts are formal, one can develop a

computational algorithm to convert the specification into a FSM.

32

A proper way to fix possible faults and guarantee software correction is with

exhaustive testing. The obvious and most natural choice one can think of is to

test software by executing all possible inputs. This approach works fine for

simple systems, but does not for huge systems with an intractable range of

input domain (MYERS, 2004). If testing all input domains is intractable, one

must use an alternative to select subsets of test data to be utilized for input. It is

of fundamental importance that these testing techniques must be planned and

conducted in a formal approach.

2.2 Software Modeling

Any graphical or textual language that can be used to represent structured

information or knowledge following a set of consistent rules is known as a

modeling language. Modeling techniques have become common for domain-

specific applications recently, in particular for software development (XIAO et

al., 2007).

Several modeling techniques have been used to represent complex software in

engineering systems. Each of them has the objective in satisfying the

necessities of a specific domain. UML, for example, is a general-purpose

modeling language that creates an abstract model of a given system (OMG,

2005); DFD uses relationships among processes of a system (GANE and

SARSON, 1979); and, ERD describes a system by organizing its data as a

primary objective (CHEN, 1976). Since these techniques are not quite formal,

they are very hard to be computationally handled. However, there are also

formal techniques that can be computationally handled representing a reactive

system as a set of states and transitions among these states triggered by some

stimulation. Such techniques that can be mentioned are Petri Nets

(PETERSON, 1981), SDL (ELLSBERGER et al., 1997), Statecharts (HAREL,

1987) and others.

There is no unique method that can satisfy most of the modeling issues. Each

of these has their advantages and drawbacks for a particular paradigm. Test

33

designers, following their human nature, are usually biased by a method they

dominate well and it is highly unlikely that they would opt for a different

technique even when it seems to have better features to represent a complex

system behavior. Organizations as CTA and INPE deal with space applications

which means complex software is developed not only to control the space

missions as well as it is embedded in scientific instruments or experiments that

fly on-board the spacecrafts. Such software has to go through a thorough

verification and validation activities based on careful and organized tests. In

order to conduct such type of testing, software must be specified formally in

order to automate several processes involved.

2.3 FSM and Statecharts

Reactive Systems are systems that maintain an ongoing interaction with their

environment by responding to the interactions through some sort of processing.

These systems are event-driven, since they continuously react to external or

internal stimuli also known as events (HAREL and NAAMAD, 1996); and in

particular within the context of this work, they are considered complex. A natural

choice for representing reactive systems is FSM as it can be represented

graphically by a state-transition diagram. However, features as depth and

parallelism (usually common in modern complex reactive systems) are not

easily specified in a straightforward manner through FSM. So, a formal higher-

level technique should be investigated. This work is based on Statecharts to

specify reactive systems (HAREL and POLITI, 1998).

Statecharts are graphical-oriented based on state-transition diagrams extending

them by including notions of hierarchy, orthogonality and interdependence.

They can specify reactive systems (HAREL and POLITI, 1998) and they are

formal (HAREL et al., 1987) and (HAREL and POLITI, 1998) enabling

computational handling. In order to represent a reactive system in Statecharts,

one must make use of the following elements: States, Events, Conditions,

Actions, Variables, Expressions and Transitions.

34

States are clustered to represent depth. One can combine a set of states with

common transitions into a super-state and state refinement is achieved by

means of XOR and AND decompositions. The former is used whenever an

encapsulation is required. When a super-state OR is active, one (and only one)

of its sub-states is indeed active. The latter is used to represent concurrency.

When a super-state AND is active, all of its sub-states are active at the same

time. A “basic state” is when there are no further refinements. In Statecharts

global state of a given model is referred to as a configuration, that is, the basic

active states of each parallel component.

By definition, when modeling a given system, there must always be an initial

state also known as default state, which is the entry point. Another way to enter

a system is through its history, i.e. when a system (or a sub-system) becomes

active, the state most recently visited is activated. Symbol H has to be specified

in order to use history. It is also possible to use the history all the way down to

the lowest level (H*) (HAREL, 1987).

Events are fundamental to change system behavior so that configurations move

to other configurations. Events have been classified into two categories: internal

and external (HAREL, 1987). External events have to be explicitly stimulated.

Internal (or immediate) events are those that are sensed automatically (not

explicitly stimulated) and are enabled so that transitions are fired immediately.

Statecharts have such built-in events: true(condition), false(condition),

entered(State), exit(State). The basic element action can refer to change of a

variable, expression or even another event. The original notation along a

transition arc is event[condition]/action. This is interpreted as: when an event is

enabled and the associated condition is satisfied, only then the transition takes

place by moving from one state to another. Once the transition is fired, action is

performed by changing a value of a variable or an expression or event

continuing the reaction moving from one state (in another parallel component)

to another.

35

2.4 PerformCharts

PerformCharts is a tool used to generate test sequences from Statecharts

specifications. It was initially designed and developed to be used to evaluate

performance of reactive systems by associating them to Markov Chains

(VIJAYKUMAR et al., 2002). In PerformCharts, for the purpose of performance

evaluation, external events are considered as stochastic following an

exponential distribution. Internal events are considered as immediate as the

transition takes place in zero time. Actions, in PerformCharts, besides changing

values of a variable or an expression, are considered as internal events that

affect other orthogonal components. In order to obtain performance evaluation,

PerformCharts tool converts the Statecharts model into a Markov chain. This

tool was written in C++ language.

Markov chain, in fact, can be represented graphically by a state-transition

diagram. Based on this fact, PerformCharts tool has also been in use to

generate test sequences. Therefore, in this case, a Statecharts model of a

software specification is converted into an FSM from which test sequences can

be derived. In this case, external events are just inputs without any stochastic

information.

A graphical interface for Statecharts modeling is a related work that is under

development. So, the specification of a reactive system in Statecharts and

generation of FSM (or Markov chain) have to be coded as calls to methods in

C++ language as a main module. In order to avoid this tedious coding, an XML-

based (W3C, 2002) language PerformCharts Markup Language (PcML)

(AMARAL et al., 2004) has been developed. PcML code is edited by any text

editor and parsed by a Perl script that converts it to the main program in C++.

Thus, this main program is linked and compiled with other classes and when

executed, the corresponding FSM is generated.

As an example, Figure 2.1 shows a Statecharts representation of a

Manufacturing system with a repairer. It has three parallel components that

36

correspond to two machines (E1 and E2) and a supervisor (Supervisor) to

repair any eventual failure of the machines. In case both the machines fail E1

has a priority to be repaired. This priority is described by the event tr[in(B2) ^

not in(B1)] meaning that the conditions in state B2 (in(B2) – machine E2 is

down) and not in state B1 (not in(B1) – machine E1 is not down) have to be

satisfied in order to fire the transition to repair E2. More details about the events

and conditions in Statecharts can be seen in (HAREL, 1987). The list of

stochastic events include a1, r1, f1, s1 a2, r2, f2 and s2. Internal events are

tr[in(B1)], tr[in(B2) ^ not in(B1)]. Actions c1 and c2, also considered as internal

events, are triggered after the events s1 and s2 are executed. For example,

once s1 is triggered, a transition from state C1 to WS (within the Supervisor

component) is fired and this is followed by another transition associated to

action c1 moving from state B1 to state W1 (within E1 component). The

corresponding FSM from this example (after converted by PerformCharts tool)

is shown in Figure 2.2.

Figure 2.1 - Statecharts representation of equipment with a repairer

 Source : SANTIAGO et al. (2006)

37

Figure 2.2 - FSM of the example in Figure 2.1

 Source : SANTIAGO et al. (2006)

2.5 Testing Critical Systems within a Collaborative Scenario

As described before, several systems controlled by software are classified as

critical since a failure may cause serious consequences. As examples of critical

systems one can mention space applications, navigation systems, banking

systems or nuclear plant monitoring. The focus of this work is in space

applications that deal with the execution of complex tasks using high cost

technologies; consequently, such software demands high quality and testing to

guarantee their reliability.

Tests can be applied in different phases of a system development process;

even in modeling phases before implementation, it is already possible to fix

errors testing a formal specification. These tests based on the software’s

specification without any knowledge on its internal structure are Functional

Tests (or “black box tests”).

38

Nowadays, web offers resources for transmission of data at high speeds in

which geographical distance is no longer a critical factor. Thus, the cooperative

work among teams located in different places, geographically distant, has

become a common trend and even necessary both in business and in academia

(TIAN and TAYLOR, 2001). This trend is further enhanced with the concept of

globalization. The objective of collaborative systems is helping people involved

in a common task supporting communication, coordination and cooperation.

The use of such applications means accessibility for any internet user, allows

cost saving, time saving, and increases teamwork and efficiency since all

manipulated data by one user can be immediately perceived by all other users

at remote locations (TIAN and TAYLOR, 2001).

Web-based applications have advantages by offering a low cost solution, since

in this architecture, the client can use any operating system and it requires no

other proprietary software. Also, nowadays, many people have easy internet

access and whenever updates are necessary, this is conducted only in the

server where the applications are hosted without any necessity for the users to

reinstall any kind of software. So, collaborative web-based systems (also known

as E-collaboration) is a common practice adopted for many companies to

develop their applications; and in this work a collaborative system was

developed implementing classes from an already implemented tool

PerformCharts in order to generate “black box tests” for software specifications

transmitted by internet.

