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Abstract. We present a method to perform model selection based on predic-
tive density in a class of spatio-temporal dynamic generalized linear models
for areal data. These models assume a latent random field process that evolves
through time with random field convolutions; the convolving fields follow proper
Gaussian Markov random field processes. Parameter and latent process estima-
tion based on Markov Chain Monte Carlo and the forward information filter
backward sampler, respectively, is showed. Finally, an application using sev-
eral specifications of the general model on homicide data in the State of Espı́rito
Santo is presented showing the results of model selection.

1. Introduction

The last decade has seen an upsurge of research on spatio-temporal modelling. Mas-
sive amounts of spatio-temporal data have become available and the increasing power
of computers has made possible the analysis of these datasets with progressively re-
alistic models. Several spatio-temporal models have been proposed in the litera-
ture for specific applications for point-referenced data. Examples include meteo-
rology [Ghil et al. 1981], ozone analysis [Guttorp et al. 1994], prediction of snow water
[Huang and Cressie 1996], calibration of radar rainfall data [Brown et al. 2001], and ana-
lysis of pollutant levels [Huerta et al. 2004]. For areal data have been developed in the di-
sease mapping literature [Bernardinelli et al. 1995, Waller et al. 1997, Knorr-Held 2000,
Knorr-Held and Richardson 2003, Schmid and Held 2004].

In [Vivar and Ferreira 2007] we proposed a linear Gaussian spatio-temporal mo-
dels for areal data that usesproper Markov random fields. These models can be cast within
a state-space formulation [West and Harrison 1997]. More specifically, we considered a
latent random field process that evolves through time with random field convolutions; the
convolving fields follow proper Gaussian Markov random field (PGMRF) processes. At
each time, the latent random field process is linearly related to observations through an
observation equation with errors that also follow a PGMRF.

The spatio-temporal model is

yt = F′
tβt + εt, εt ∼ PGMRF (0S,V

−1
t ), (1)

βt − µβ = Gt(βt−1 − µβ) + ωt, ωt ∼ PGMRF (0S,W
−1
t ), (2)
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where0S is theS-dimensional null vector and the errorsε1, . . . , εT and the system innova-
tionsω1, . . . , ωT are independent. The matrixFt connects the latent random field process
to the field observations, the matrixGt describes the spatio-temporal evolution of the
process,ωt is the state innovation field, and the covariance matricesVt andWt describe
the covariance structure of the observational and system errors, respectively. The mean
level fieldµβ describes the temporal stationary expected behavior of the latent process.
It is only defined if the process is temporally stationary, otherwise, it is omitted from the
model.

Following the notation of [Ferreira and De Oliveira 2007],Z ∼ PGMRF (µz,P)
means that the variableZ follows a PGMRF process with mean vectorµz

and precision matrixP, that is, the density function ofZ is proportional to
exp

(
−1

2
(z− µz)

′P(z− µz)
)
, whereP = τ(IS + φM) whereM is called the neigh-

borhood matrix,τ is a scale parameter,IS is theS×S identity matrix andφ ≥ 0 controls
the degree of spatial correlation. Whenφ = 0, the regions are independent and the spatial
dependence increases whenφ increases. See [Vivar and Ferreira 2007, Vivar 2004] for
more details, special cases and properties of this class of models.

Because this is a class of linear models it has a good performance with Gaussian or
approximately Gaussian data. A natural extension is a model that deals with observations
that are distributed in the exponential family. In the next Section we present a specific
model for count data. Section 3 is developed Bayesian inference for the parameters.
Section 4 describes several specifications of the general model and the method to perform
model selection. An application using homicide data in the State of Espı́rito Santo is
shown in Section 5.

2. Spatio-temporal model for count data
Our data consists on the annual number of homicides per county in the State of Espı́rito
Santo, Brazil, from 1979 to 1998. During the 80s and 90s new counties were created
in the State of Esṕırito Santo by fusion or division of older counties. For compatibility
purposes, we use here the political map of 1979 in a total of 52 counties.

