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Abstract. The problem of matching strings allowing errors has recently gained 
importance, considering the increasing volume of online textual data. In geo-
technologies, approximate string matching algorithms find many applications, 
such as gazetteers, address matching, and geographic information retrieval. 
This paper presents a novel method for approximate string matching, devel-
oped for the recognition of geographic and personal names. The method deals 
with abbreviations, name inversions, stopwords, and omission of parts. Three 
similarity measures and a method to match individual words considering ac-
cent marks and other multilingual aspects were developed. Test results show 
high precision-recall rates and good overall matching efficiency. 

1. Introduction 
The problem of matching strings allowing errors and other kinds of discrepancies has 
been studied for some time (Navarro 2001), but still presents some interesting and chal-
lenging issues. Its importance is growing, since large volumes of textual data have be-
come available through the Internet. Applications of approximate string matching 
nowadays include some important areas in computing, such as information retrieval, 
digital libraries, ontology integration and computational biology. In many of those ap-
plications, such tools are needed whenever the input data are uncertain, semi-structured, 
or simply reflect the various views people have on their surrounding environment.  

Approximate string matching techniques are frequently required in geotechnologies and 
in applications that have to deal with much semantic uncertainty. Consider, for instance, 
the response of a person to the simple question “Where do you live?” Depending on the 
context of the conversation, the answer may be the name of a city, a state, a country, or 
even an address, with details such as a house number and a postal code. Anyway, the 
description certainly includes references to one or more place names, which can be am-
biguous and contain subtle and misleading errors. Many ambiguities result from the 
reuse of the names of places that are famous elsewhere (“Paris, Texas”, as opposed to 
“Paris, France”), while errors may be caused by spelling difficulties (place names that 
include foreign words or proper nouns), language or local particularities (phonetic al-
phabets and use of accent marks). String matching is also needed in geographic ontol-
ogy integration, geographic information retrieval  (Jones, Purves et al. 2002; Borges, 
Laender et al. 2007), and other semantic-related subjects. 

Our interest in approximate string matching lies on the applications that use place 
names and their variations. Since personal names are frequently used as place names, 
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our interest extends towards them as well1. Research on retrieval of personal names and 
proper nouns is quite active, with many recent works (Barcala, Vilares et al. 2002; 
Cohen, Ravikumar et al. 2003; Patman and Thompson 2003; Minkov, Wang et al. 2005; 
Christen 2006). Previous work on gazetteers (Souza, Davis Jr. et al. 2005), geographic 
information retrieval (Borges, Laender et al. 2003; Delboni, Borges et al. 2007), geo-
coding (Davis Jr., Fonseca et al. 2003) and address matching (Davis Jr. and Fonseca 
2007) has shown that the use of approximate matching algorithms can be an important 
asset whenever the input data have been manually fed or obtained directly from natural 
language text. This work, therefore, presents string matching techniques that seek better 
results and more flexibility when dealing with geographic and personal names. 

The remainder of this paper is organized as follows. Section 2 introduces the approxi-
mate string matching problem in more detail and discusses existing techniques. Section 
3 studies specific aspects of matching personal and geographic names, and presents our 
approach to the problem. Section 4 shows experimental results. The paper is concluded 
in Section 5, which also presents some of our priorities for ongoing work. 

2. Problem statement and related work 
The problem of approximate string matching is a traditional one in computer science. 
For recent surveys of initiatives on this subject, see (Navarro 2001) and (Christen 
2006). In an informal way, approximate string matching corresponds to finding out if a 
given string S matches a pattern P, within a given similarity threshold δ. This threshold 
can be given as a maximum number of allowable errors, or as a normalized measure, a 
number between 0 and 1, with 0 meaning a mismatch and 1 meaning an exact match.  

Since we are interested in personal and geographic names, our review of related work 
pays more attention to techniques that work better when both the string and the pattern 
are short. Some approximate string matching techniques and algorithms are more suited 
to seek the presence of a short pattern in a (presumably long) text. Given the objective 
of this paper, we will not discuss this variation further. However, we only point out that 
this kind of matching is important for geographic information retrieval, in algorithms 
that try to determine the geographic context in a natural-language text, based on land-
mark names and on expressions that indicate locality (Borges, Laender et al. 2007). 

More formally, approximate string matching can be stated as in Definition 1. 