Collaborative tools can fall into the following categories: Group Document

Handling, Real-time conferencing, Non real-time conferencing, Electronic

Meeting Systems (EMS) and Electronic Workspace. In case of the tool

discussed in this dissertation (WEB-PerformCharts), it belongs to the category

of Electronic Workspace due to its main idea in offering teams a common

environment for coordination and organization of their work centralizing files and

documents in an on-line server (BAFOUTSOU and MENTZAS, 2001). Many

39

features are commonly found in web-based applications, and those that are

relevant for collaborative systems are:

I. E-mail notifications: to communicate tasks, changes or new activities;

II. Project management: to control the access level of users and assign tasks

to members of a group;

III. File and document sharing: availability of documents. Particularly in this

work, software requirements specifications, software design documents

and documentation related to the test process must be available to a group

of people involved.

The most common feature in such tools, and at the same time most needed

collaboration service, is file and document sharing (BAFOUTSOU and

MENTZAS, 2001).

It is usual in space research organizations as INPE and CTA, situations where

teams involved in satellite missions are not exactly in one place due to joint

collaborations among space agencies to develop space applications. The use of

an on-line collaborative tool would definitely aid the software testing activities in

this scenario such as the one shown in Figure 2.3.

40

Figure 2.3 - Example of cooperative work

41

3 WEB-PERFORMCHARTS

3.1 Architecture

With the objective of enabling different teams, distributed geographically in

different locations, working in software testing sharing projects through Internet

access, PerformCharts was modified to become WEB-PerformCharts. It is a

web-based tool to help software testers working in different places for

cooperating in common projects, and using their expertise and know-how in

order to benefit software’s quality.

PerformCharts tool has been modified to run remotely through a web-based

interface and to be hosted in a web server using database access. This on-line

database has been implemented in order to promote testers to load and save

projects from anywhere to the server, instead of manipulating local files spread

over several computers.

Internet development technologies were required for implementation besides

the traditional HTML, and the preference was for cost-free technologies such as

PHP, MySQL for SQL standard databases and Apache web server software. At

the moment, WEB-PerformCharts uses Windows based platform servers; a

Linux version is under development.

Once logged in the system, testers are able to create, edit or delete projects

and their associated PcML specifications. Each user can manipulate just one

project at a time, and when a project is selected (from a list of available

projects) it can be modified and the tester can run the test case generation

method as many times as required. This is an important feature especially when

a software is incorrectly modeled or has to undergo changes in its specification.

These changes can be perceived by anyone who can access the same project.

PcML specifications are distributed in projects, that can be created by any user

and can be shared among users. The implementation of workflow routines is

under study and the communication between them can be integrated with

42

tester's e-mail addresses. The idea to group users into workgroups seems very

useful and will also be studied for implementation.

The number of users who can access WEB-PerformCharts is not limited in

theory. It depends directly on the server capacity to support on-line workload as

well as on the storage memory. In case of a huge number of users accessing

the same server, they could be organized hierarchically according to their

functions (e.g. Administrator, User, Guest, Project Manager, General Manager,

etc.) providing an easier management. In fact, in this preliminary version, WEB-

PerformCharts has two access levels for users: Administrator: full access for

any project, and can create another user accounts; User: access just for

projects created by her or him. A version control to concurrent access has not

yet been developed, but it is expected to be implemented in the near future.

The web-based interface provides the user features to manage her or his

projects creating a new one, deleting or modifying an existing project in order to

obtain new test cases by running the test case generator method as many times

as required. These test cases are stored in an on-line database in the server,

and can be accessed anytime by those who have the proper authorization.

WEB-PerformCharts uploads a file with PcML specification to web server when

user selects it using the provided interface, which is implemented in HTML and

PHP. When uploaded, the PcML contents are automatically parsed by a PHP

script which extracts any specification data and stores them into a MySQL

database. Data inserted in this database is read and used to invoke proper data

structures holding the encapsulation, states, events, conditions, parallel

components and transitions. It calls appropriate methods from PerformCharts

and generates the FSM from its Statecharts specification. If performance

evaluation is required, a Markov chain is the result instead of FSM; but in either

case (Markov chain or FSM), it is stored in the database and can be extracted

in XML format for any other future use.

However, once FSM is available, methods can be applied in order to generate

test sequences. WEB-PerformCharts is not planned to be limited to a single

43

method since the idea is to make these methods as independent cartridges

within the system.

3.2 Methods for Test Case Generation

Once the Statecharts representation is converted into a FSM, a test sequence

generation method can then be applied on the FSM. Some examples of

methods are T-Method, Switch Cover, UIO-Method (Unique Input/Output

Sequences) (DERDERIAN et al., 2006) and D-Method (Distinguish Sequences)

(SIDHU and LEUNG, 1989). Before developing WEB-PerformCharts, just the

Switch Cover method was being used through an integration between

PerformCharts and yet another tool Condata (MARTINS et al., 2000)

(SANTIAGO et al., 2006) that was developed at UNICAMP. However, although

this solution works well for test case generation, is necessary to combine the

PerformCharts and Condata tools. In particular Condata only takes the FSM as

a base of facts, which is nothing more than a file with FSM described in Prolog

source code. This requires another process in converting the output of

PerformCharts into the input to Condata becoming a time consuming process,

and this is one of the reasons to aggregate a test sequence generator within

WEB-PerformCharts. Two such methods were chosen to be incorporated within

WEB-PerformCharts: Transition Tour and Switch Cover. Also, WEB-

PerformCharts is opened for implementing any other method as long as the

method can be applied on an FSM representation. However, it is important to

clarify that WEB-PerformCharts still maintains the old approach (in using

Condata) through Switch Cover. Therefore, in case a test manager prefers

Condata tool, WEB-PerformCharts may still be used. In this case WEB-

PerformCharts converts the Statecharts representation into a FSM. Then, the

option, in WEB-PerformCharts, of generating the Base of Facts implemented

will deliver the necessary Base of Facts required by Condata.

Recollecting, in test sequence generation, users have two alternatives within

the WEB-PerformCharts tool. They can use the cartridges from WEB-

PerformCharts, or they can export a base of facts which are input to Condata

44

tool. This conversion is automatically achieved by using a parser written in

XSLT. Figure 3.1 describes all basic steps to generate test sequences using

WEB-PerformCharts. The generation using one of the methods implemented in

WEB-PerformCharts is indicated as “Path A”, and the integration with Switch

Cover method from Condata tool as “Path B”.

Figure 3.1 - WEB-PerformCharts architecture

3.2.1 Transition Tour (T-Method)

Transition Tour is a graph depth search method whose objective is, from an

initial state, to traverse all arcs from a graph at least once and return to initial

state. This problem is also known as Chinese Postman Problem (DAHBURA et

al., 1990) whose task is to find a minimized perfect transition tour based on the

number of arcs in tour, or on a sum of values related to its respective arcs. The

algorithm used in WEB-PerformCharts is shown in Figure 3.2.

45

initial_state = initial state in the graph
current_state = empty
path = empty
number_of_arcs = total number of arcs in the entire graph
arcs_not_traversed = number_of_arcs

WHILE arcs_not_traversed > 0
AND current_state • initial_state DO

 IF arcs_not_traversed = number_of_arcs THEN
 current_state = initial_state
 END IF

 list_of_events = list of events that can be stimulated from
 current_state

 current_state = new state reached by stimulation of event from
 list_of_events

 arcs_not_traversed = total number of arcs not traversed in
 the entire graph

 path = path + event
 DELETE list_of_events

END WHILE

INSERT path into DATABASE

Figure 3.2 - Transition Tour algorithm

As can be seen in Figure 3.2, the T-method is relatively simple. In order to

traverse a graph, this method requires at least a minimal, strongly connected,

and completely specified state machine. However, the sequence may contain

some redundant inputs generating loops in the transition tour. In the algorithm

implemented in WEB-PerformCharts these redundant inputs were relatively

minimized using programming tips that avoid repeated loops, but it does not

guarantee an optimal result.

In order to illustrate a transition tour sequence, consider the FSM in Figure 3.2

in which “W” is the initial state. By applying the method, the following sequence

is obtained: cfabrbf.

46

Figure 3.3 - Example of a simple FSM

3.2.2 Switch Cover

State transition diagrams are directed graphs. Therefore, concepts and

algorithms of graph theory can be used in order to traverse them automatically.

The graph theory algorithm implemented in WEB-PerformCharts and Condata

is known as sequence of “de Bruijn” (ROBINSON, 1999). Switch Cover method

is a more stringent test coverage where a switch is a branch-to-branch pair, and

test sequences consist of every branch-to-branch pair from traversed graph.

Then, every pair of combinations is executed. Consider the FSM of Figure 3.4

(a) in order to illustrate this algorithm.

1st Step – A dual graph is created from the original one, by converting arcs of

the original graph into nodes as shown in Figure 3.4 (b).

