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Abstract. Nowadays, there is a huge volume of data about terrains available
and generally, these data do not fit in the internal memory. So, many GIS ap-
plications require efficient algorithms to manipulate the data externally. One of
these applications is the viewshed computation that consists in obtain the visi-
ble points from a given point p. In this paper, we present an efficient algorithm
to compute the viewshed on terrains stored in the external memory. The algo-
rithm complexity is O(scan(N)) where N is the number of points in a DEM
and scan(N) is the minimum number of I/O operations required to read N con-
tiguous items stored in the external memory. Also, as shown in the results, our
algorithm outperforms the known algorithms described in the literature.

1. Introduction

Terrain modeling is an important area in GIS applications and in general, a terrain can
be represented by a triangulated irregular network (TIN) or a Raster Digital Elevation
Model (DEM) [Li et al. 2005, Felgueiras 2001]. A TIN is a vector based representation
of a surface made up of irregularly distributed nodes with three dimensional coordinates
(x, y, and z) that are connected and arranged in a network of non overlapping triangles.
Thus, the surface is approximated by triangle patches and the elevation (the z coordinate)
of any point can be interpolated from the vertices of the planar triangle containing the
(x, y) coordinates of the point. A DEM is a digital file or a matrix consisting of terrain
elevations for ground positions at regularly spaced horizontal intervals.

There is no consensus about which of these representations is the best and there are
many discussion about this theme [Kumler 1994, Floriani et al. 1999, Felgueiras 2001].
Anyway, we can say that DEM requires a simple data structure, it is easier to analyze and
has high accuracy at high resolution, but it requires high memory space and it is time-
consuming processing. On the other hand, TIN has a restricted accuracy, requires more
complex algorithms, but it is less memory-consuming and more time-efficient processing.
Given its simplicity, in this work, we consider a terrain represented by a DEM.

The recent technological advances in data collection (such as LiDAR) have pro-
duced a huge volume of data about Earth’s surface [USGS 2007]. For example, a 100km
× 100km terrain sampled at 1m resolution results in 1010 points. And, regardless of the
representation used, most of the computational systems can not store/process this huge
volume of data internally and thus, they need to be processed in the external memory,
generally disks. Since the required time to access and transfer data from and to the exter-
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nal memory is much longer than time for internal processing, the algorithms performing
external processing must minimize data access [Arge 1997, Goodrich et al. 1993].

More specifically, these algorithms should be designed and analyzed considering
a computational model that evaluates the algorithm complexity based on data transfer
operations instead of cpu processing operations. One of these models was proposed by
Aggarwal and Vitter [Aggarwal and Vitter 1988] where the algorithm complexity is mea-
sured considering the number of I/O (input/output) operations executed.

An important GIS problem related to terrain modeling is the computation of all
points that can be viewed by a given point (the observer); the region formed by the
visible points is named viewshed [Floriani and Magillo 2003, Franklin and Ray 1994].
This problem has been widely studied in many applications such as to determine the
minimum number of cellular phone towers to cover a region [Ben-Moshe et al. 2007a,
Camp et al. 1995, Bespamyatnikh et al. 2001], to optimize the number and position of
guards to cover a region [Franklin and Vogt 2006, Eidenbenz 2002], to analyze the in-
fluences on property prices in an urban environment [Lake et al. 1998], to optimize path
planning on DEM [Lee and Stucky 1998], etc.

In this work, we present an I/O efficient algorithm to compute the viewshed of
a point on terrains represented by DEM stored in the external memory. Our algorithm
is an adaptation of Franklin and Ray’s method [Franklin and Ray 1994, Franklin 2002]
to allow an efficient manipulation of huge terrains (5GB or more). The large number of
disk accesses is optimized using the library STXXL [Dementiev et al. 2005]. Comparing
our algorithm with the original one (adapted to perform external processing) and with the
algorithm proposed by Haverkort et al. [Haverkort et al. 2007], the tests showed that our
algorithm is about 3.5 times faster than both algorithms and also, it is much simpler and
easier to implement than the latter.

The paper is organized as follow: the section 2 gives a brief description about
works on viewshed computation and also, on I/O-efficient algorithms for general prob-
lems and for viewshed computation too; in the section 3, the viewshed concepts are for-
mally presented; in section 4, the I/O-efficient computational model is shortly described;
in section 5, the algorithm is described in details and its complexity is presented in sec-
tion 6; the tests results are given in section 7 and the conclusions in section 8.