Definition 1. Let S and P be strings of characters, i.e. sequences of symbols from a 
finite alphabet Σ. P is called the pattern, against which S will be compared. We say 
that S matches P when δ<),( PSf , where [ ]1,0: →Σ×Σf  is a distance function, 

which quantifies the similarity  between S and P and δ is a similarity threshold.  

In other words, f indicates how close S is from P. Several metrics have been proposed 
for the similarity, depending on the algorithm (Cohen, Ravikumar et al. 2003).  

There are two main types of approximate matching techniques: phonetic matching and 
pattern matching. Phonetic matching considers the similarity of letters in a string as to 
the usual sounds they produce in English, and generates a code from any given word. In 

                                                 
1 An assessment of the street names catalog for the city of Belo Horizonte, Brazil, showed that about 67% 
of the names have more than one word. Of those, about 65% are references to personal names.  
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general, similarly sounding words produce equal codes, but subtle spelling differences 
can keep phonetic matching from identifying many similarities. With these and other 
limitations, some studies (Zobel and Dart 1995; Christen 2006) have shown that pho-
netic matching is systematically outperformed by pattern matching techniques as to its 
matching efficiency, even though phonetic methods tend to run faster. There are also 
hybrid methods, combining string distance measures and probabilistic interpretations of 
pattern matching results (Pfeifer, Poersch et al. 1996; Cohen, Ravikumar et al. 2003). 

Pattern matching relies on comparing characters from each string, to detect points in 
common and to quantify their similarity based on that. Some of the most important pat-
tern matching techniques are based on edit distance. One of such techniques 
(Levenshtein 1965) determines the total number of operations (insertions, deletions, or 
substitutions) required to transform S into P. This number is called the edit distance or 
the Levenshtein distance (LD) between S and P. Considering that each operation has a 
cost of 1, similarity can be calculated as 

 
),max(

),(
0.1),(

PS

PSLD
PSf LD −=  (1) 

Variations of LD consider the transposition of characters as another operation, with unit 
cost, or costs that depend on similarity criteria applied to individual characters (Navarro 
2001). For instance, for optical character recognition, the comparison between similar 
letters such as “i” and “l” can have a lower cost. For manual input, a lower substitution 
cost can be assigned to pairs of letters that are adjacent on the keyboard. 

The Levenshtein edit distance algorithm is usually implemented using a matrix 
]1,1[ ++ PSL  of integers, filled out in a row-wise traversal to the right, as in Eq. 2: 
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As a result, PSLPSLD ,),( = . If the “+1” clause at the last row of equation 2 is 

changed to a function, it is possible to consider varying costs according to the type of 
operation or to the similarity between pairs of characters. 

Another similarity metric, which is not based on an edit distance model, has been pro-
posed by Jaro and later refined by Winkler (Jaro 1995; Winkler 1999). The Jaro-
Winkler algorithm is bases on the number of common characters and the order in which 
they appear, increasing the similarity value in case there is a match on the initial charac-
ters of the string. We decided not to use this metric, partly because some works have 
shown that their results are better suited to matching short strings (for instance, last 
names) (Cohen, Ravikumar et al. 2003) and because the Levenshtein distance would 
suit our ideas for multiword strings better. There is, however, an adaptation of the 
Winkler technique in which all possible permutations of the words in a multiword string 
are considered (Christen 2006). Our method can deal with inversions, but is able to 
avoid performing the permutations, as we will show next. 
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3. Matching Personal and Geographic Names 
Matching personal or geographic names can be defined as the process of determining, 
within a given level of certainty, whether two strings correspond to the same person or 
place. Matching names is a challenging task, mainly because of spelling variations and 
some widely used practices, such as abbreviation. This is further complicated by the 
adoption of different ordering and by the varying importance assigned to parts of the 
name, based on cultural differences (Patman and Thompson 2003). Such variations usu-
ally keep exact matches from being effective. Spelling variations are common in per-
sonal names, both in given names and surnames, as well as in cross-language adapta-
tions of place names. For instance, London is referred to as “Londres” in Portuguese, 
while “Lisboa” is referred to as “Lisbon” in English. Spelling variations also arise from 
the transliteration of words and names from different alphabets, as in Chinese, Russian, 
and other languages, to the Roman alphabet. Another source of variations is the inten-
tional abbreviation and inversion of names, as in the indication of authorship in biblio-
graphic references. In such sources, parts of names are also occasionally omitted.  