2nd Step – For all nodes in the original graph where there is an arc i arriving

and an arc j leaving, an arc is created from i to j in the dual graph (Figure 3.4

(c)):

3rd Step – The dual graph is transformed into an “Eulerized” graph by balancing

the polarity of the nodes. This balance is obtained by duplicating the arcs in

such a way that the number of arcs arriving becomes equal to the number of

arcs leaving the node. The “Eulerized” graph generated by the tool that

corresponds to Figure 3.4 (a) is shown in Figure 3.4 (d).

47

4th Step – Finally, the nodes are traversed registering those that are visited,

generating the following test sequences in WEB-PerformCharts: abrbf, crbf, cf.

Figure 3.4 - Demonstration of Switch Cover method

 Source : Adapted from SANTIAGO et al. (2006)

Condata generated the following sequences: abf, abrbf, cf, crbf. This difference

between sequences probably occurs because, in this example, Condata

48

algorithm uses three more arcs than WEB-PerformCharts during eulerization

and consequently generates some more redundant combinations, as it can be

seen in Figure 3.5.

Figure 3.5 - Graph eulerized by Condata tool

 Source : Adapted from SANTIAGO et al. (2006)

The Switch Cover algorithm implemented in WEB-PerformCharts, which can be

seen in Figure 3.6, uses matching technique to perform graph eulerization and

2-switch set cover (CHOW, 1978) method in order to generate all pairs of

combinations between connected transitions. Some programming tips were

used in order to avoid loops in sequences and repeated sequences since,

depending of the graph complexity, Switch Cover can generate several

sequences. One of this tips, for example, is do add a penalty in a sequence

when it is repeated, then its execution is cancelled and in a second search the

algorithm will avoid this same sequence. However, complex specifications

require much extra computational effort and this implementation still does not

guarantee an optimal situation, where all branch-to-branch pair of combinations

is executed.

49

arcA, arcB = empty
stateA, stateB = empty
// Setting states for dual graph
FOR each arc in graph DO
 SET a new state in dual graph
END FOR
// Tracing arcs between states in dual graph
FOR each pair of arcs in graph DO
 arcA = GET an arc from graph
 arcB = GET another arc from graph
 IF destination of arcA AND source of arcB is in same state THEN
 stateA = GET respective state of arcA
 stateB = GET respective state of arcB
 SET a new arc in dual graph from stateA to stateB
 END IF
END FOR
// Eulerizing graph
signal = empty
list_of_unbalanced = GET all unbalanced states from dual graph
WHILE list_of_unbalanced > 0 DO
 FOR each state in list_of_unbalanced DO
 stateA = GET state from list_of_unbalanced
 signal = GET direction of arc required (incoming or outgoing)
 stateB = GET a state connected with stateA with opposite signal
 IF signal = incoming THEN
 SET new arc from stateB to stateA
 ELSE IF signal = outgoing THEN
 SET new arc from stateA to stateB
 ELSE IF
 END FOR
 list_of_unbalanced = GET all unbalanced states from dual graph
END WHILE
// Generating test sequences
initial_state, current_state = empty
path = empty
test_cases_repository = empty
list_of_events = empty
list_of_initial_states = GET a list of initial states
WHILE there are arcs from each initial state in list_of_initial_states DO
 initial_state = GET state from list_of_initial_states
 WHILE current_state ≠ initial_state DO
 IF path = empty THEN
 current_state = initial_state
 END IF
 list_of_events = events that can be stimulated from current_state
 current_state = new state reached by stimulation of event
 path = path + event
 DELETE list_of_events
 IF current_state = empty THEN
 current_state = initial_state
 DELETE path
 ADD penalty to this path
 DELETE last arc used by path in dual graph
 END IF
 END WHILE
 IF path already exists in test_cases_repository THEN
 DELETE path
 ADD penalty to this path
 ELSE
 ADD path TO test_cases_repository
 DELETE arcs used by path in dual graph
 DELETE path
 END IF
 current_state = empty
END WHILE
INSERT test_cases_repository into DATABASE

Figure 3.6 - Switch Cover algorithm

50

3.3 Methodology used in WEB-PerformCharts

In order to show the methodology for test sequence generation through WEB-

PerformCharts, consider the example in Figure 2.1. The methodology to

generate test cases follows:

1st Step – The system specification in Figure 2.1 is written in PcML. A part of

such specification is shown in Figure 3.7.

<?xml version="1.0" encoding="ISO-8859-1"?>
<PcMl Title="Manufacturing System" Date="2005-08-12">

<Info>
<Author>
<Name>Ana Silvia Martins Serra do Amaral</Name>
<Email>anasil@lac.inpe.br</Email>
</Author>
<Description>
Project Cote de Resyste - Study Case
Protocol Conference with variables
 </Description>
</Info>
<States>

<Root Name="System" Type="AND">
<State Name="E1" Type="XOR" Default="W1">
. . .
</State>

</Root>
</States>
<Conditions>

<InState Name="Cond1" State="B1"/>
 . . .
<NotCondition Name="Cond3" Condition="Cond1"/>
<ComposedCondition Name="Cond4">

<ANDCOND Cond1="Cond3" Cond2="Cond2"/>
</ComposedCondition>

</Conditions>
<Actions>

<EventTriggerAction Name="etaE1" Event="c1"/>
 . . .
</Actions>
<Events>

<TrueCondition Name="CC1" Condition="Cond1"/>
. . .
<Stochastic Name="a1" Value="5.0"/>

 . . .
</Events>
<Transitions>

<Transition Source="W1" Event="a1" Destination="P1"/>
 . . .
</Transitions>
</PcMl>

Figure 3.7 - PcML specification of modeling in Figure 2.1

2nd Step – WEB-PerformCharts is accessed and PcML file is uploaded to Web

server through the user interface shown in Figure 3.8.

51

Figure 3.8 - Upload interface in web server

3rd Step – PcML file is automatically parsed by PHP and data are inserted into

a MySQL database. “Run PerformCharts” option is enabled and generates a

FSM from Statecharts specification. The FSM of the example shown in Figure

2.1 is illustrated in Figure 2.2.

4th Step – FSM data is included into database and can be extracted as an XML

file. Part of this file can be seen in Figure 3.9. Once FSM is obtained, tester can

generate test sequences using Transition Tour or Switch Cover methods

available within WEB-PerformCharts (Path A), or export a file with a suitable

input to Condata tool to run independently (Path B) from the WEB-

PerformCharts tool. Both paths have been tested.

52

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="mfeeX.xsl"?>
<MFEE>
 <STATES>
 <STATE NAME="W1W2WS" TYPE="inicial"/>
 <STATE NAME="P1W2WS" TYPE="normal"/>
 . . .
 <STATE NAME="W1W2WS" TYPE="final"/>
 </STATES>
 <EVENTS>
 <EVENT NAME="a1" VALUE="1"/>
 . . .
 </EVENTS>
 <INPUTS>
 <INPUT EVENT="a1"/>
 . . .
 </INPUTS>
 <OUTPUTS>
 <OUTPUT EVENT="c1"/>
 . . .
 </OUTPUTS>
 <TRANSITIONS>
 <TRANSITION SOURCE="W1W2WS" DESTINATION="P1W2WS">
 <INPUT INTERFACE="L">a1</INPUT>
 <OUTPUT></OUTPUT>
 </TRANSITION>
 . . .
 </TRANSITIONS>
</MFEE>

Figure 3.9 - FSM specified in XML

5th Step (A) – Transition Tour method was applied to the generated FSM and,

this graph consisting of 10 states and 24 transition arcs was entirely covered

using 49 steps. When a test sequence is generated, it is inserted into database.

The full test sequence is shown in Table 3.1.

In other words, Table 3.1 shows that, the sequence of events run by Transition

Tour method in WEB-PerformCharts was: a2, f2, s2, a1, a2, f2, etc.

53

Table 3.1 - Test Cases generated by Transition Tour method

Step Event State

1 A2 W1P2WS

2 F2 W1B2C2

3 S2 W1W2WS

4 A1 P1W2WS

5 A2 P1P2WS

6 F2 P1B2C2

7 S2 P1W2WS

8 F1 B1W2C1

9 S1 W1W2WS

10 A2 W1P2WS

11 r2 W1W2WS

12 a1 P1W2WS

13 r1 W1W2WS

14 a2 W1P2WS

15 a1 P1P2WS

16 r2 P1W2WS

17 a2 P1P2WS

18 f1 B1P2C1

19 s1 W1P2WS

20 f2 W1B2C2

Step Event State

21 a1 P1B2C2

22 f1 B1B2C2

23 s2 B1W2C1

24 a2 B1P2C1

25 f2 B1B2C1

26 s1 W1B2C2

27 s2 W1W2WS

28 a1 P1W2WS

29 f1 B1W2C1

30 s1 W1W2WS

31 a2 W1P2WS

32 r2 W1W2WS

33 a1 P1W2WS

34 r1 W1W2WS

35 a2 W1P2WS

36 a1 P1P2WS

37 r1 W1P2WS

38 f2 W1B2C2

39 a1 P1B2C2

40 r1 W1B2C2

Step Event State

41 s2 W1W2WS

42 a1 P1W2WS

43 a2 P1P2WS

44 f2 P1B2C2

45 s2 P1W2WS

46 f1 B1W2C1

47 a2 B1P2C1

48 r2 B1W2C1

49 s1 W1W2WS

Switch Cover method also was applied to the generated FSM and, this graph

was entirely covered using 73 steps. The moment sequences are generated,

they are inserted into database. The set of 12 test sequences is shown in Table

3.2.