2. Related Works
The visibility on terrains has been widely studied in many different areas. For exam-
ple, Stewart [Stewart 1998] shows how the viewshed can be efficiently computed for
every point of a DEM and his interest involves radio transmission towers positioning.
Kreveld [van Kreveld 1996] proposes a sweep-line approach to compute viewshed in
O(nlogn) time on a

√
n×
√
n grid. In [Franklin 2002, Franklin and Ray 1994], Franklin

and Ray describe experimental studies for fast implementations of visibility computa-
tion and present several programs that explore various trade-offs between speed and
accuracy. Kim, Rana and Wise in [Young-Hoom et al. 2004] analyze two strategies to
use viewshed for optimization problems. Ben-Moshe et al. [Ben-Moshe et al. 2004b,
Ben-Moshe et al. 2004a, Ben-Moshe et al. 2007b] have worked on visibility for terrain
simplification and for facilities positioning. For a survey on visibility algorithms,
see [Floriani and Magillo 2003].
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Some problems related to external memory processing are discussed by Aggarwal
and Vitter [Aggarwal and Vitter 1988]. They proposed a computational model to evaluate
the algorithm complexity considering the number of input/output operations executed.
In [Goodrich et al. 1993], Goodrich et al. presented some variants for the sweep plane
paradigm considering external processing and Arge et al. [Arge et al. 1995] described a
solution for the external processing of line segments in the context of GIS. This technique
was also used to solve problems in hydrology such as the computation of the water flow
and watershed [Arge et al. 2003] on huge terrains.

Recently, Haverkort et al. [Haverkort et al. 2007] presented an adaption of the
Kreveld’s method to compute the viewshed on terrains stored in the external memory.
The (I/O) complexity of this algorithm is O(sort(n)), where n is the number of points in
the terrain. It is worth to say that our algorithm described in this paper is faster and easier
to implement than that one.

3. Viewshed Problem
Most of GIS problems related to visibility involve the viewshed computation and in gen-
eral, they are optimization problems such as the optimal positioning of facilities, the siting
guards minimization, path planing, etc.

The visibility problems can be classified into two major categories: visibility
queries and visibility structures computation. The visibility queries consist in checking if
a given point is visible or not from an observer (another point) on the terrain. This query
can be answered considering that a point q is visible from another point p if and only if
the segment connecting the two points, named the line of sight, is strictly above the terrain
(except on the ending points p and q). See figure 1

Figure 1. Points Visibility: p1 and p4 are visible from p0; p2 and p3 are not visible
from p0.

The visibility structures computation consists in determining some terrain features
such as the horizon, the viewshed, etc. The viewshed of a point p on a terrain T can be
defined as:

viewshed(p) = {q ∈ T | q is visible from p}

Usually, it is convenient to restrict the viewshed to a smaller region, for example,
to consider only the points inside a circle centered at pwith radius r, the radius of interest,
that is,

viewshed(p, r) = {q ∈ T | distance(p, q) ≤ r and q is visible from p}
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Unless explicitly said otherwise, when the radius of interest has been defined, we
will use viewshed(p) to refer viewshed(p, r).

Usually, the viewshed (in a DEM) is represented by a grid whose size is defined
by the radius of interest and each cell stores 1 or 0 to indicate if that cell (point) is visible
or not, respectively.

4. I/O efficient Algorithms
As mentioned before, when processing a huge amount of data, the data transfer between
fast internal memory and slow external storage (such as disks) often becomes the compu-
tation bottleneck. Usually, many GIS software packages implement algorithms for terrain
manipulation that were designed assuming internal processing whose aim is to minimize
the internal computation time; consequently they often do not scale to large datasets.

In recent years, much research has been done on this topic including the def-
inition of computational models for design and analysis of algorithms that manipulate
data in external memory. A model largely accepted was proposed by Aggarwal and Vit-
ter [Aggarwal and Vitter 1988]. Shortly, assuming that M is the internal memory size, B
is the disk block size and N is the problem size, this model defines each I/O operation
as the transfer of one (disk) block from the external to the internal memory or vice-versa.
Then, the measure of performance is determined by the number of such I/O operations
executed. The internal computation time is assumed to be free.

