

Coverage representation in TerraLib

Vitor Dantas, Marcelo G. Metello, Melissa Lemos, Marco A. Casanova

Tecgraf – Computer Graphics Technology Group

Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rua Marquês de São Vicente, 225 – CEP 22.453-900 – Rio de Janeiro – RJ – Brazil

{vitorcd,metello,melissa,casanova}@tecgraf.puc-rio.br

Abstract. Coverage representations, as defined by the OGC specifications, are

useful for representing a wide range of geographic phenomena. However, in

most GIS projects, coverage representations do not show a common interface

and the line between coverages and features with geometry is unclear. We

propose an extension to the TerraLib library, using a unifying approach to

manage coverage representations, including performance considerations as a

major issue.

1. Introduction

The OGC specification introduces two basic ways of modeling geospatial features,

namely features with geometry and coverages [OGC 1999]. While the former

emphasizes the identity of each single feature, the later emphasizes the whole picture,

evidencing relationships and the spatial distribution of earth phenomena. The decision

of which one is best depends on the application, since moving from one concept to the

other is possible.

A coverage defines a function that maps some spatial domain into a value set. In

general, the specialization of coverages reduces to the specialization of the spatial

domain. For instance, a Discrete Point Coverage is one whose spatial domain is a set of

discrete points. Figure 1 shows an example of a Discrete Point Coverage whose value

set has two dimensions, so that each point is associated with a temperature value and a

wind speed value, i.e., to a value vector (ti, si), 1 ≤ i ≤ 6.

Figure 1 . Discrete Point Coverage with two dimensions.

In this work, we aim at developing representations for several coverage subtypes

– such as Discrete Point Coverage, Surface Coverage and Line String Coverage – and at

defining a common abstract representation for them, as an extension of the TerraLib

library [Câmara et al. 2000]. TerraLib is an open-source project that provides tools for

the development of geographic information systems [Vinhas and Ferreira 2005].

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 245-250.

245

One often finds in the literature other designations for the concept of coverage. The

relation between features with geometry and coverages is similar to what has been

discussed about discrete objects and continuous fields [Couclelis 1992], or geo-objects

and geo-fields [Vinhas 2006].

Although most GIS projects address the problem of coverage representation, few

establish a clear distinction between the concepts of features with geometry and

coverages. Typical coverage representations such as regular grids (raster) are included in

several projects, including GDAL, GRASS, OSSIM GMT and DeeGree [Ramsey 2007].

TerraLib currently offers implementations of coverage representations such as

triangular irregular networks (TINs) and regular grids (raster) [Vinhas and Souza 2005],

but all representations in TerraLib are referenced as geo-objects. Rather than replacing

the current implementation for these representations, we propose a common interface

for accessing them.

The paper is organized as follows. Section 2 discusses the representation of

coverages in general. Section 3 presents the current implementation of Discrete Point

Coverages. Section 4 discusses future work and conclusions.

2. Coverage Representation

2.1. General requirements

We propose the following high-level requirements for coverage representations:

1. The data structure must represent a set of geometries (the spatial domain of the

coverage).

2. Each stored geometry must be associated with a value vector (the value of the

coverage for the spatial region that the geometry specifies).

3. There must be support for queries that fetch the value vector associated with

each stored geometry.

4. There must be support for queries that fetch the value vector in any location

within the convex hull defined by the stored geometries, using an interpolation

method. There must be a flexible way to change the interpolation method in use.

5. The persistent representation of geometries (in a database) must be clustered by

spatial proximity to improve the performance of query processing.

Requirements 1 and 2 have to do with how to represent the coverage;

requirements 3 and 4 with how to query the coverage; and requirement 5 is non-

functional. Requirements 1 and 3 comply entirely with the OGC specification. We

introduced requirements 4 and 5 based on what we expect to be generic application

requirements.

Requirement 4 was included to provide a continuous view of the coverage,

despite the fact that the support data structure is discrete (i.e., a set of geometries).

Interpolation methods are used to infer the value vector at positions where it is

undefined, as recommended in the discussion about discrete and continuous coverages

of the OGC specification.

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 245-250.