In other words, Table 3.2 shows that, the sequence of events run by Switch

Cover method in WEB-PerformCharts was: a1, r1; a1, f1, a2, etc. Table lines

filled with hyphen means end of a sequence and beginning of another.

All information presented (PcML specifications, FSM, and test cases) are

shared by any logged user in WEB-PerformCharts since they are totally stored

into an on-line database and can be accessed in real-time conditions.

54

Table 3.2 - Test Cases generated by Switch Cover method

Step Event State

1 a1 P1W2WS

2 r1 W1W2WS

- - -

3 a1 P1W2WS

4 f1 B1W2C1

5 a2 B1P2C1

6 r2 B1W2C1

7 a2 B1P2C1

8 f2 B1B2C1

9 s1 W1B2C2

10 a1 P1B2C2

11 r1 W1B2C2

12 a1 P1B2C2

13 f1 B1B2C2

14 s2 B1W2C1

15 a2 B1P2C1

16 s1 W1P2WS

17 a1 P1P2WS

18 r1 W1P2WS

19 a1 P1P2WS

20 f1 B1P2C1

21 r2 B1W2C1

22 s1 W1W2WS

- - -

23 a1 P1W2WS

24 a2 P1P2WS

25 r1 W1P2WS

26 R2 W1W2WS

- - -

Step Event State

27 a1 P1W2WS

28 a2 P1P2WS

29 f1 B1P2C1

30 f2 B1B2C1

31 s1 W1B2C2

32 s2 W1W2WS

- - -

33 a1 P1W2WS

34 a2 P1P2WS

35 r2 P1W2WS

36 r1 W1W2WS

- - -

37 a1 P1W2WS

38 a2 P1P2WS

39 f2 P1B2C2

40 r1 W1B2C2

41 s2 W1W2WS

- - -

42 a2 W1P2WS

43 a1 P1P2WS

44 r2 P1W2WS

45 f1 B1W2C1

46 s1 W1W2WS

- - -

47 a2 W1P2WS

48 r2 W1W2WS

- - -

49 a2 W1P2WS

50 f2 W1B2C2

Step Event State

51 a1 P1B2C2

52 s2 P1W2WS

53 r1 W1W2WS

- - -

54 a2 W1P2WS

55 a1 P1P2WS

56 f2 P1B2C2

57 f1 B1B2C2

58 s2 B1W2C1

59 s1 W1W2WS

- - -

60 a2 W1P2WS

61 a1 P1P2WS

62 f1 B1P2C1

63 s1 W1P2WS

64 r2 W1W2WS

- - -

65 a2 W1P2WS

66 a1 P1P2WS

67 f2 P1B2C2

68 s2 P1W2WS

69 f1 B1W2C1

70 a2 B1P2C1

71 s1 W1P2WS

72 f2 W1B2C2

73 s2 W1W2WS

- - -

55

5th Step (B) – WEB-PerformCharts has an option “Get base of facts” that must

be accessed in order to call an integrated XSLT parser. This parser is

responsible in converting the XML data of FSM into the required input for

Condata tool to generate test sequences. A part of this input is in Figure 3.10.

Condata tool is implemented in Prolog and hence it requires the input as a base

of facts.

inicial(estado0).

trans(estado0, transicao0, estado2, L0, Ln) :-
 receivel('a2', L0, L1),
 transmit(L1, Ln).

trans(estado2, transicao1, fim, L0, Ln) :-
 receivel('r2', L0, L1),
 transmit(L1, Ln).

trans(estado0, transicao2, estado1, L0, Ln) :-
 receivel('a1', L0, L1),
 transmit(L1, Ln).

trans(estado1, transicao3, fim, L0, Ln) :-
 receivel('r1', L0, L1),
 transmit(L1, Ln).

trans(estado2, transicao4, estado3, L0, Ln) :-
 receivel('a1', L0, L1),
 transmit(L1, Ln).

trans(estado3, transicao5, estado2, L0, Ln) :-
 receivel('r1', L0, L1),
 transmit(L1, Ln).

trans(estado1, transicao6, estado3, L0, Ln) :-
 receivel('a2', L0, L1),
 transmit(L1, Ln).
. . .
. .
.

Figure 3.10 - Base of Facts for Condata tool

6th Step – As Condata tool is not directly integrated in WEB-PerformCharts, the

base of facts extracted in previous step must be saved as a text file and taken

to a computer which Condata tool is installed. When Condata runs with base of

facts as input, it applies Switch Cover method to obtain test sequences. Test

56

sequences generated by Condata tool are obtained locally and, therefore they

are not stored in WEB-PerformCharts database.

57

4 RESULTS

In order to demonstrate and compare results obtained by Transition Tour and

Switch Cover methods implemented within WEB-PerformCharts, seven case

studies are shown along with a set of following attributes:

I. Time to Generate Test Cases: It is the time (in seconds) spent by the

method in order to generate test cases. It is known that many factors can

affect time spent to generate test cases such as workload of the

computer at the same moment while method is processing; therefore, all

case studies were executed three times and the best mark was taken;

II. Number of Test Cases: Number of test cases, or test sequences,

generated by each method. Transition Tour always generates just one

test sequence; however Switch Cover can generate one or many of them

with varied number of steps;

III. Size of Test Cases: It is the number of events needed to be applied in

the graph in order to generate one or several test sequences. In case of

Switch Cover method, the smallest and bigger ones are listed;

IV. Size of FSM Examined: Describes number of nodes and arcs in the FSM

examined for method. It is an interesting information since Switch Cover

method converts initial FSM into a dual graph making, in most of the

cases, a much bigger FSM. The number in parentheses represents the

number of graph arcs after eulerization;

V. Total Number of Events: The total number of events needed to perform

all test cases generated.

4.1 First Case Study

A simple example that was already presented in Figure 3.3 is explored. This

example consists of a basic FSM composed of 3 states and 5 transitions. Some

results obtained by WEB-PerformCharts running both the implemented methods

58

can be seen in Table 4.1. Since this is already a FSM, no conversion from

Statecharts was required.

Table 4.1 - Results obtained in first case study

Method / Results Transition Tour Switch Cover
Time to Generate Test Cases 1s 9s

Number of Test Cases 1 case 3 cases
Size of Test Cases 7 events Between 2 and 6 events

Size of FSM Examined 3 nodes, 5 arcs 5 nodes, 8 (11) arcs
Total of Events 7 events 11 events

Test cases obtained by Transition Tour and Switch Cover methods are in

Sections 3.2.1 and 3.2.2 respectively.

4.2 Second Case Study

This example is a simulation of a manufacturing system with a repairer. Its

detailed explanation is in Section 2.4, and its Statecharts representation is

showed in Figure 2.1. It is composed of 9 states and 12 transitions and can be

considered as a medium complex case study.

After the conversion from Statecharts (Figure 2.1) to FSM (Figure 2.2),

Transition Tour and Switch Cover methods were applied generating results

showed in Table 4.2.

Table 4.2 - Results obtained in second case study

Method / Results Transition Tour Switch Cover
Time to Generate Test Cases 1s 13s

Number of Test Cases 1 case 12 cases
Size of Test Cases 49 events Between 2 and 20 events

Size of FSM Examined 10 nodes, 24 arcs 24 nodes, 60 (80) arcs
Total of Events 49 events 71 events

In case of Switch Cover method, a 24 arc FSM was converted into a dual graph

with 60 arcs. Another 20 arcs were added to the graph in the eulerization

59

process resulting in 80 arcs examined. Table 3.1 and 3.2 shows, respectively,

all test cases obtained by Transition tour and Switch Cover methods.

4.3 Third Case Study

It is a behavioral representation of TCP protocol (AMARAL, 2005) which is

largely implemented in many internet applications as Telnet, FTP and SMTP.

TCP is responsible to establish a connection between computers delivering and

ensuring integrity of data packages. The connection establishment process is

named as three-way handshake, and the abstraction level of this model is high

since it does not represent data treatment processes. Protocol may pack and

send user data; at the same moment data is sent, it may keep a timer waiting

response from an ACK; receiver computer may rearrange data, check duplicity

and calculate checksum. These details related to data treatment are

encapsulated within Established_CL and Established_SV states. Figure 4.1

shows Statecharts specification of this case study, while Figure 4.2 is its FSM

generated and results overview are in Table 4.3.