Also, the complexity of an algorithm is given based on the complexity of some
fundamental problems such as scan or sort N contiguous elements stored in the external
memory whose complexities related to I/O operations are:

scan(N) = Θ
(
N

B

)
sort(N) = Θ

(
N

B
log(M

B )

(
N

B

))

It is important to notice that, usually scan(N) < sort(N) << N and so, in many
practical situations, it is significantly better to have an algorithm doing sort(N) instead
of N I/O operations. Therefore, many algorithms try to reorganize the data in the external
memory to decrease the number of I/O operations executed.

5. External Memory Viewshed Computation (EMVS)
Our algorithm, named External Memory Viewshed (EMVS), is based on the method pro-
posed by Franklin and Ray [Franklin and Ray 1994] that computes the viewshed of a
point on a terrain represented as a internal memory matrix. A short description of this
method is given below.

5.1. Franklin and Ray’s Method

Given a terrain represented by a n × n elevation matrix T and given a point p on T ,
the algorithm computes the viewshed of p considering a circle of radius r (the radius of
interest) centered at p. The algorithm performs a radial sweep of this circle using a ray, a
line of sight (LOS), starting at p and thus, it walks along each LOS to determine if each
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terrain position on the LOS is visible from p or not. A terrain position q is visible from p
if the LOS does not intersect any position whose height is higher than q.

To simplify the circle sweeping, the algorithm uses a square bounding box cen-
tered at p with side 2r and the lines of sight are defined connecting p to each cell in the
square border. Initially, all cells inside the bounding box are set as not visible and for each
line of sight l, the algorithm starts at p setting the height of l as −∞ (i.e., a big negative
number). So, this height is updated (increased) whenever a higher cell is reached, that is,
supposing the current l’s height is h and the next cell height is h′, if h < h′ then the cell
is marked as visible and the l’s height is updated to h′; on the other hand, if h ≥ h′, the
cell status and the l’s height are preserved. The viewshed is stored as a 2r× 2r bit matrix
where the visible positions are indicated by 1 and the not visible by 0 (the positions inside
the square but outside the circle are set as not visible).

At first glance, the algorithm could be easily adapted to access the terrain points
stored in the external memory in the sequence determined by the radial sweep. But, since
the terrain matrix is, as usual, stored row by row (in a file), the radial sweeping order
would require a “random” access to the file and the execution time would be unacceptably
long. Therefore, we adapted this algorithm to avoid the random access order.

5.2. The EMVS algorithm
The basic idea is to generate a list containing the terrain positions (points) sorted by the
processing order, that is, the points will appear in the list in the sequence that they will be
processed. Thus, instead of accessing the file in a random sequence to process the points
as they are reached along the line of sight, the algorithm will access (and process) the
points in a sequential order.

It is important to say that the list is also stored in the external memory, but it is
managed by a special library STXXL (Standard Template Library for Extra Large Data
Sets) [Dementiev et al. 2005] that implements containers and algorithms to process huge
volumes of data. This library allows an efficient manipulation of data stored externally
and, as stated by the authors, “it can save more than half the number of I/Os performed
by many applications”.

More specifically, the algorithm creates a list L of pairs (c, i) where c is a matrix
cell (a terrain point) and i is an index that indicates “when” the cell c should be processed.
That is, if a cell c has the index i = k then c will be the kth cell to be processed.

To compute the indices, the lines of sight (originating at the observer p) are num-
bered in the counterclockwise order starting in the horizontal left to right line of sight
that receives the number 0 - see figure 2. Thus, the cells are numbered increasingly along
each line of sight; when a line of sight ends, the enumeration continues from the observer
(again numbered) following the next line of sight. Of course, a same cell (point) can re-
ceive multiple indices since it can be intercepted by many lines of sight. It means that a
same point can appear in multiple pairs in the list L, but each pair will have a different
index. Also, if the observer is near to the terrain border, that is, if the distance between the
observer and the terrain border is smaller than the radius of interest r, some “cells” in the
line of sight can be outside the terrain. In this case, those “cells” still will be numbered but
they will be ignored and will not be inserted in the list L. This is done to avoid additional
tests during the indices computation.
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Figure 2. Line of sight numeration

It is important to notice that if the cells indices were computed following the lines
of sight as described above, the cells still would be randomly accessed as in the original
algorithm. So, to build the list L, the algorithm reads the terrain cells sequentially from
the external file and for each cell c, it determines (the number of) all lines of sight that
intercept the cell.