246

Requirement 5, in particular, addresses performance issues that are not

considered by OGC. Clustering geometries lead to performance improvement because

loading a few large chunks of data from a database is faster than loading the same

amount of data in several small chunks. Besides that, if the geometries are clustered by

spatial proximity, the addition of a caching mechanism will result in less frequent access

to the database in a typical GIS application, in which it is reasonable to assume that

access to data over time will be done by spatial proximity, e.g. a user looking at a

location is more likely to move next to nearby locations.

2.2. High-level interface for coverage access

For the discrete setting, the OGC specification on coverages provides an abstract

specification for the coverage function, named DiscreteC_Function, showed in Figure 2.

The method num returns the number of geometries in the domain, while methods domain

and values return an exhaustive list of the domain (geometries) and the range (value

vectors) of the coverage function. The method evaluate is used to fetch the value vector

associated with a specific element of the domain (a geometry).

Figure 2 . Discrete coverage function from the OGC abstract specification.

We follow a similar approach to define an interface for coverages in the

TerraLib library, as depicted by Figure 3. This interface provides methods begin and

end, which have two optional parameters of types TePolygon and TeSpatialRelation,

and return objects of type TeCoverage::iterator. These two methods, together, play the

role of the method domain in DiscreteC_Function.

Figure 3 . High-level interface for coverages in the TerraLib library.

The parameter of type TePolygon represents a polygon and defines a selection

area. If no polygon is given, then the selection area includes the entire spatial domain.

The parameter of type TeSpatialRelation indicates the kind of the spatial relation (e.g.,

intersection, crossing, overlapping) that holds between the selection area and the

geometries to be selected. If no value is given, the relation defaults to intersection.

The returned iterators are used to traverse the selected geometries (instances of

TeGeometry) and the values associated to them. Coverage iterators, represented by

instances of TeCoverage::iterator, are manipulated using the overloaded operators “*”,

“[]”and “++”. Dereferencing a coverage iterator with the “*” operator outputs a

geometry, while the operator “[]” is used to get the value of a specific dimension. The

increment operator “++” is used to advance to the next position of the iteration, i.e. to

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 245-250.

247

the next selected geometry. The example code in Figure 4 shows how to use coverage

iterators, assuming that we have access to an instance of TeCoverage named “c”.

// Make spatial query
TeCoverage::iterator it = c.begin(poly);
TeCoverage::iterator end = c.end(poly);

// Iterate over selected geometries
while (it != end) {
 TeGeometry& geom = *it;
 double value1 = it[1];
 double value2 = it[2];
}

Figure 4 . Example code, showing how to use coverage iterators.

The method evaluate provided by the interface TeCoverage extends the domain

of the coverage beyond the discrete setting, because one is able to access the values on

arbitrary locations (through the use of interpolation methods). Otherwise, the domain

would be restricted to the discrete collection of geometries, as the method evaluate in

DiscreteC_Function.

3. Current implementation

The first focus of our work was the definition of a representation for the simplest

subtype of coverage, namely a Discrete Point Coverage. This representation assumes

that the domain is a finite set of sample points. It is useful to model features such as

temperature, as this kind of information is typically collected at stations distributed over

the territory.

This section discusses a working implementation for a Discrete Point Coverage

representation in TerraLib, including class diagrams and the database model.

3.1. Current class model

TeDiscretePointCoverage is the main class of the Discrete Point Coverage

representation, following the TerraLib naming convention. Figure 5 shows this class,

omitting several attributes and methods for clarity.

Figure 5 . Class diagram for a Discrete Point Coverage.

The methods begin and end are equal to those from class TeCoverage, in section

2.2, except for the return of type TeDiscretePointCoverage::iterator, that is

specialized to traverse discrete points (instances of TePoint).

The method evaluate can be applied to a position that does not belong to the

discrete domain of the representation. This method delivers the call to the interpolator

(instance of TeDiscretePointCoverageInterpolator), a class member which actually

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 245-250.

248

implements interpolation. The interpolator class can be extended for implementing

different kinds of interpolation, making it a flexibility point. If no interpolator object is

provided by the application, the default implementation (nearest neighbour) is used.

The constructor of this class receives an instance of TeCoverageParams, which

represents coverage parameters, and include information about where the data is stored

(in a file or database) so that, after an instance of TeDiscretePointCoverage is

constructed, one can start submitting spatial queries to the coverage. Figure 6 shows the

class TeCoverageParams, along with the auxiliary data structure TeCoverageDimension.

