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ABSTRACT: The selection of relevant object-features and cost-efficient sampling of training data are frequently encountered issues 
when applying supervised classification techniques in object-oriented image analysis. Additionally, when one of the targeted classes 
is rather sparse the classifications maybe considerably biased toward the majority class, and the class-imbalance may hinder the 
generation of accurate maps. This study targeted to address those issues in the context of landslide inventory mapping from very-
high resolution (VHR) satellite images. To reduce the costs of sampling an active learning routine based on the Random Forest 
classifier was developed to focus the sampling efforts on few but relevant spatial subsets in the analysed scene. Subsequently 
backward feature selection was used to identify relevant features and reduce the complexity of the model without sacrificing 
accuracy, and finally iterative stratified bootstrap sampling is proposed to compensate the spurious effects of class-imbalance. The 
proposed approach was tested on two datasets comprising mono-temporal and bi-temporal VHR images of sites recently affected by 
large landslide events. Approximately balanced user’s and producer’s accuracies of up to 78% were achieved adopting only 6-10% 
of the data for training. 
 

                                                                 
*  corresponding author 

1. INTRODUCTION 

Object-oriented image analysis has proven to be an efficient 
tool for image classification with many advantages among 
traditional pixel-based methods, especially when dealing with 
VHR remote sensing imagery. Much of the gains in accuracy 
must be attributed to an enriched feature space resulting from 
image segmentation, where a vast number of additional features 
to characterize texture, shape or contextual relationships of 
objects become available to potentially increase class 
separability. 
However, for both rule-based classification and the training of 
supervised algorithms it remains crucial to identify truly 
relevant features, and disregard insignificant attributes that may 
deteriorate the classification. This task is commonly known as 
feature selection. It constitutes a fundamental step in most 
object-oriented studies, and a tedious one with subjective results 
if performed manually. 
A variety of automated feature selection techniques have been 
developed and tested successfully for general machine learning 
problems (Guyon and Elisseeff, 2003) and in neighbouring 
fields of remote sensing (e.g. Serpico and Bruzzone, 2001; 
Benediktsson et al., 2003; Pal and Foody, 2010), but to date 
only few studies have addressed the use of such techniques for 
object-oriented analysis (Laliberte et al.; Nussbaum et al., 2006; 
Van Coillie et al., 2007; Laliberte and Rango, 2009; Stumpf and 
Kerle, 2011; Xi et al., 2011). 

Besides the choice of optimal features, the quantity and quality 
of the adopted training samples is a fundamental factor for the 
performance of supervised classification algorithms. Since the 
collection/labelling of samples typically comprises considerable 
costs it is general desirable to collect few but representative 
training samples. Several recent pixel-based studies have 
demonstrated that active learning algorithms are capable to 
focus the search on interesting samples and thereby help to 
reduce the size of required training set without sacrificing the 
accuracy of remote sensing products (Tuia et al., 2011). On the 
other hand limited research has been dedicated to the 
integration of active learning and object-oriented studies 
(Michel et al., 2010) and with few exceptions (Liu et al., 2009; 
Pasolli et al., 2011) the significance of the spatial domain is 
generally ignored in development active learning heuristics. 
For many applications it is furthermore desirable to, obtain 
equally good classification results for the different classes 
involved, or gain at least some control on the error distributions 
where costs for misclassification can be defined. This aspect 
becomes especially relevant when processing datasets with 
imbalanced class distribution (He and Garcia, 2009). 
Considering such issues this study investigated different 
strategies to optimize the choice of features and training 
samples in the context of landslide inventory mapping. The 
main objective is thereby to support the elaboration of landslide 
inventory maps from VHR satellite and aerial images with a 
supervised object-oriented image analysis workflow that 
reduces the time and effort of manual image interpretation by 
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experts. The developed workflow comprises image 
segmentation and object-feature extraction techniques  
commonly used for object-oriented image analysis, and makes 
use of feature selection and adaptive sampling strategies based 
on the ensemble decision tree algorithm commonly known as 
Random Forest (RF, Breiman, 2001). Two different problem 
settings are illustrated exemplarily with two datasets of VHR 
satellite images picturing sites in Italy and Brazil that have 
recently been affected by predominately flow type landslides 
triggered during heavy rainfall events. 
 