Since a cell is not “undimensional”, we can determine the cells intercepted by a
line of sight using a process similar to the line rasterization [Bresenham 1965]. That is,
let s be the side of each (square) cell and suppose the cell is referenced by its center. Also,
let a be a line of sight whose slope is α and suppose that 0 < α ≤ 45◦ 1. So, given a
cell c = (cx, cy), see figure 3, the line of sight a “intersects” the cell c if and only if the
intersection point between a and the vertical line cx is between the points (cx, cy − 0.5s)
and (cx, cy + 0.5s); more precisely, given (qx, qy) = a ∩ cx, a intersects c if and only if
cy − 0.5s ≤ qy < cy + 0.5s.

Then, as it is easy to see, all lines of sight intersecting the cell c are those between
the two lines passing through the points (cx, cy − 0.5s) and (cx, cy + 0.5s) - figure 3.
Let k1 and k2 be the numbers of these two lines respectively. Thus, considering the line
enumeration sequence, the number of all intersecting lines are k : k1 ≤ k ≤ k2.

Now, given a cell c, let r be the number of a line of sight intercepting c. Then, the
index i of the cell c associated to r is given by the formula i = r ∗ n + d, where n is the
number of cells in each ray (this number is constant for all rays in the bounding square
box) and d is the (horizontal or vertical) distance between the points c and p - see figure 4.
Notice that the distance d is defined as the maximum between the number of rows and
columns from p to c.

Next, the list L is sorted by the elements index and then, the cells are processed
in the sequence given by the sorted list. Notice that, when a cell c is processed, all the
“previous” cells that could block its visibility were already processed. So, the visibility
of c can be computed, as described above, just checking the height of the cells along the
line of sight. When a cell located on the square border is processed, it means that the

1For 45◦ < α ≤ 90◦, use a similar idea interchanging x and y.
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Figure 3. Lines of sight intersecting a cell

Figure 4. The index cell computation.

processing of a line of sight has finished and the next cell in the list will be the observer’s
cell indicating that the processing of a new line of sight will start.

For the sake of efficiency, the algorithm uses another list L′ (also stored externally
and managed by STXXL) to keep only the visible cells. More precisely, when the algo-
rithm determines that a cell c is visible, this cell is inserted in the list L′. This list is, in
general, much smaller than L since it does not keep the indices and also, usually many
points are not visible.

Given the visible cells in L′, the algorithm saves the viewshed as a matrix of 0s
and 1s such that a visible position is indicated by 1 and a not visible position by 0. This
matrix is also stored externally and to generate it (avoiding “random access”) the list L′

is sorted lexicographically by x and y and each element of the sorted list is stored in the
corresponding matrix position.
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Finally, it is worth to say that an efficiency improvement is achieved storing a piece
of the terrain matrix in the internal memory and so, a lot of I/O operations are avoided.
The idea is to store in the internal memory the cells around the observer since those cells
are processed more times than the farthest cells. Then, the algorithm selects all cells
inside a square centered at the observer position, stores those cells in the internal memory
and they are not inserted in the list L. In this way, when a cell needs to be processed, the
algorithm checks if it is in the internal memory. If yes, the cell is processed normally;
otherwise, it is read from the list L.

6. Algorithm complexity

Let T be a terrain represented by a n × n elevation matrix. So, T has n2 cells (points).
Also, let p be the observer’s point and let r be the radius of interest. As described in
section 5.2, the algorithm analyzes the cells that are inside the 2r × 2r square centered at
p. Assuming that each cell’s side is s then there are, at most2, 2r

s
cells in each square’s

side which implies there are 8r
s

cells on the square’s perimeter. Let K = r
s
. Thus, the

algorithm shots 8K lines of sight and since each line of sight has K cells, the list L has,
in the worst case, O(K2) elements.

In the first step, the algorithm does n2

B
I/O operations to read the cells and to build

the list L. Next, the list with O(K2) elements is sorted and then it is swept to compute
the cell’s visibility. Thus, the total number of I/O operations is:

O

(
n2

B

)
+O

(
K2

B
log(M

B )

(
K2

B

))
+O

(
K2

B

)

Since the radius of interest r is (much) smaller than n (the terrain matrix side)
then K is smaller than n and so, the number of I/O operations is given by O(n2

B
) =

O(scan(n2)).