Methods were omitted for clarity.

Figure 6 . Class diagrams representing parameters of coverages.

An instance of TeCoverageParams contains information about how to access the

persistent coverage representation from the database or from a file, what are the

dimensions of the value vector, what is the minimum rectangle that contains all

geometries of the coverage, what is the projection used and more.

3.2. Current data model

The coverage data stored in the database, including information about geometries and

values associated to them, is clusterized by spatial proximity of geometries. The

clustering process creates blocks, which are stored in the coverage table. The name of

such a table has the form Coverage_(layer_id)_(coverage_id), where (layer_id)

means the layer identifier and (coverage_id) means the coverage identifier. Figure 7

shows the diagram of a coverage table.

Figure 7 . Diagrams for coverage tables and coverage metadata tables.

The primary key of this table is the block identifier, named block_id. For each

stored block, there is also information about the minimum bounding box of all its

geometries in the fields lower_x, lower_y, upper_x and upper_y, and information about

its total size (in bytes) in the field block_size. The block contents are stored in a BLOB

field named spatial_data, which contains a serialization of the geometries and values.

To decode the raw data stored in registers, the application needs to know the

structure of the value vector of each coverage, i.e., what are the dimensions and the data

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 245-250.

249

types used. For that matter, a metadata table is available, containing this kind of

information. There is a single metadata table for all coverages in the same layer.

The primary key of this table is composed by the coverage identifier, named

coverage_id and the dimension identifier, named dimension_id. The field data_type

contains information about the data type of this dimension and the field name contains a

name for the dimension (e.g., “Temperature”, “Wind speed”). The name of this table has

the form Coverage_(layer_id)_metadata, where (layer_id) means the layer identifier.

Figure 7 shows the diagram of a coverage metadata table.

4. Conclusions and future work

We addressed in this paper the problem of formalizing coverage representations in the

context of the TerraLib project. We described a common interface for all coverage types

and implemented the simplest coverage representation, namely a Discrete Point

Coverage. We started from the OGC abstract specification, but we also included

requirements that addressed performance and other non-functional questions.

Future work includes the implementation of other coverage representations, such

as Surface Coverages, along with adapting representations that are already part of

TerraLib so that all implement a common interface. A memory caching mechanism,

common for all coverage representations, is also a major issue, considering the

performance of processing large amounts of data. We also want to make tests in

applications that are built with TDK [TDK 2007] in order to acquire empirical evidence

that coverages and features with geometry should be treated separately for better

performance.TDK is an API that provides components to make it easier to implement

GIS applications using Terralib.

5. References

Câmara, G. et al. (2000) "TerraLib: Technology in Support of GIS Innovation", II Workshop

Brasileiro de Geoinformática, Caxambu, Brazil.

Couclelis, H. (1992) "People manipulate objects (but cultivate fields)", Proceedings of

International Conference on GIS, Pisa, Italy.

OGC (2000) “The OpenGIS Abstract Specification - Topic 6: The Coverage Type and its

Subtypes”, version 6.0, Open Geospatial Consortium Inc, USA.

OGC (1999) “The OpenGIS Abstract Specification - Topic 5: Features”, version 4.0, Open

Geospatial Consortium Inc, USA.

Ramsey, P. (2007) "The State of Open Source GIS", Refractions Research Inc, Canada.

TDK (2007) “Terralib Development Kit”, http://www.tecgraf.puc-rio.br/tdk.

Vinhas, L. (2006) "Um subsistema extensível para o armazenamento de geo-campos em bancos

de dados geográficos", PhD Thesis, INPE, São José dos Campos, Brazil (in Portuguese).

Vinhas, L. and Ferreira, K. R. (2005) "Descrição da TerraLib", In "Bancos de Dados

Geográficos", Edited by M. Casanova et al , Editora MundoGEO, Brazil (in Portuguese).

Vinhas, L. and Souza, R. C. M. (2005) “Tratamento de dados matriciais na TerraLib”, In

"Bancos de Dados Geográficos", Edited by M. Casanova et al, Editora MundoGEO, Brazil

(in Portuguese).

IX Brazilian Symposium on GeoInformatics, Campos do Jordão, Brazil, November 25-28, 2007, INPE, p. 245-250.

250