For each yeart and countys, t = 1, . . . , T, s = 1, . . . , S, let nts denote the
population size andyts the observed number of homicides. As it is typical for count data
such as these, we assume thatyts follows a Poisson distribution. More specifically, we
assume thatyts|λts ∼ Po(ntsλts), whereλts is the underlying risk at timet in countys.
The Poisson distribution belongs to the exponential family distributions with canonical
parameterηts = log(µ). Specifically, we identify the following components

• Meanµts = exp(ηts) and varianceΣts = exp(ηts).
• Linear predictor:θts = log(λts).
• Link function: g(µts) = log(µts/nts) = θts.
• Response function:f(θts) = nts exp(θts) = µts.
• The functionγ(θts) that transform directly the canonical parameter into the linear

predictor:

ηts = log(λtsnts)

= log(λts) + log(nts)

= θts + log(nts)

= γ(θts)
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Then, our general spatio-temporal model for count data results as follows:

p(yts|ηts) ∝ exp{ytsηts − exp(ηts) + log(yts!)}, (3)

ηts = θts + log(nts),

θt = F′
tβt, θt = (θt1, . . . , θtS)′

βt = Gtβt−1 + ωt, ωt ∼ PGMRF (0,W−1
t ),

Our main interest is to make inference forβ(1:T ) = (β′1, . . . , β
′
T )′.

3. Bayesian inference

When the matricesFt,Gt andWt are completely known, the extended Kalman filter can
be used to perform inference about the latent processβt. But in practice these matrices are
known only up to the parameter vectorψ and numerical integration methods are required
for the Bayesian statistical analysis. Here we favor Markov chain Monte Carlo (MCMC)
methods [Gamerman and Lopes 2006, Robert and Casella 1999] that are quite powerful
and applicable to general highly structured models [Green et al. 2003] such as our spatio-
temporal models for areal data.

It is critically important to design Markov chains with good properties such as
fast convergence and small autocorrelation between realizations. With that objective
in mind, the Markov chain has to be tailored to the specific spatio-temporal model at
hand and will depend on howFt,Gt andWt depend onψ. Nevertheless, the Markov
chain may be partitioned in two blocks: simulation ofψ and simulation of(β0, . . . , βT ).
The simulation ofβ is model specific and is briefly discussed in the application of
Section 5. For the simulation of the latent process, we use the forward information
filter backward sampler (FIFBS) that combines the forward filter backward sampler
[Carter and Kohn 1994, Frühwirth-Schnatter 1994] with the information filter and thus
benefits from the sparsity ofV−1

t andW−1
t to accelerate computations. For details of

FIFBS, see [Vivar and Ferreira 2007].

4. Model selection

4.1. Proposed models

This subsection presents several special cases of our spatio-temporal model (3). Looking
at the data, it is clear that this is not a stationary process, the we need non-stationary
models. The first candidate is a model that smooth the data (I). Another alternative is
a contamination model (II) since some clusters of counties can be detected through the
period under study. Other models considered are related to the notorious increasing mean
level of many counties through time. They are the second-order temporal trend model and
some variants (III - VIII).

Model I: First-order temporal trend

• F′
t = IS andGt = IS,

• W−1
t = τ(IS + φM).
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Model II: Contamination

• F′
t = IS,

• Gt = 1
1+κh

H −→ {H}kl =


1, k = l,
κ, k ∈ Nl,
0, o.c.

Contamination matrix

• W−1
t = τ(IS + φM).

Models III e IV: Second-order temporal trend

• F′
t = (IS,0S),

• Gt =

(
G1t G1t

0S G2t

)
, Git = IS, i = 1, 2.

• W−1
t =

(
W−1

1t 0S

0S W−1
2t

)
, W−1

it = τi(IS + φiM), i = 1, 2.

Model III considersφ2 = 0.

Model V: Second-order model with velocity equation including contamination and
φ2 = 0

• F′
t = (IS,0S),

• Gt =

(
G1t G1t

0S G2t

)
,

G1t = IS andG2t =
1

1 + κ2h
H −→ {H}kl =


1, k = l,
κ2, k ∈ Nl,
0, o.c.

• W−1
t =

(
W−1

1t 0S

0S W−1
2t

)
, W−1

it = τi(IS + φiM), i = 1, 2.

Model VI: Second-order model with level equation including contamination

• F′
t = (IS,0S),

• Gt =

(
G1t G1t

0S G2t

)
,

G2t = IS andG1t =
1

1 + κ1h
H −→ {H}kl =


1, k = l,
κ1, k ∈ Nl,
0, o.c.

• W−1
t =

(
W−1

1t 0S

0S W−1
2t

)
, W−1

it = τi(IS + φiM), i = 1, 2.
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Model VII: Second-order model including contamination on both equations and
φ1 = 0

• F′
t = (IS,0S),

• Gt =

(
G1t G1t

0S G2t

)
, Git = 1

1+κih
Hi −→ {Hi}kl =


1, k = l,
κi, k ∈ Nl,
0, o.c.