Spelling variations often cause problems when, for instance, names are dictated over the 
phone for manual input. Christen (2006) includes both spelling variations and manual 
input among the primary sources of errors in personal names. Errors on common words 
can be detected using a dictionary, but detecting errors on names requires a different 
approach. In spite of spelling and presentation format difficulties, personal names are 
frequently used to designate places. Even though we do not have detailed data on that, 
we suspect, from personal observation in Brazil and abroad, that personal names are 
present on a large share of urban place names. Naming geographic features after people 
as a form of homage is an established tradition, hence names such as Magellan strait, 
Weddell sea, or Hudson bay, and, more recently, names assigned to features in other 
planets, such as Tycho crater, on the Moon, or Maxwell Montes, on Venus. 

We observe that personal and geographic names share some common characteristics. 
Words are usually small, ranging from three or four characters up to no more than a 
hundred characters. Special characters, such as accent marks, are used depending on the 
language, and sometimes are omitted. Abbreviations are common, mostly on middle 
names. Words can occasionally be inverted or even omitted. Stopwords (such as “of” in 
English, or “de” in Portuguese) are often present in full names, but are frequently omit-
ted in practice. Titles or professional descriptions are used along with personal names, 
usually preceding them (as in “Presidente Kubitschek”), and titles can also be abbrevi-
ated (“Pres. Vargas”). Such observations are mostly from practice, but we have been 
able to confirm most of them during our experiments on preliminary test data.  

In the next section, we will present our approach to matching personal and geographic 
names, in which we address all of the above characteristics, by adapting existing tech-
niques and adding heuristics of our own. 

3.1 Matching single words 

For single words matching, we implemented a variation of the Levenshtein edit distance 
method. Two word strings are considered to match if their similarity measure f is 
greater than a threshold δ (Eq. 1). We can determine whether this similarity can be 
reached using two pre-tests in sequence. If the difference in length of S and P exceeds 
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the allowed number of errors, no further comparison is necessary, and S cannot match 
P. In other words, if ( ) δ−>− 0.1),max(/ PSPSabs  there is a mismatch on the basis of 

the length test. The other test is based on the bag distance (Bartolini, Ciaccia et al. 
2002), a linear-time test that generates a lower bound for the edit distance. If we put 
together two sets of individual characters, X and Y, each of which formed with the char-
acter from S and P, respectively, then ),max(),( XYYXPSbag −−= , where the minus 

sign indicates the set difference operation. It has been shown that ),(),( PSLDPSbag ≤ , 
and therefore we can discard the possibility of a match whenever 

δ−> 0.1),max(/),( PSPSbag  (bag test) (Bartolini, Ciaccia et al. 2002). The bag test 

allows us to discard mismatches before determining the actual edit distance at a much 
higher computational cost, as shown next. 

Our variation of the Levenshtein edit distance calculation consists in incorporating a 
practical scheme for matching accent-marked letters and special characters. Characters 
are organized into groups, so that characters belonging to the same group are considered 
to match, as formally described in Definition 2.  

Definition 2. Let c1 and c2 be two characters from the alphabet Σ, and let g1, g2, …, 
gn be n sets of at least 1 character, in which jigg ji ≠∀∅=∩ , . We say that c1 

matches c2 under gi when there is a group gi which contains both c1 and c2, i.e., 

{ }2121 ,ccgcc i

gi

⊃⇔≡  

Thus, equivalent characters are organized into groups, as shown in Table 1. This strat-
egy allows us to prepare several sets of groups, according to the requirements of a 
matching effort and the characteristics of source and pattern data. For instance, case-
sensitive groups, phonetic groups, or accent-mark-sensitive groups can be prepared and 
used with no code modification. Figure 1 shows examples of case- and accent-mark-
sensitive (a) and insensitive (b) matching using the Levenshtein matrix, in the compari-
son of the names of two Brazilian cities, Paranaguá (PR) and Paranapuã (SP).  