2. METHODS AND DATA 

2.1 Study Sites and Data 

Test site A (~10 km2) is located in the Serrana Mountains 
around Nova Friburgo (Brazil), which were affected by heavy 
thunderstorms on 11th and 12th of January 2011. Cumulative 
rainfalls in the area reached peak values of 200 mm in 24h and 
triggered thousands of debris flows. The event claimed more 
than 1.500 victims and caused severe damages to houses and 
infrastructure (Avelar et al., 2011). Geoeye-1 imagery was 
acquired on the 20 January 2011 and pre-event imagery from 
the same sensor was available for the 26 May 2010. The bi-
temporal dataset was incorporated in this study together with 
the corresponding subset of the globally available Aster GDEM 
(ASTER-GDEM-VALIDATION-TEAM, 2011) at 30 m 
resolution. 
Test site B (1 km2) is located in the Peloritani Mountains that 
rise from sea level to about 700 m few kilometres south of the 
city of Messina (Italy). After a series of prolonged precipitation 
extraordinarily intense rainfall affected several catchments on 
the 1st of October 2009 and triggered a series of debris flows 
that killed 31 people and caused a direct economic loss of 
approximately US$ 825 million (Civil-Protection-Sicily, 2010). 
Quickbird imagery was recorded 7 days after the event and 
adopted in this study together with a post-landslide digital 
elevation model with 10 m resolution. 
Those two test data sets resemble typical scenarios, where only 
post-event imagery or both pre- and post-event imagery may be 
available. Reference landslide inventories based on expert 
image interpretation and field surveys served for the labelling 
of training samples and where established as the reference to 
assess the accuracy assessment. 
 
2.2 Image segmentation and feature extraction 

The multi-resolution image segmentation algorithm (MRIS, 
Baatz and Schäpe, 2000) implemented in eCognition® 8.64 was 
adopted considering only spectral information of the post-event 
images and equal weights of all spectral bands. At test site B 
the scale factor of the region-growing algorithm, which is a 
threshold for the maximum allowed increase in the segment’s 
variance, was set to 10. With reference to the landslides this 
corresponds to a strong over-segmentation which was found to 
typically yield higher accuracies in a supervised framework 
than a coarser segmentation (Stumpf and Kerle, 2011). The set 
of object features for the test site B comprised 96 features 
including spectral variables, texture measures, shape measures 
and terrain variables frequently mentioned as relevant for 
landslide mapping in the literature. In addition to traditional 
derivatives from Haralick’s grey-level co-occurrence matrix 
(GLCM) this comprised topographically guided textures 
derivate with an increased sensitivity to scouring traces typical 
for landslides affected surfaces (Stumpf and Kerle, 2011). 

 
Fig. 1: Initial steps of the workflow including image 
segmentation and the extraction of a large set of potentially 
useful features such as topographically guided texture measures 
(GLCM⏊). 
 
For the analysis of the images at test site A and over-
segmentation was performed at a scale factor of 20. The feature 
set was further expanded to 105 attributes using additionally 
spectral variables extracted from the pre-event image, a 
topographic variable capturing the distance to the most 
proximate ridge crest (Tesfa et al., 2011), and neighbourhood 
relationships describing the gradient of spectral values between 
neighbouring objects. 
 
2.3 Adaptive sampling and feature selection 

The proposed strategy comprises three aspects. First, an 
iterative active learning routine is used to guide the user inputs 
toward subsets of the scene where the classification remains 
highly uncertain. This step targets to reduce the labelling costs 
and create a relatively small relevant training set. Second, a 
feature selection algorithm (Diaz-Uriarte, 2010) is employed to 
disregard non-informative features and obtain an overview of 
the relevance of different features. Third, in order to achieve a 
balance between user’s and producer’s accuracy the stratified 
bootstrap sampling is performed iteratively with changing class 
ratios. 
In this study Random Forest was chosen as the basic learning 
algorithm because of its relatively fast and generally accurate 
performance on large and noisy datasets. The RF algorithm 
constructs an ensemble of classification trees from bootstrap 
samples of the original training data and assigns a label to new 
unknown samples based on the majority vote of trees within the 
ensemble. 
Using the disagreement among ensembles members as a 
uncertainty measure and query the label of the most uncertain 
samples is a commonly used active learning strategy known as 
Query-by-committee (QBC, Seung et al., 1992). The 
uncertainty can be measured as the entropy H (Shannon, 1948) 
of the ensemble votes and for a binary decision is calculated by 
Eq.1: 
 