, i = 1, 2,

• W−1
t =

(
W−1

1t 0S

0S W−1
2t

)
, W−1

it = τi(IS + φiM), i = 1, 2.

Model VIII: Second-order model with same acceleration for all sites

• F′
t = (IS,0S),

• Gt =

(
G1t 1
0 G2t

)
, G1t = IS, G2t = 1.

• W−1
t =

(
W−1

1t 0
0 W−1

2t

)
, W−1

1t = τ1(IS + φ1M),W−1
2t = τ2

4.2. Predictive density

With the ability to fit more complex models comes the necessity to compare those
models. There are many criteria to select models in the literature. For example,
criteria based on a predictive distribution include those of [Geisser and Eddy 1979,
San Martini and Spezzaferri 1984] and [Gelfand et al. 1992] and the references therein.
We prefer the predictive density as our criterion of model selection because it naturally
penalizes complex models, differently from other ones, like the deviance information cri-
terion (DIC), [Spiegelhalter et al. 2002] that favors overfitting and tends to select very
complex models.

Bayesian model selection is usually performed by comparing the posterior prob-
abilities of the competing models. When the competing models have equal prior prob-
abilities, their posterior probabilities are proportional to the respective predictive den-
sities. These densities will depend on the prior distribution of the parameter vec-
tor ψ. In order to overcome this difficulty, we use here a training sample approach
[Frühwirth-Schnatter 1995] of the firstp time observations; this results in calibrated pri-
ors for the parameters of each model. Then, Monte Carlo integration is used to compute
the predictive distribution under each model for the remainingT − p time observations.

Suppose that there areQ competing spatio-temporal modelsM1, . . . ,MQ. The
qth model has observational densitypq(yt|ηt(βt)) and evolution densitypq(βt|βt−1, ψ).
Note that the definitions ofβt andψ may be (and in general will be) different under each
model, but this distinction is omitted in order to keep the notation simple.

Let pq(β1:t−1, ψ|Dt−1) denote the joint posterior distribution ofψ andβ1, . . . , βt−1

under modelq up to timet−1. Then, the predictive distribution ofyt under modelq given
the information up to timet− 1 will be
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pq(yt|Dt−1) =
∫
pq(yt|ηt(βt))pq(βt|βt−1, ψ)pq(β1:t−1, ψ|Dt−1)dβ1:t−1dβtdψ

=
∫
pq(yt|βt−1, ψ)pq(β1:t−1, ψ|Dt−1)dβ1:t−1dψ (4)

since
pq(yt|βt−1, ψ) =

∫
pq(yt|ηt(βt))pq(βt|βt−1, ψ)dβt.

The simulation scheme outlined in Section 3 can be used to simulate a sam-
ple (β

(1)
t−1, ψ

(1)), . . . , (β
(L)
t−1, ψ

(L)) from the joint posterior distributionpq(β1:t−1, ψ|Dt−1).
Then, a Rao-Blackwellized estimate of the predictive density ofyt given the information
up to timet− 1 is

p̂q(yt|Dt−1) =
1

L

L∑
l=1

pq(yt|β(l)
t−1, ψ

(l)) (5)

Thus, we adjust an MCMC scheme for each time pointt and make the predic-
tion for the subsequent timet + 1. Using the fact that the joint predictive density of
yt∗ ,yt∗+1, . . . ,yT can be written aspq(yt∗ ,yt∗+1, . . . ,yT |Dt∗−1) =

∏T
t=t∗+1 pq(yt|Dt−1),

an estimate of the joint predictive density under modelq is

p̂q(yt∗ ,yt∗+1, . . . ,yT |Dt∗−1) =
T∏

t=t∗+1

p̂q(yt|Dt−1),

wheret∗ is such thatpq(ψ|Dt∗) is proper for allq = 1, . . . , Q.

As a result, one selects the model with the highest predictive density. Thus, the
selected model will not only be the model with highest posterior probability but will also
be the model with the best predictive performance. When one model has posterior pro-
bability close to one, that model is clearly the winner. But very often several models will
have similar posterior probabilities. In that case, those several models should be reported
and predictions should be computed by model averaging [Clyde and George 2004].

5. Application

Within the Bayesian paradigm, the models are complete with the specification of prior
distributions forβ0, τi, φi andκi, i = 1, 2; the usual assumption of independent priors is
used here. The prior forβ0 is a multivariate normal with certain mean vector and diagonal
precision matrix with elements close to0, corresponding to vague information. The prior
for τi is a gamma distributionGa(4, 4) leading to a gamma full conditional distribution.
The prior forφi proportional to 1 if0 < φi < 1 and proportional toφ−5

i if φi ≥ 1. The
prior for κi is a uniform distribution in the interval(0, 1). Usually is not an easy task the
estimation ofφi andτi, hence their priors are somehow semi-informative.