Table 1 - Groups of characters 
Id Group Id Group
L1 a, á, ã, à, ä, â U1 A, Á, Ã, À, Ä, Â
L2 e, é, è, ë, ê U2 E, É, È, Ë, Ê
L3 i, í, ì, ï, î U3 I, Í, Ì, Ï, Î
L4 o, ó, õ, ò, ö, ô U4 O, Ó, Õ, Ò, Ö, Ô
L5 u, ú, ù, ü, û U5 U, Ú, Ù, Ü, Û
L6 n, ñ U6 N, Ñ
L7 c, ç U7 C, Ç

... one group for each consonant 
(lowercase) ... one group for each consonant 

(uppercase)  
P a r a n a g u á

0 1 2 3 4 5 6 7 8 9
P 1 0 1 2 3 4 5 6 7 8

a 2 1 0 1 1 2 2 3 4 4

r 3 2 1 0 1 2 3 3 4 5

a 4 3 1 1 0 1 2 3 4 4

n 5 4 2 2 1 0 1 2 3 4

a 6 5 2 3 1 1 0 1 2 2

p 7 6 3 3 2 2 1 1 2 3

u 8 7 4 4 3 3 2 2 1 2

ã 9 8 4 5 3 4 2 3 2 1  

P a r a n a g u á
0 1 2 3 4 5 6 7 8 9

P 1 0 1 2 3 4 5 6 7 8

a 2 1 0 1 1 2 2 3 4 5

r 3 2 1 0 1 2 3 3 4 5

a 4 3 1 1 0 1 2 3 4 5

n 5 4 2 2 1 0 1 2 3 4

a 6 5 2 3 1 1 0 1 2 3

p 7 6 3 3 2 2 1 1 2 3

u 8 7 4 4 3 3 2 2 1 2

ã 9 8 4 5 3 4 2 3 2 2  
(a) fLD = 0.89 (b) fLD = 0.78 

Figure 1 - Accent-mark-insensitive (a) and sensitive (b) edit distance 
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In the definition of the groups and in the implementation, we used the Unicode standard 
set of characters. Notice that most information retrieval and text mining efforts usually 
pre-process the input strings, eliminating uppercase characters, accent marks and other 
special characters. We decided not to do so, since uppercase is often used as a way to 
distinguish proper nouns, and since accent marks can be decisive in determining a 
match, depending on the language. 

One possible difficulty in using our method is the determination of the similarity 
threshold δ. We can understand more easily how to choose a value for δ  if we think in 
terms of number of allowable errors. Considering S and P to have the same length, the 
maximum (integer) number of allowable errors is equivalent to ⎣ ⎦S⋅− )0.1( δ . In order 

illustrate that, we performed a frequency distribution analysis of word lengths in a data 
set containing 9,222 personal names, extracted from BDBComp (Brazilian Digital Li-
brary on Computing)2. After separating 26,924 words from names, we observe that most 
names have between two and four words. Almost 75% of them have between 4 and 9 
characters (Table 2). The large number of 1-character words reflects the use of abbre-
viations in BDBComp. Therefore, using a threshold δ = 0.75, it means we allow for a 
maximum of one error in a 4- to 7-letter word, and 2 errors for a 8- to 11-letter word. 
This threshold seems adequate for personal names, and is left here as a suggestion. In 
our method for multiword matching, presented in the next section, this threshold applies 
to individual words taken separately, not to the full string.  

Table 2 – Frequency distribution of BDBComp name lengths and number of words 
Length # names % # words #names %

1 4383 16,3 2 3894 42,2%
2 1377 5,1 3 2922 31,7%
3 469 1,7 4 1760 19,1%
4 2080 7,7 5 553 6,0%
5 4688 17,4 6 81 0,9%
6 4727 17,6 7 11 0,1%
7 4638 17,2 8 1 0,0%
8 2587 9,6 TOTAL 9222 100,0%
9 1281 4,8
10 426 1,6
11 182 0,7
12 52 0,2
13 19 0,1
14 8 0,0
15 7 0,0

TOTAL 26924 100,0  

3.2 Matching multiword strings 

The first step for matching multiword strings is dividing them into words, using 
whitespace characters as delimiters, such as blanks, hyphens and other symbols. Points 
are preserved as the last character in the preceding word, since they can indicate abbre-
viations. We can also opt to preserve or to eliminate stopwords. Stopwords constitute 
another way to differentiate between very similar names, and therefore we prefer to 
preserve them in most situations. However, some sources intentionally leave them out, 
as in the case of names in bibliographic references, so our implementation allows treat-
ing or discarding stopwords as an option. Our matching strategy then proceeds in four 
phases: (1) checking for standard abbreviations, (2) checking for non-standard abbrevia-
tions, (3) word-by-word matching and (4) verifying inversions.  
                                                 