 
 

Where v1 is the number of votes for the first class, v2 the 
number of votes for the second class and n corresponds to the 
total number of trees in the ensemble. Since the classifier re-
training after each query is often the computational bottleneck 
of such approaches it is typically more efficient to query a batch 
of training samples after each iteration, and related RF-based 
approaches rank among the most accurate state-of-the-art active 
learning techniques (Borisov et al., 2011). For remote sensing 
application it is however important to consider that the labelling 
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costs are not necessarily related to the number of samples but 
rather to the number of localities that need to be assessed 
(during field surveys or via image interpretation). For practical 
applications it seems therefore more relevant to identify 
compact sampling areas with high expected utility or in other 
words relevant batches within constrained spatial 
neighbourhoods. The proposed approach makes therefore use of 
a sliding window to assess the vote entropy of local 
neighbourhoods Sr within a defined radius r. 
To initiate the routine one centre point from all objects 
belonging to class landslide is sampled randomly assuring that 
the first sampling area (Sr1) contains at least one positive 
training sample (Fig. 2b, d). The trained RF subsequently votes 
on the class membership of all unlabelled objects and a 
uncertainty map is generated calculating the mean Entropy μH 
in a sliding window with the radius r. Subsequently all objects 
located the neighbourhood with the highest μH (SrMaxμH) are 
labelled and added to the training set to retrain the RF. Since it 
is a well know issue that uncertainty-based sampling is prone to 
query outliers and samples with redundant information 
(Brinker, 2003; Borisov et al., 2011; Demir et al., 2011) a 
second similar strategy was tested querying regions with the 
highest standard deviation of the vote entropy σH in order to 
encourage greater diversity within the batches. The radius r was 
set to 100 m for the large test site A (10 km2) and to 40 m for 
the smaller test site B (1 km2). Buffers around each sampling 
area S were used to avoid spatial overlap (Fig. 3a, c). Both 
active learning heuristics were executed over 20 iterations and 
repeated 10 times with different initial random seeds to assess 
the stability of the classification accuracies on the respective 
remaining test sets. The resulting learning curves were 
compared with the performance of spatial coverage sampling 
(SPCOSA, Walvoort et al., 2010), using circular sampling areas 
with an equal radius r at the centroid of 20 spatial clusters (Fig. 
2a, c). Similarly SPCOSA was repeated 10 times to assess the 
stability of the results. All experiments were conducted using 
RFs with 500 trees and labels were obtained according to the 
same inventories elaborated by the experts. 
With each bootstrap sample generated during the construction 
of a RF approximately one third of the cases remain 
unconsidered for training and can be used to aproximate the 
generalization or out-of-bag (OOB) error (Breiman, 2001). 

 
Fig. 2: Initial batches of 20 sampling areas for (a, b) spatial 
coverage sampling and (c, d) active learning routine at test site 
A and B, respectively. 