Figure 4.1 - Statecharts representation of TCP protocol behavior

 Source : AMARAL (2005)

60

 Figure 4.2 - FSM generated from Figure 4.1

Table 4.3 - Results obtained in third case study

Method / Results Transition Tour Switch Cover
Time to Generate Test Cases 2s 12s

Number of Test Cases 1 case 1 case
Size of Test Cases 22 events 22 events

Size of FSM Examined 11 nodes, 14 arcs 14 nodes, 17 (22) arcs
Total of Events 22 events 22 events

It is interesting to observe that, in this case, FSM did not require much more

arcs to be eulerized (just 5) and, moreover as this graph was arranged in such a

way, the algorithm found a complete path easily. Therefore, the number of arcs

included by eulerization was not enough to generate more than one complete

test case (which must have an initial state as source and destination), and

besides, both sequences has the same number of events (22), but followed

different paths as can be seen in Table 4.4 and Table 4.5.

61

Table 4.4 - Test cases from Transition Tour in third case study

Step Event State

1 PassOpen ClosedCLListen

2 Open WServSynRCVD

3 Ack EstablishedCLEstablishedSV

4 Close FinW1EstablishedSV

5 Fin2SV FinW2CloseW

6 FinCL FinW2LastAck

7 CloseSV TimeWClosedSV

8 PassOpen TimeWListen

9 Timeout ClosedCLListen

10 Open WServSynRCVD

11 Reset WServListen

12 Close ClosedCLListen

13 Open WServSynRCVD

14 Close ClosedCLSynRCVD

15 Reset ClosedCLListen

16 Open WServSynRCVD

17 Ack EstablishedCLEstablishedSV

18 Close FinW1EstablishedSV

19 Fin2SV FinW2CloseW

20 FinCL FinW2LastAck

21 CloseSV TimeWClosedSV

22 Timeout ClosedCLClosedSV

62

Table 4.5 - Test cases from Switch Cover in third case study

Step Event State

1 PassOpen ClosedCLListen

2 Open WServSynRCVD

3 Close ClosedCLSynRCVD

4 Reset ClosedCLListen

5 Open WServSynRCVD

6 Reset WServListen

7 Close ClosedCLListen

8 Open WServSynRCVD

9 Ack EstablishedCLEstablishedSV

10 Close FinW1EstablishedSV

11 Fin2SV FinW2CloseW

12 FinCL FinW2LastAck

13 CloseSV TimeWClosedSV

14 PassOpen TimeWListen

15 Timeout ClosedCLListen

16 Open WServSynRCVD

17 Ack EstablishedCLEstablishedSV

18 Close FinW1EstablishedSV

19 Fin2SV FinW2CloseW

20 FinCL FinW2LastAck

21 CloseSV TimeWClosedSV

22 Timeout ClosedCLClosedSV

63

4.4 Fourth Case Study

This specification simulates the behavior of a classical Producer-Consumer

problem (AMARAL, 2005) largely studied in programming, mainly in the area of

operating systems. It consists basically of three parallel components: Producer

(Produtor), Consumer (Consumidor), and a buffer (Buffer) that is incremented

by Producer and decremented by Consumer. The Statecharts specification for

this case is shown in Figure 4.3, while its FSM generated is in Figure 4.4. Table

4.3 shows results overview.

Figure 4.3 - Statecharts representation of Producer-Consumer problem

 Source : AMARAL (2005)

64

Figure 4.4 - FSM generated from Figure 4.3

 Source : AMARAL (2005)

Table 4.6 - Results obtained in fourth case study

Method / Results Transition Tour Switch Cover
Time to Generate Test Cases 1s 10s

Number of Test Cases 1 case 8 cases
Size of Test Cases 31 events Between 2 and 9 events

Size of FSM Examined 7 nodes, 14 arcs 14 nodes, 30 (42) arcs
Total of Events 31 events 35 events

Figures 4.3 and 4.4 show, respectively, that Statecharts specification for this

example has 7 states and 8 transitions, and its FSM has 7 nodes and 14 arcs.

This case is different from other case studies where there are outputs to be

generated while traversing the FSM. Generation of outputs is a resource

implemented in WEB-PerformCharts that was brought from PerformCharts, and

is used in order to aid tester to verify whether a simulated event works and if it

did what are the expected effects, i.e. not only the expected destination state

65

but also the expected output. Table 4.7 and Table 4.8 show results obtained for

this case using Transition Tour and Switch Cover methods respectively. Note

that, for this case, a new column named as output is added in order to represent

outputs performed by its respected events.

Table 4.7 - Test cases from Transition Tour in fourth case study

Step Event State Output

1 p2 P1W2B0

2 f1 F1W2B0

3 c1 P1P2B0

4 f1 F1P2B0

5 p2 F1W2B0 O2

6 c1 P1P2B0

7 p1 P1P2B1 O1

8 p2 P1P2B0 O2

9 p2 P1W2B0 O2

10 p1 P1P2B0 O1

11 f1 F1P2B0

12 c1 P1P2B1

13 f1 F1P2B1

14 p2 F1P2B0 O2

15 p2 F1W2B0 O2

16 c1 P1P2B0

Step Event State Output

17 p1 P1P2B1 O1

18 p1 W1P2B1 O1

19 p2 P1P2B1 O2

20 p2 P1P2B0 O2

21 p2 P1W2B0 O2

22 f1 F1W2B0

23 c1 P1P2B0

24 f1 F1P2B0

25 c1 P1P2B1

26 f1 F1P2B1

27 c1 W1P2B1

28 p2 P1P2B1 O2

29 p1 W1P2B1 O1

30 p2 P1P2B1 O2

31 p2 P1P2B0 O2

66

Table 4.8 - Test cases from Switch Cover in fourth case study

Step Event State Output

1 p1 P1P2B1

2 p1 W1P2B1 O1

3 p2 P1P2B1 O2

4 p1 W1P2B1 O1

5 p2 P1P2B1 O2

6 f1 F1P2B1

7 c1 W1P2B1

8 p2 P1P2B1 O2

9 p2 P1P2B0 O2

- - - -

10 p1 P1P2B1 O1

11 f1 F1P2B1

12 p2 F1P2B0 O2

13 c1 P1P2B1

14 p1 W1P2B1 O1

15 p2 P1P2B1 O2

16 p2 P1P2B0 O2

- - - -

17 p1 P1P2B1 O1

18 p2 P1P2B0 O2

- - - -

Step Event State Output

19 f1 F1P2B0

20 c1 P1P2B1

21 f1 F1P2B1

22 p2 F1P2B0 O2

23 p2 F1W2B0 O2

24 c1 P1P2B0

- - - -

25 f1 F1P2B0

26 p2 F1W2B0 O2

27 c1 P1P2B0

- - - -

28 f1 F1P2B0

29 c1 P1P2B1

30 p2 P1P2B0 O2

- - - -

31 p2 P1W2B0 O2

32 p1 P1P2B0 O1

- - - -

33 p2 P1W2B0 O2

34 f1 F1W2B0

35 c1 P1P2B0

- - - -

67

4.5 Fifth Case Study

This is a medium complex case. It is a piece of APEX (SANTIAGO et al., 2008)

software which is an astrophysical experiment aboard on a Brazilian scientific

satellite; more precisely, this is a command recognition component. Command

messages are sent in a format composed of six fields: SYNC (EB9

synchronization value), EID (experiment identification), TYPE (specifies

accepted commands), SIZE (amount of bytes in the DATA field), DATA and

CKSUM (8-bit checksum). SIZE and DATA fields are optional and depend on

the type of command.

The behavior of command recognition component software is shown in Figure

4.5 and it is a low-level modeling since it is possible to see all the specified

values of the protocol frame fields.

In Statecharts, the initial configuration is (Idle, Waiting Sync) and all fields of the

command message are verified by the experiment through on-board software.

For instance, assume that a command sent to the experiment with these values

was received exactly as it was sent (i.e. no data corruption during the command

transmission): SYNC = EB9, EID = 2, TYPE = 03, CKS = 80.

Occurrence of event EB9 makes the B XOR-state to change its active sub-state

from Waiting Sync to Checking Field. Waiting ExpId is the initial state of

Checking Field. Then, the action (internal event) starting timing counting makes

the A XOR-state change from sub-state Idle to sub-state Counting Time. After

EB9, the eid rc[eid = 2] event is triggered because EID = 2. The B XOR-state

moves from Waiting ExpId to Waiting Type. As TYPE = 03, the event type rc

[type >=01 and type <= 05] is triggered changing from Waiting Type to Waiting

Checksum. Finally, as the value of checksum received was correct, the event

cksum rc[cksum OK] is triggered and the B XOR-state switches from Waiting

Checksum to Waiting Sync in order to wait for another command. Also, the

action (internal event) command received means the message was received

and accepted by the experiment software. The A XOR-state will change from

68

Counting Time to Idle when this event is fired. With this action, the timing

counting is interrupted and the software is enabled to receive another

command.

If the software detects errors in any of the fields of the command message, the

communication is aborted, the command is discarded and the experiment

remains ready to receive a new command.

A timeout mechanism is implemented in both the computers (state A for the

experiment software). After receiving an EB9 event, the Implementation Under

Test (IUT) must start counting the time. For example, if the time defined for

receiving an entire command from the On-Board Data Handler (OBDH) elapses,

for this particular protocol specification this period is 500 ms, waiting time

expired [not in (Aborting)] event is triggered in A state and the B state will

change from Checking Field to Waiting Sync due to the action (internal event)

timeout. This makes the system to return to the initial configuration.