The algorithm also uses an additional external list L′ to keep the visible cells and
this list needs to be sorted. But, since the list size is (much) smaller than the size of L, the
number of I/O operations executed in this step does not change the algorithm complexity.
Thus, we can conclude that the algorithm complexity is O(scan(n2)).

7. Results
The algorithm EMVS was implemented in C++, using g++ 4.1.1, and the tests were
executed in a PC Pentium with 2.8 GHZ, 1 GB of RAM, 80 GB 7200 RPM serial ATA
HD running Mandriva Linux.

The algorithm execution time was compared with the Franklin and Ray’s algo-
rithm (WRF VS) which was adapted to manipulate huge terrains stored externally. The
adapted algorithm also maintains part of the terrain in internal memory in a similar way
that EMVS does. The table 1 and the charts in the figure 5 show the execution time (in
seconds) to compute the viewshed considering different radii of interest (ROI) on ter-
rains of different sizes. The 1.45GB (27596 × 27596 points) and 5.7GB (55192 × 55192
points) terrains were generated by the concatenation of 4 and 16 instances of a 363MB

2If the observer is close to the terrain border, the square might not be completely contained in the terrain.
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(13798 × 13798) matrix representing the Hawaii Big Island. The 2GB (32427 × 32427
points) terrain was generated by the concatenation of many instances of a 1201 × 1201
matrix representing the Lake Champlain West (USA-Canada border). These datasets are
interesting because they have large height variations since they include lake, ocean and
mountains.

Each table entry was obtained by the average of three execution time using differ-
ent observer positions randomly selected on each terrain.

1.45GB 2GB 5.7GB
ROI EMVS WRF VS EMVS WRF VS EMVS

100 21 77 26 121 78
500 26 81 30 122 85

1000 33 97 36 128 99
5000 137 438 73 316 248

10000 478 1313 219 833 643
15000 836 2977 446 1855 1663

Table 1. Execution time (in seconds)
.

Based on these results, it is possible to conclude that the EMVS algorithm is
about 3.5 times faster than WRF VS and also, the former can process much larger terrain
(5.7GB or more) while the latter is limited to 2 GB. On the other hand, it is important to
say that when the terrain is “small” (i.e. when it fits in the internal memory) the WRF VS
algorithm is a little faster than EMVS, mainly because the lists management and sorting
add a time overhead that is not amortized when the terrain size is small.

Furthermore, comparing the EMVS execution time with those reported by
Haverkort et al. [Haverkort et al. 2007], we can conclude that our algorithm, besides of
being much simpler and easier to implement, is also more than 3.5 times faster than that
one. Additionally, it is worth to say that, in their tests, they used a Power Macintosh G5
dual 2.5 GHz, 1GB RAM and 80 GB 7200 RPM that is considerable faster than the ma-
chine used in our tests. Thus, it is correct to suppose that our algorithm is still faster than
that one.

8. Conclusions and future works
We presented an I/O-efficient algorithm to compute the viewshed of a point in huge ter-
rains represented by a raster DEM stored in the external memory. As tests showed, our
algorithm is more than 3.5 times faster than the other ones described in the literature and
also, it can process very huge terrains (we used it in 5.7GB terrain). Furthermore, the
algorithm is quite simple to understand and to implement. The algorithm implementation
is available at http://www.dpi.ufv.br/ marcus/TerrainModeling/EMViewshed/EMVS.tgz
as an open source code distributed under Creative Common GNU GPL li-
cense [Creative Commons 2007].

As a next step, we started to work on the NP-hard optimization problem to site
observers in huge terrains stored in the external memory. Our aim is to develop an ap-
proximation algorithm to place the “almost” minimum number of observers necessary to
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Figure 5. Execution time charts: (a) in 1.45GB terrain; (b) in 2GB terrain.

cover “almost” the whole terrain. More precisely, given a terrain T , we want to deter-
mine where to site the almost minimum number of observers to cover visually an user
defined percentage of the terrain. This problem has a wide range of applications such as:
telecommunications (cellular towers), military (guards), agriculture (irrigation), etc.
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