2 http://www.lbd.dcc.ufmg.br/bdbcomp/bdbcomp.jsp 
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First, each word in the string is tested against a list of known abbreviations. The list 
contains pairs of the type <abb, val>, where abb is the standard abbreviation (for in-
stance, “Pres”), and val is its meaning, spelled completely (as in “President”). If an ex-
act match is found between a word in S and an abbreviation from the list, it is replaced 
by its full spelling. Our intention is to expand abbreviated titles, which are quite com-
mon preceding personal names and in some kinds of place names, to their full descrip-
tion. We do not expect to find many false matches, i.e., words that coincide with stan-
dard abbreviations but have a meaning of their own (as in someone whose name is 
“Pres”). The possibility of such coincidences should be assessed by the user, who could 
then leave conflicting abbreviations out of the list.  

Next, non-standard abbreviations are verified. Candidates are 1-character capitalized 
words and words that end with a point. Such abbreviations are compared to each word 
in the pattern, and a similarity measure is then calculated as the number of matching 
characters of the abbreviation ][iS  divided by the number of characters in the candidate 
word from the pattern ][ jP , where ][kX  denotes the kth word of string X (Eq. 3). 

 
][

][
])[],[(

jP

iS
jPiSf NSA =  (3) 

Unless the similarity threshold is set too low, any non-standard abbreviations in S will 
not find a match with regular names. We assume, heuristically, that the abbreviation has 
been used in order to save space or typing effort; therefore, we expect a large difference 
in size between the abbreviated word and its expected match in the pattern. On the other 
hand, it is likely that a non-standard abbreviation will reproduce the first characters 
from the corresponding word. We consider this case to be a match if all the characters 
in the abbreviated word are equal (i.e., no approximation is allowed) to the same num-
ber of characters at the beginning of the pattern word, which is where the characters that 
form an abbreviation are usually taken from. Even though in most cases name abbrevia-
tions involve simply an initial, with this heuristic we expect to be able to match unusual 
abbreviations or abbreviations that have been left out of the standard list.  

In the third stage, we perform word-by-word matching, using a strategy that is similar to 
LD calculation (Eq. 2), modified to allow for inversions and to provide a similarity 
measure. Our matching algorithm uses a matrix [ ]

WW
PSW , , where 

W
X  denotes the 

number of words in string X. The matrix is filled out in a row-wise traversal to the right, 
making ])[],[(, jPiSfW LDji =  if ][iS  is a regular name, or ])[],[(, jPiSfW NSAji = , if ][iS  is 

a non-standard abbreviation. The value of fLD is determined using the process described 
in the previous section. When ][iS  is a name, after each row i is complete, we identify 
the column j at which the value of the similarity function is maximum. If this value ex-
ceeds the similarity threshold δ, a match exists between ][iS  and ][ jP . For the process-
ing of the next row, the word ][ jP  is left out of the similarity comparisons if the match 
was exact. At the end of the process, we select the best match for each word in the pat-
tern, considering a valid match only when (1) the similarity threshold has been reached, 
or (2) there is a match with a non-standard abbreviation.  

Denoting as v the number of matching words, we propose three similarity measures for 
multiword string matching. The first, fMW, is calculated dividing the sum of the similar-
ity values found for each matching word by the number of matching words, giving an 
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idea about the average similarity of words in each string (Eq. 4). The second, fVM, indi-
cates the fraction of the words from the pattern for which a match has been found (Eq. 
5). The third measure, fINV, indicates the occurrence of inversions, and is calculated as 
follows. The order in which words from the string match words from the pattern is gen-
erated and analyzed, counting the number of times in which the sequence is broken. The 
fINV similarity is then calculated by establishing a penalty for each inversion, corre-
sponding to the number of inversions (nI) divided by the number of matching words 
(Eq. 6).  
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The similarity values can be used separately or combined with a weighted average. 
Weights are assigned according to the characteristics of the matching effort. For in-
stance, when matching full names to bibliographic references, inversions are expected, 
so the inversion index can receive a lower weight than the other two measures. Equation 
7 shows the calculation of the overall similarity f, where wMW, wVM, and wINV are respec-
tively the weights for word, valid matches, and inversions, and 1=++ INVVMMW www . 