Figure 4.6 shows the FSM generated from this specification in Statecharts, and

Table 4.9 shows results obtained by WEB-PerformCharts generating test cases

for this application.

Table 4.9 - Results obtained in fifth case study

Method / Results Transition Tour Switch Cover
Time to Generate Test Cases 2s 7s

Number of Test Cases 1 case 7 cases
Size of Test Cases 70 events Between 1 and 6 events

Size of FSM Examined 6 nodes, 12 arcs 12 nodes, 24 (249) arcs
Total of Events 70 events 27 events

This case is an unusual example where the total number of events needed by

Switch Cover to traverse FSM (27) is much less than Transition Tour (70),

proving that definitely there is no unique technique that is capable in dealing

with all possible situations since usually the opposite (Transition Tour fewer

than Switch Cover) happens, as can be seen in other case studies.

69

Figure 4.5 - Statecharts representation of APEX system

 Source : SANTIAGO et al. (2008)

Figure 4.6 - FSM generated from Figure 4.5

70

4.6 Sixth Case Study

This high complex software behavior model was specified in the scope of the

Qualidade do Software Embarcado em Aplicações Espaciais (QSEE - Quality of

Space Application Embedded Software) research project (SANTIAGO et al.,

2007). This project is an experience at INPE in outsourcing the development of

satellite payload embedded software. The software, SWPDC, is in charge of

collecting and formatting data from Event Pre-Processors (EPPs), receiving and

executing commands from the OBDH computer, transmitting telemetry data to

the OBDH, generating housekeeping information, accomplishing data memory

management, implementing fault tolerance mechanisms and supporting loading

of new programs on the fly. EPPs are front-end processors in charge of fast

data processing of X-ray cameras signals of an astrophysical scientific

experiment under development at INPE and the OBDH is the satellite platform

computer (SANTIAGO et al., 2007).

A project like QSEE fits very well into a collaborative systems approach. Taking

into account only the on-board computers, it is perfectly possible that different

organizations might be in charge of distinct computing subsystems

development. For instance, one organization may be responsible for developing

the OBDH, and its related software, another for the SWPDC computer, and the

SWPDC itself, and even another for the EPPs and associated software. A

completely distinct organization may be in charge of Verification and Validation

of these software in an Independent approach, known as Independent

Verification and Validation (IVV) (SANTIAGO et al., 2007). In such scenario,

WEB-PerformCharts comes into aid IVV’s test designers to generate test cases

remotely via web.

Statecharts shown in Figure 4.7 is just a small part of the entire SWPDC

modeling. It deals only with some state management of the software. Managing

State is an AND state composed of four XOR states, denoted A, B, C and D. A

and B are sub-states wondering if EPPs are active and able to send data

collected during their operation or if they are inactive. Sub-state C models event

71

report generation to be included in Housekeeping data to be sent to the OBDH.

Housekeeping data have status information related to the health not only of

SWPDC but also of the hardware of the computing subsystem. Sub-state D is

related to data acquisition from EPPs by SWPDC computer. EPPs can generate

three types of data known as Scientific, Diagnosis and Test data. So, SWPDC

shall be able to interact with EPPs in order to request these data. In Figure 4.7,

DD stands for Data-Diagnosis type, DT means Data-Test type, HK means Data-

Housekeeping type and DM means Data-Dump type. For instance, prepare_DT

event instructs SWPDC to acquire Test data from EPPs to be transmitted later

to the OBDH.

FSM generated from this specification is huge (40 states and 304 transitions)

and therefore it has not been included. However, the results are showed in

Table 4.10.

Table 4.10 - Results obtained in sixth case study

Method / Results Transition Tour Switch Cover
Time to Generate Test Cases 3s 193s

Number of Test Cases 1 case 193 cases
Size of Test Cases 1046 events Between 2 and 267 events

Size of FSM Examined 40 nodes, 304 arcs 304 nodes, 2096 (6930) arcs
Total of Events 1046 events 5501 events

In this case, it is more evident that the graph eulerization spends most of the

time to generate test cases for Switch Cover method, since its FSM increases

three times after 4834 new arcs are added. It resulted into a graph with 6930

arcs (originally 2096 arcs). The same did not occur with Transition Tour that

executed in a very less time to generate test cases, as expected.

72

Figure 4.7 - Statecharts representation of OBDH system

 Source : SANTIAGO et al. (2007)

73

4.7 Seventh Case Study

As the most complex example, this specification refers to the same APEX

(INPE, 1998) software in the fifth case study. The difference is with respect to

the level of details, since this specification models explicitly several values that

can be assigned to fields within the Command messages. It results in a

specification composed by much more transitions, as can be seen in Figure 4.8.

Table 4.11 shows results obtained by WEB-PerformCharts generating test

cases for this application.

Table 4.11 - Results obtained in seventh case study

Method / Results Transition Tour Switch Cover
Time to Generate Test Cases 2s 3375s

Number of Test Cases 1 case 166 cases
Size of Test Cases 2275 events Between 2 and 2811 events

Size of FSM Examined 19 nodes, 69 arcs 69 nodes, 199 (8059) arcs
Total of Events 2275 events 5497 events

This case is an interesting analysis because if just the number of arcs in FSM is

compared, this case (69 arcs) seems less complex than previous (304 arcs).

However, graph complexity is not related to this number of arcs but in its

number of paths. And this must be the reason that, in practice, this example

demanded much more processing time due to the number of arcs created by

eulerization when many there are several paths. This confirms that eulerization

takes much more time than test case generation since it is clearly visible

through the number of arcs added (7860) in order to reach a full eulerized

graph. On the other hand, Transition Tour was not that much affected by

complexity of a system and could run faster than the previous case.

74

Figure 4.8 - Statecharts representation of APEX system detailed

75

In general, based on case studies, it is possible to deduce that two main

discrepancies were observed: the execution time in favor of Transition Tour and

the effectiveness in favor of Switch Cover. As an example, fifth case study was

chosen to be discussed since it is a real application and also simple to

understand. Consider its respective test cases generated from Transition Tour

(Table 4.12) and Switch Cover (Table 4.13) methods.

As can be seen analyzing Table 4.12, Table 4.13 and FSM in Figure 4.6,

Transition Tour method, as expected, is faster in terms of performance, but less

precise by stimulating 70 events in order to cover the full graph with its unique

test case sequence. Switch Cover method covered all possible 7 paths by

stimulating just 27 events. However, it spent much more time. Both methods

must start and finish test sequences from an initial state (IdleWaitingSync, in

this case).

Generation of outputs is an important resource for testing activities and it was

implemented in PerformCharts. As could be seen in the fourth case study, this

feature was kept in WEB-PerformCharts. It is also important to clarify that WEB-

PerformCharts also maintains other features already implemented in

PerformCharts: transition probabilities and entry by history. Tests were

conducted to ensure that the original functionalities within PerformCharts

continue working within WEB-PerformCharts.