For each model, the MCMC scheme discussed in Section 3 was used with the
simulation of the latent process by FIFBS. Moreover, the updating forτi was per-
formed with independent Gibbs steps and the updating forφi andκi was performed with
Metropolis steps forlog φi and forκi. This MCMC scheme was implemented using Ox
[Doornik 2002]. For each model, 90000 iterations were run and the first 10000 iterations
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were discarded as burn-in. Then, we saved every 20th iteration yielding a final sample of
size 4000 for each parameter.

For model selection, the first ten time points were used as training sample; that
is, t∗ = 10. Table 1 shows the logarithm of the predictive density for the several models
and the mean squared error of the one-step ahead prediction (as a simpler comparison
method, since it doesn’t take account of all uncertainty). From the table, the best model is
the contamination model (Model II). In order to understand the difference in performance
between the models, Figure 1 shows the one-step-ahead predictive densities for all the
models. Model II is the winner in almost all the time points.

Table 1. Logarithm of the predictive density and mean squared error of the pre-
diction for all the considered models.

Model Log p.d. MSE
I -1881.40 1766.06
II -1873.36 1749.60
III -4254.69 13164.13
IV -2364.12 3033.33
V -5815.18 13857.93
VI -3365.69 8094.99
VII -2227.64 2337.85
VIII -2008.27 2228.14

Figure 1. One-step ahead logarithm of the predictive density.

Table 2 shows point estimates of the parameters of the contamination model using
all time observations and the respective quantiles in order to elaborate confidence intervals
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of 95%. These results show that the innovations have a strong spatial correlation and a
moderate precision indicating that the innovations have low magnitude. The value of the
contamination indexκ indicates very low but (statistically) significant interaction between
sites in subsequent times.

Table 2. Posterior results using all data for the best model selected: Contamina-
tion model (II).

Quantiles
Parameter Mean (s.d.) 2.5% 50% 97.5%

τ 1.518 (0.441) 0.795 1.459 2.514
φ 6.469 (2.376) 3.081 6.108 7.778
κ 0.0003 (0.0002) 0.00002 0.0003 0.0008

Figure 2 shows the posterior means of both the latent level (first row of each
panel) and the innovation process (second row of each panel) for the years 1981, 1984,
1987, 1990, 1993 and 1996. The maps on the first rows of each panel represent the
posterior mean of the risk per 100 thousand inhabitants in a scale from white (low risk)
to black (high risk). In the beginning, the risk level was almost uniform for all counties,
including metropolitan area (east-center region). Moreover, throughout the years the vio-
lence increases at the center of the State and some northern counties. The maps on the
second rows of each panel represent the posterior mean of the innovations in a scale from
white (high reduction in the risk) to black (high increase in the risk). These innovation
maps are very informative, as they represent estimates of year specific spatially structured
effects. For example, after accounting for the contamination effect, in 1993 there was a
year-specific increase of the risk level in the center and southern regions and a decrease
of the risk level in the northern part of Espı́rito Santo State.

6. Conclusions

We have presented a method to perform model selection of spatio-temporal models for
areal observations in the exponential family. This method is based on predictive densities
and in this paper we present a specific general spatio-temporal model for count data. Seve-
ral different specifications of this model are presented and applied to the annual number
of homicides in the State of Espı́rito Santo in the 1979-1998 period.

The proposed Bayesian analysis using MCMC with embedded FIFBS allows for
full account of the uncertainty and the predictive-density-based model selection pointed
to the contamination model as the best model among the proposed ones. A possible expla-
nation is that neighbor counties may have similar security policies causing an increasing
or decreasing violence process. This behavior was reflected on the maps representing
the innovations, showing estimates of spatially structured effects.Further research will in-
clude different models for the homicides maybe considering some covariates; and model
selection for other kind of data, like binomial data.
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Latent 1981 Latent 1984 Latent 1987

Innovation 1981 Innovation 1984 Innovation 1987

Latent 1990 Latent 1993 Latent 1996

Innovation 1990 Innovation 1993 Innovation 1996

Figure 2. Homicides data - Spatio-temporal contamination model. Posterior
means of latent and innovations fields for years 1981, 1984, 1987, 1990, 1993
and 1996.
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