 ),(),(),(),( PSfwPSfwPSfwPSf INVINVVMVMMWMW ++=  (7) 

Figure 2 shows the comparison of two names, considering δ = 0.75, case- and accent-
mark-sensitivity. In the first row, the only the first words match, with a similarity of 
0.857 (one error in seven characters). The other words from the pattern do not match the 
first word from the string; a similarity measure does not have to be calculated, since the 
comparisons fail either the length test or the bag test. Further comparisons only have to 
be made on “Antônio”, first word from the pattern, if an exact match has not been 
found. In the second row, “C.” is a non-standard abbreviation, and is compared against 
each word from the pattern. A match occurs with “Carlos”, for which “C.” is a possible 
initial. However, “Carlos” is not taken out of future comparisons, since a better match 
can occur with some other word. In the remaining two rows, the edit distance has to be 
calculated only twice. Since all words from the pattern found a match, fVM = 1.0, and fMW 

= 0.706, the average of the values in bold in Figure 2. Matches are in order (1<2<3<4), 
so fINV = 1.0 also.  

Antônio Carlos de Souza
Antonio 0.857 * ** *

C. ** 0.167 0.000 0.000
de ** ** 1.000 **

Sousa * * *** 0.800
(*) discarded: bag test; (**) discarded: length test; (***) discarded: previous match  

Figure 2 -- Multiword string matching example 

Figure 3 shows a similar example. The value for fMW is 0.664, indicating a penalty for 
the unmatched second name. The value for fVM is now 0.75, for three matches out of 
four words. No inversions are found (1<3<4), so fINV = 1.0. 
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Antônio Carlos de Souza
Antonio 0.857 * ** *
Coelho * * ** *

de ** ** 1.000 **
Sousa * * *** 0.800

(*) discarded: bag test; (**) discarded: length test; (***) discarded: previous match  
Figure 3 – Another multiword string matching example 

Figure 4 shows an example in which stopwords have been omitted from the string, but 
are present on the pattern. There are also inversions, as in a bibliographic citation. The 
value of fMW is 0.278, a low value caused by the uncertainty associated with the match-
ing of the initials. Since there are again three matches in four words, fVM is 0.75. One 
inversion is found (4>1<3), so fINV = 0.67.  

Antônio Carlos de Souza
Sousa ** * ** 0.800

A. 0.143 0.000 0.000 **
C. 0.000 0.167 0.000 0.000

(*) discarded: bag test; (**) discarded: length test; (***) discarded: previous match  
Figure 4 -- Matching with inversions 

Similarity values can be used to rank the strings against the pattern, either individually 
or by combining the measures, as in Equation 7. Table 3 shows the overall similarity 
values for the three examples, considering equal weights for MWw , VMw  and INVw . 

Table 3 – Similarity values compared 

f MW f VM f INV f
Antonio C. de Sousa 0.706 1.000 1.000 0.902

Antonio Coelho de Sousa 0.664 0.750 1.000 0.805
Sousa, A. C. 0.278 0.750 0.670 0.566  

4. Experimental results 
We performed two experiments to assess the efficiency of the proposed method. One 
compared a bibliographic database to a list of personal names from a Web page, and the 
other compared manually input street names to an official thoroughfare catalog. 

4.1 First experiment: personal names 

A list of 85 personal names of Brazilian researchers on Computer Science has been ex-
tracted from a Web page in which the results of a grant bid (Edital 01/20073) were pub-
lished. Names from this list were compared against 9,222 author names from the al-
ready mentioned Brazilian Digital Library on Computing (BDBComp), which currently 
holds data on over 5,200 works published in national journals or conferences. Since 
both sources contain names of people from the same research community, we expected 
many matches, i.e., people that received a grant would probably have some paper pub-
lished in a Brazilian journal or conference. Since CNPq names probably came from the 
Brazilian national curriculum vitae database, we expected full correctness, because 
names are ultimately input by the researchers themselves. Manual inspection showed 

                                                 
3http://efomento.cnpq.br/efomento/divulgacao/divulgacaoResultados.do?metodo=propostas 
&codigoLinhaFomento=58&seqChamada=17&idComite=CC 
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several minor and possibly intentional accent mark oversights, but no abbreviations. In 
BDBComp, however, abbreviations are common, since it is a bibliographic database.  