76

Table 4.12 - Test cases from Transition Tour in fifth case study

Step Event State

1 NotEB9 IdleWaitingSync

2 EB9 CountingTimeWaitingExpid

3 ExpidRec CountingTimeWaitingType

4 TypeRec CountingTimeWaitingSize

5 SizeRec CountingTimeWaitingData

6 DataRec CountingTimeWaitingChecksum

7 ChecksumRec IdleWaitingSync

8 NotEB9 IdleWaitingSync

9 EB9 CountingTimeWaitingExpid

10 WaitingTimeExpired IdleWaitingSync

11 NotEB9 IdleWaitingSync

12 EB9 CountingTimeWaitingExpid

13 ExpidRec CountingTimeWaitingType

14 WaitingTimeExpired IdleWaitingSync

15 NotEB9 IdleWaitingSync

16 EB9 CountingTimeWaitingExpid

17 WaitingTimeExpired IdleWaitingSync

18 NotEB9 IdleWaitingSync

19 EB9 CountingTimeWaitingExpid

20 ExpidRec CountingTimeWaitingType

21 TypeRec CountingTimeWaitingSize

22 WaitingTimeExpired IdleWaitingSync

23 NotEB9 IdleWaitingSync

24 EB9 CountingTimeWaitingExpid

25 WaitingTimeExpired IdleWaitingSync

26 NotEB9 IdleWaitingSync

27 EB9 CountingTimeWaitingExpid

28 ExpidRec CountingTimeWaitingType

29 WaitingTimeExpired IdleWaitingSync

30 NotEB9 IdleWaitingSync

31 EB9 CountingTimeWaitingExpid

32 WaitingTimeExpired IdleWaitingSync

33 NotEB9 IdleWaitingSync

34 EB9 CountingTimeWaitingExpid

35 ExpidRec CountingTimeWaitingType

36 TypeRec CountingTimeWaitingSize

37 SizeRec CountingTimeWaitingData

38 WaitingTimeExpired IdleWaitingSync

39 NotEB9 IdleWaitingSync

Continua

77

Table 4.12 - Conclusão

40 EB9 CountingTimeWaitingExpid

41 WaitingTimeExpired IdleWaitingSync

42 NotEB9 IdleWaitingSync

43 EB9 CountingTimeWaitingExpid

44 ExpidRec CountingTimeWaitingType

45 WaitingTimeExpired IdleWaitingSync

46 NotEB9 IdleWaitingSync

47 EB9 CountingTimeWaitingExpid

48 WaitingTimeExpired IdleWaitingSync

49 NotEB9 IdleWaitingSync

50 EB9 CountingTimeWaitingExpid

51 ExpidRec CountingTimeWaitingType

52 TypeRec CountingTimeWaitingSize

53 WaitingTimeExpired IdleWaitingSync

54 NotEB9 IdleWaitingSync

55 EB9 CountingTimeWaitingExpid

56 WaitingTimeExpired IdleWaitingSync

57 NotEB9 IdleWaitingSync

58 EB9 CountingTimeWaitingExpid

59 ExpidRec CountingTimeWaitingType

60 WaitingTimeExpired IdleWaitingSync

61 NotEB9 IdleWaitingSync

62 EB9 CountingTimeWaitingExpid

63 WaitingTimeExpired IdleWaitingSync

64 NotEB9 IdleWaitingSync

65 EB9 CountingTimeWaitingExpid

66 ExpidRec CountingTimeWaitingType

67 TypeRec CountingTimeWaitingSize

68 SizeRec CountingTimeWaitingData

69 DataRec CountingTimeWaitingChecksum

70 WaitingTimeExpired IdleWaitingSync

78

Table 4.13 - Test cases from Switch Cover in fifth case study

Step Event State

1 EB9 CountingTimeWaitingExpid

2 WaitingTimeExpired IdleWaitingSync

- - -

3 EB9 CountingTimeWaitingExpid

4 ExpidRec CountingTimeWaitingType

5 WaitingTimeExpired IdleWaitingSync

- - -

6 EB9 CountingTimeWaitingExpid

7 ExpidRec CountingTimeWaitingType

8 TypeRec CountingTimeWaitingSize

9 WaitingTimeExpired IdleWaitingSync

- - -

10 EB9 CountingTimeWaitingExpid

11 ExpidRec CountingTimeWaitingType

12 TypeRec CountingTimeWaitingSize

13 SizeRec CountingTimeWaitingData

14 WaitingTimeExpired IdleWaitingSync

- - -

15 EB9 CountingTimeWaitingExpid

16 ExpidRec CountingTimeWaitingType

17 TypeRec CountingTimeWaitingSize

18 SizeRec CountingTimeWaitingData

19 DataRec CountingTimeWaitingChecksum

20 WaitingTimeExpired IdleWaitingSync

- - -

21 EB9 CountingTimeWaitingExpid

22 ExpidRec CountingTimeWaitingType

23 TypeRec CountingTimeWaitingSize

24 SizeRec CountingTimeWaitingData

25 DataRec CountingTimeWaitingChecksum

26 ChecksumRec IdleWaitingSync

- - -

27 NotEB9 IdleWaitingSync

- - -

79

5 CONCLUSION

Decentralized work is a very common trend for widely dispersed companies in

modern days, since it can result in time and cost savings decreasing travel and

infrastructure requirements, instead of maintaining huge, centralized and

expensive buildings. Based on this, WEB-PerformCharts was idealized with the

decision for using an on-line database as storage method allowing test

designers to share their projects, and facilitating the control of versions since its

management is easier than copying multiple local files from multiple computers.

Another relevant fact is that WEB-PerformCharts has other advantages when

compared to conventional local systems since it can be accessed from any

place in the world at anytime with a computer or laptop, an internet connection

and a web browser enabling support to test process in a distributed

environment.

In order to generate test cases remotely and independently from any other tool,

Transition Tour and Switch Cover methods were implemented and integrated

with WEB-PerformCharts. The task of incorporating more than one test

sequence generation methods in WEB-PerformCharts can contribute to enable

an efficiency comparison of different methods, and a brief comparison of the

two methods was shown generating test cases for problems with varied

complexity. Besides Transition Tour and Switch Cover, other methods can be

implemented and integrated as cartridges of the system. In addition, the use of

XML formatted documents represents an important step bringing another major

contribution in standardization of test data. In future, studies will be made for

integration between WEB-PerformCharts and tools that perform automatic test

execution in order to improve the automation of test process activities.

As a secondary focus, it could be concluded that complex software modeling

requires features as explicit representation of hierarchy and parallel activities.

Therefore, a higher-level technique based on state-transitions diagrams is

recommended. In this respect, Statecharts come into picture. However, dealing

with higher-level techniques increases complexity in developing an automated

80

environment and demands more computational effort and one must be

prepared to pay the price.

Depending on the number of states and arcs of the generated FSM, common

sense says that the problem can be intractable. Fortunately it does not happen

with case studies in this work when using WEB-PerformCharts methods.

In this work, both the tested methods were capable of generating test

sequences from several case studies of different complexities and, the main

observed discrepancy is the time to generate test cases for complex

specifications. In terms of performance, while Transition Tour method reached

good results covering full graph in a less time, Switch Cover takes a longer time

in order to perform its more complex and precise algorithm. Therefore, small

graphs can be easily processed by any method quickly; but for complex graphs,

a method must be carefully chosen. Tester has to opt between waiting more

time for a complete set of sequences from Switch Cover or obtain a fast unique

set of sequences from Transition Tour.

It is also important to mention that, from the research conducted in this work,

there are many other related works and several future studies that can

complement with better results in real applications for space researches.

Studies for implementation and integration of new methods as D-Method and

UIO-Method are being conducted already. The use of coverage criteria is an

interesting possibility in order to treat complex specifications. A graphical

interface for elaboration of Statecharts diagrams is under development and,

when concluded, will be carefully studied to be adapted for WEB-PerformCharts

tool. A useful study is to improve security for WEB-PerformCharts, maybe with

cryptography or electronic signatures. Another study is related to the integration

of WEB-PerformCharts directly with the tool that does automatic execution of

test cases, as well as the minimization of FSM and test cases, since

redundancies can exist for complex specifications. Finally, in this work test

sequences were compared in terms of processing time to be generated and

81

graph coverage, but to determine which is a better method is not quite simple

based only on this information without evaluating the quality of sequences. One

more interesting study that can be conducted, based on these test cases, refers

to the quality of sequences. Mutant analysis (FABBRI et al., 1999) is an error-

based criteria usually applied for software testing since it is used to evaluate the

quality of test case sets. It basically consists of generating mutant programs

based on a set of mutation operators which are themselves based on common

typical errors committed by programmers. Of course this evaluation is a

complex process and it is not in the scope of this dissertation; however, such

evaluation is being explored in other research under development.

82

83

REFERENCES

AMARAL, A. S. M. S.; VELOSO, R. R.; VIJAYKUMAR, N. L.; FRANCÊS, C. R.
L.; OLIVEIRA, E. On proposing a markup language for statecharts to be used in
performance evaluation. International Journal of Computational
Intelligence, v. 1, n. 3, p. 260-265, 2004.

AMARAL, A. S. M. S. Geração de casos de teste para sistemas
especificados em statecharts. 2005. 162 p. (INPE-14215-TDI/1116).
Dissertação (Mestrado em Computação Aplicada) - Instituto Nacional de
Pesquisas Espaciais, São José dos Campos. 2005. Disponível em:
<http://urlib.net/sid.inpe.br/MTC-m13@80/2006/02.14.19.24>. Acesso em: 06
out. 2008.

APFELBAUM, L.; DOYLE, J. Model Based Testing. In: INTERNATIONAL
SOFTWARE QUALITY WEEK CONFERENCE, 10., 1997, San Francisco, USA.
Proceedings… [S.l: s.n.], 1997.

ARANTES, A. O.; VIJAYKUMAR, N. L.; SANTIAGO, V. A.; CARVALHO, A.R.
Automatic test case generation through a collaborative web application. In:
IASTED INTERNATIONAL CONFERENCE INTERNET & MULTIMEDIA
SYSTEMS & APPLICATIONS, 2008, Innsbruck, Austria. Proceedings…
Calgary : IASTED-EuroIMSA, 2008. p. 27-32.

BAFOUTSOU, G.; MENTZAS, G. A comparative analysis of web-based
collaborative systems. In: INTERNATIONAL WORKSHOP ON DATABASE
AND EXPERT SYSTEMS APPLICATIONS, 12., 2001, [S.l.]. Proceedings…
[S.l: s.n.], 2001. p. 496-500.

BINDER, R. V. Testing object-oriented systems: models, patterns and tools.
Boston, MA: Addison-Wealey, 2000.

CHEN, P. The entity-relationship model: Toward a Unified View of Data.
Massachusetts Institute of Technology, Massachusetts: Cambridge, 1976.

CHOW, T. S. Testing Software Design Modeled by Finite-State Machines. IEEE
Transactions on Software Engineering, v. 4, n. 3, p. 178-187, May 1978.

DAHBURA, A. T.; SABNANI, K.; UYAR, M. U. Formal methods for generating
protocol conformance test sequences. Proceedings of the IEEE, v. 70, n. 8, p.
1317-1326, August 1990.