CNPq names were matched against BDBComp names under the following setup: (1) 
inversions were not considered (fINV = 1.0 in all comparisons), (2) stopwords, accent-
mark- and case-sensitivity were enabled, and (3) δ = 0.85. An overall similarity value 
f(S,P) was calculated as the simple mean of fMW, fVM and fINV. Matches found were then 
manually checked for false positives and false negatives. Results were summarized us-
ing the precision and recall metrics from Information Retrieval (Baeza-Yates and 
Ribeiro-Neto 1999). Figure 5 shows a precision-recall graphic with f(S, P) varying from 
0.70 to 1.00. Precision indicates the percentage of correct matches within all matches 
obtained, while recall indicates the percentage of expected matches that was achieved 
by the method. Notice that, as the threshold increases, precision rises (i.e., only closer 
matches are accepted), but recall drops.  
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f(S, P) 
threshold

Precision 
(%)

Recall 
(%)

0,70 97,3 93,4
0,75 98,6 92,1
0,80 98,5 84,2
0,85 100,0 77,6
0,90 100,0 72,0
0,95 100,0 67,1
1,00 100,0 67,1  

Figure 5 - Precision/recall results 

Considering f(S, P) as a similarity measure, we allowed as many matches names within 
BDBComp as possible, within the threshold. With this, in most cases multiple matches 
were obtained. In the lower threshold experiments, some names correctly matched as 
many as seven BDBComp names, indicating the occurrence of many spelling and ab-
breviation variations of the same person’s name in BDBComp. Figure 6 shows the 
variation of the average number of correct and incorrect matches per CNPq name. 
These results indicate that our method could be used to cluster variations of the same 
name in BDBComp, thus improving the results of author queries to the digital library. 

f(S, P) 
threshold Correct Incorrect

0,70 2,77 0,89
0,75 2,77 0,41
0,80 2,38 0,05
0,85 2,08 0,00
0,90 1,69 0,00
0,95 1,22 0,00
1,00 1,20 0,00  

Figure 6 – Average number of correct and incorrect matches per name 
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4.2 Second experiment: geographic names 

In a second experiment, we compared a set of a hundred street names against Belo 
Horizonte’s official thoroughfare catalog. The street names were randomly selected 
from a list of 4,700 manually typed records, as part of a data collection effort. Street 
names from the list included many problems for geographic name matching, such as 
abbreviations, omission of parts, and misspellings. All selected street names and were 
manually geocoded by technicians from PRODABEL, the municipal IT company, who 
have much experience with local place names. They were allowed to use other data to 
resolve ambiguities manually. As a result, 87 of the 100 street names were recognized, 
while the remaining 13 either were unrecognizable, or from nearby cities. 

Street names were then matched against the thoroughfare catalog using our method, 
with case- and accent-mark insensitiveness, stopwords and abbreviations considered, 
inversions allowed, and δ = 0.85. We used the full street name string, including the 
thoroughfare type (“Rua”, “R.”, “Av.”, and so on). Under these parameters, 62 of the 87 
names were matched correctly, and only 4 were incorrect matches. We achieved a pre-
cision of 94% and a recall of 71%, which is similar to the results in Figure 5, but pars-
ing out the thoroughfare type should lead to better results. However, if we considered 
only the street name, and allowed for case and accent marks, only 32 correct matches 
would remain, and the recall rate would drop to 35%. Allowing for approximate word 
matches, inversions, and abbreviations doubled the recall rate in this experiment. 

5. Conclusions and future work 
Approximate string matching for personal and geographic names is an important and 
useful technique, with applications in geographic information science, information re-
trieval, and other areas. We are particularly interested in using the proposed method for 
multilingual gazetteers, geocoding, geographic information retrieval, and records link-
age. The adaptations we propose for individual word matching considering case- and 
accent-mark-sensitivity can also be used in applications such as multilingual ontology 
integration and natural language processing. 

Our experiments, although preliminary, have demonstrated the validity of the proposals 
and ideas presented in this paper. We consider this line of work promising, even though 
more tests with a larger volume of data are required, in order to adequately assess the 
computational efficiency of the method and to compare it to other proposals. An ex-
periment in records linkage, involving large volumes of data from the health sector, is 
being prepared. The integration of the techniques presented in this paper to a previous 
work (Davis Jr. and Fonseca 2007) is also planned.  
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