DERDERIAN, K.; HIERONS, R. M.; HARMAN, M.; GUO, Q. Automated unique
input output sequence generation for conformance testing of FSMs. The
Computer Journal, v. 49, n. 3, p. 331-344, 2006.

http://urlib.net/sid.inpe.br/MTC-m13@80/2006/02.14.19.24

84

ELLSBERGER, I.; HOGREFE, D.; SARMA, A. SDL: Formal object-oriented
language for communicating systems. Prentice Hall Europe, 1997. ISBN(0-
13-632886-5).

FABBRI, S. C. P. F.; MALDONADO, J. C.; SUGETA, T.; MASIERO, P. C.
Mutation testing applied to validate specifications based on statecharts. In:
INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY
ENGINEERING, 10., 1999, [S.l.]. Proceedings… [S.l: s.n.], 1999. p. 210.

GANE, C.; SARSON, T. Structured systems analysis: tools and techniques.
Englewood Cliffs, N.J.: Prentice-Hall, 1979.

HAREL, D. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, v. 8, p. 237-274, 1987.

HAREL, D.; PNUELI, A.; SCHMIDT, J.; SHERMAN, R. On the formal semantics
of statecharts. IEEE Symposium on Logic in Computer Science, Ithaca,
USA, 1987.

HAREL, D.; NAAMAD, A. The statemate semantics of statecharts. ACM
Transactions on Software Engineering, v. 5, n. 4, p. 293-333, 1996.

HAREL, D.; POLITI, M. Modeling reactive systems with statecharts: the
Statemate Approach. USA: McGraw-Hill, 1998.

HARTMAN, A. Model based test generation survey. Agedis Consortium.
Disponível em: <http://www.agedis.de/>. Acesso em: 30 out. 2007.

INPE, National Institute for Space Research. EXP-OBDH communication
protocol definition: a case study for PLAVIS. São José dos Campos: INPE
Internal Publication/QSEE Project, p. 9, 1998.

LEE, D.; YANNAKAKIS, M. Principles and methods of testing finite state
machines – a survey. Proceedings of the IEEE, v. 84, n. 8, 1996.

MARTINS, E.; SABIÃO, S. B.; AMBRÓSIO, A. M. Condata: a tool for
automating specification-based test case generation for COMMUNICATION
SYSTEMS. IN: HAWAII International Conference on System Sciences
(HICSS'33), 33., 2000, Maui, USA. Proceedings… [S.l: s.n.], 2000.

MATHWORKS. Stateflow. Disponível em:
<http://www.mathworks.com/products/stateflow>. Acesso em: 11 jul. 2008.

http://www.agedis.de/
http://www.mathworks.com/products/stateflow

85

MATTIELLO-FRANCISCO, M. F.; SANTIAGO JÚNIOR, V. A.; AMBRÓSIO, A.
M.; COSTA, R.; LEISE, J. Verificação e validação na terceirização de software
embarcado em aplicações espaciais. In: SIMPÓSIO BRASILEIRO DE
QUALIDADE DE SOFTWARE, 2006. Proceedings... 2006. Papel. (INPE-
14073-PRE/9242). Disponível em: <http://urlib.net/sid.inpe.br/mtc-
m16@80/2006/08.21.20.22>. Acesso em: 06 out. 2008.

MYERS, G. The art of software testing. John Wiley & Sons, 2004.

OMG. UML 2.0 infrastructure specification. Disponível em:
<http://www.omg.org/cgi-bin/doc?formal/05-07-05>. Acesso em: 11 jul. 2008.

PETERSON, J. L. Petri net theory and modeling of systems. London:
Prentice-Hall International, 1981.

PIMONT, S.; RAULT, J.C. An approach towards reliable software. In:
International Conference on Software Engineering, 4., 1979, Munich, Germany.
Proceedings… [S.l: s.n.], 1979. p. 220-230.

PRESSMAN, R. S. Software engineering: a practitioner's approach. 5th
edition. McGraw-Hill International Editions, 2000.

ROBINSON, H. Graph theory techniques in model-based testing. In:
INTERNATIONAL CONFERENCE TESTING COMPUTER SOFTWARE, 16.,
1999, Washington, USA. Proceedings… [S.l: s.n.], 1999.

SANTIAGO, V.; AMARAL, A. S. M. S.; VIJAYKUMAR, N. L.; MATTIELLO-
FRANCISCO, M. F.; MARTINS, E.; LOPES, O. C. A pratical approach for
automated test case generation using statecharts. In: INTERNATIONAL
WORKSHOP ON TESTING AND QUALITY ASSURANCE FOR COMPONENT-
BASED SYSTEMS, 2. (TQACBS 2006), 2006, Chicago. Proceedings... 2006.
(INPE-14044--PRE/9218). Disponível em: <http://urlib.net/sid.inpe.br/mtc-
m16@80/2006/08.10.12.08>. Acesso em: 06 out. 2008.

SANTIAGO, V.; MATTIELLO-FRANCISCO, F.; COSTA, R.; SILVA, W. P.;
AMBROSIO, A. M. QSEE Project: an experience in outsourcing software
development for space applications. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING (SEKE'07),
9., 2007, Boston. Proceedings... [S.l.]: KSY, 2007.

SANTIAGO, V.; VIJAYKUMAR, N. L.; GUIMARÃES, D.; AMARAL, A. S.;
FERREIRA, E. An environment for automated test case generation from
statechart-based and finite state machine-based behavioral models. In:
INTERNATIONAL CONFERENCE ON SOFTWARE TESTING VERIFICATION
AND VALIDATION (ICST 2008), 1., 2008, Lillehammer, Norway.
Proceedings... [S.l: s.n.], 2008.

http://urlib.net/sid.inpe.br/mtcm16@80/2006/08.21.20.22
http://www.omg.org/cgi-bin/doc?formal/05-07-05
http://urlib.net/sid.inpe.br/mtcm16@80/2006/08.10.12.08

86

SIDHU, D.; LEUNG, T. Formal methods for protocol testing: a detailed study.
IEEE Transactions on Software Engineering, v. 15, n. 4, p. 413-426, 1989.

SOMMERVILLE, I. Software engineering. 6.ed. [S.l]: Addison Wesley, 2003.

TIAN G. Y.; TAYLOR, D. Design and implementation of a web-based distributed
collaborative design environment. In: International Conference on Information
Visualisation, 5., 2001, London, UK. Proceedings... [S.l]: IEEE, 2001. p. 703-
707.

VIJAYKUMAR, N. L.; CARVALHO, S. V.; ABDURAHIMAN, V. On proposing
statecharts to specify performance models. International Transactions in
Operational Research, v. 9, n. 3, p. 321-336, 2002.

W3C. XML: extensible markup language. Disponível em:
<http://www.w3.org/XML/Activity>. Acesso em: 11 jul. 2008.

XIAO, H.; ZHIYI, M.; WEIZHONG, S.; SHAO, G. A metamodel for the notation
of graphical modeling languages. In: Computer Software and Applications
Conference (COMPSAC), 31., 2007, [S.l.]. Proceedings... [S.l]: IEEE, 2007. v.
1, p. 219-224.

http://www.w3.org/XML/Activity

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI)

Manuais Técnicos (MAN)

Teses e Dissertações apresentadas
nos Cursos de Pós-Graduação do
INPE.

São publicações de caráter técnico
que incluem normas, procedimentos,
instruções e orientações.

Notas Técnico-Científicas (NTC)

Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de
programa de computador, descrição de
sistemas e experimentos, apresenta-
ção de testes, dados, atlas, e docu-
mentação de projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja
compatível com o de uma publicação
em periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompanha-
mento de projetos, atividades e convê-
nios.

Incluem apostilas, notas de aula e
manuais didáticos.

Publicações Seriadas

Programas de Computador (PDC)

São os seriados técnico-científicos:
boletins, periódicos, anuários e anais
de eventos (simpósios e congressos).
Constam destas publicações o
Internacional Standard Serial Number
(ISSN), que é um código único e
definitivo para identificação de títulos
de seriados.

São a seqüência de instruções ou
códigos, expressos em uma linguagem
de programação compilada ou inter-
pretada, a ser executada por um
computador para alcançar um determi-
nado objetivo. São aceitos tanto
programas fonte quanto executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em
periódicos, anais e como capítulos de
livros.

	COVER
	BACK COVER
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	QUOTATION
	DEDICATION
	ACKNOWLEDGEMENTS
	RESUMO
	ABSTRACT
	SUMMARY
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Objectives

	2 RELATED WORK
	2.1 Tests for Verification and Validation Activities
	2.2 Software Modeling
	2.3 FSM and Statecharts
	2.4 PerformCharts
	2.5 Testing Critical Systems within a Collaborative Scenario

	3 WEB-PERFORMCHARTS
	3.1 Architecture
	3.2 Methods for Test Case Generation
	3.2.1 Transition Tour (T-Method)
	3.2.2 Switch Cover
	3.3 Methodology used in WEB-PerformCharts

	4 RESULTS
	4.1 First Case Study
	4.2 Second Case Study
	4.3 Third Case Study
	4.4 Fourth Case Study
	4.5 Fifth Case Study
	4.6 Sixth Case Study
	4.7 Seventh Case Study

	5 CONCLUSION
	REFERENCES