Furthermore, when one variable is randomly permuted the 
corresponding increase in the OOB error provides an intrinsic 
measure for variable importance. The final training set resulting 
after 20 iterations was used for a backward feature selection 
based on the variable importance as described in Diaz-Uriarte 
and Alvarez de Andres (2006). After an initial ranking of all 
features, RF models are retrained repeatedly dropping each time 
a fraction of 20%, and the selection the final feature according 
to the RF model with the lowest OOB error. 
Since landslides typically cover only minor fractions of the 
landscape class-imbalance is an intrinsic issue that generally 
needs special attention when applying supervised learning 
algorithms (He and Garcia, 2009). A previous study 
demonstrated the utility of an iterative resampling scheme to 
estimate class-ratios for the training sample yielding an 
approximate balance between user’s and producer’s accuracies 
on the test set (Stumpf and Kerle, 2011). However, this 
approach still comprises two limiting factors. First, the routine 
splits the training sample into further subsets. Those may 
become very small if the original training set already includes 
rather few samples and consequently yield unstable results. 
Second, in the final step the approach drops a fraction of 
samples from the majority class and thereby leaves some costly 
and potentially informative labelled samples unconsidered. A 
possible enhancement to resolve these issues is to artificially 
bias the class ratio of the bootstrap samples and estimate user’s 
and producer’s accuracies directly on the corresponding out-of-
bad samples. To this end the bootstrap sampling is performed 
stratified for the minority and the majority class sampling nmi 
(overall number of cases in the training sample belonging to the 
minority class) samples with replacement the from the minority 
class (landslides) and a number of cases nma  from the majority 
class (non-landslides). Starting form nma = nmi the ratio β= nma / 
nmi is stepwise increased until the original class-balance of the 
training sample is reached. In each step the user’s and 
producer’s accuracies are assessed on the OOB sample and the 
final ratio βn is determined as the class-ratio that yields the best 
balance. The approach was tested using in each iteration 
relatively small forests composed by 50 trees and increasing β 
by steps of 0.1. A final RF was built employing the stratified 
bootstrap sampling with the determined βn to construct 500 trees 
and assess the accuracy on the test set. 

 
Fig. 3: (a, c) First and (b, d) last iteration of the QBC routine at 
test site A and B, respectively. The standard deviation of the 
vote entropy σH  was used as query criterion. 
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3. RESULTS AND DISCUSSION 

Fig. 3 illustrates exemplarily iterations obtained using the QBC 
sampling based on the standard deviation of the vote entropy. 
Generally, it was observed that areas affected by landslides 
obtained relatively high vote entropies and were therefore 
favoured when using μH as query criterion. This applied to 
some degree also when using σH, whereas landslide boundaries 
and heterogeneous areas such as human settlements gained 
greater importance. This positive bias toward the minority class 
resulted in a class ratio of the training sample that was generally 
more balanced than the underlying distributions (test site A: 
16.4, test site B: β= 4.3) and the class ratios obtained via 
SPCOSA (Fig. 6a, c). 
Comparing the learning curves obtained with the different 
sampling techniques (Fig. 4) it can be seen that the QBC 
sampling strategies indeed lead to a generally stronger 
enhancement of the overall accuracies (F-measure) with the size 
of the training area, and a better convergence between user’s 
and producer’s accuracies. The latter must be partially 
attributed to the more balanced training samples resulting from 
QBC. However, while the use of μH  as a query criterion yields 
more balanced training samples than using σH (Fig. 4a, c), the 
latter still leads to better convergence of user’s and producer’s 
accuracies (Fig. 4c, f). This indicates that not only the number 
of samples per class but also their respective positions in feature 
space may influence the classification bias towards the majority 
class. 
Besides performance differences among the tested sampling 
techniques a strong contrast between the accuracies at the test 
site A and B was observed. The lower accuracies at test site B 
thereby result from the fact that pre-event imagery was not 
integrated but also from the more complex scene characteristics 
where many of the landslides occurred in narrow channels and 
/or left the vegetation partially intact. On this rather noisy 
dataset the QBC sampling based on μH largely failed to query 
relevant batches (Fig. 4e), whereas σH-based QBC demonstrates 
a generally more robust performance (Fig. 4c, f). Training sets 
obtained via σH-based QBC sampling were consequently used 
for the subsequent steps of feature selection and accuracy 
balancing. 
 

 
Fig. 4: Average learning curve obtained from 10 repeated runs 
at (a, b, c) test site A and (d, e f) test site B. The standard 
deviations of user’s and producer’s accuracies are indicated by 
semi-transparent bounds. 
 
Fig. 5 displays the results of the RF-based backward feature 
selection with 69 out of 105 features selected at test site A, and 
50 out 96 selected features at test site B. The top-ranked 
features at test site B (Fig. 5d) are largely consistent with the 

results obtained in an earlier study (Stumpf and Kerle, 2011) 
and illustrate the benefits of integrating spectral information 
with topographically texture measures and topographic 
information. Also at test site A the enhanced texture measures 
ranked among the most important variables and additional 
features resulting from the integration of pre-event imagery, 
neighbourhood relationships and the distance to the most 
proximate ridge proofed to enhance the classification 
accuracies. In this context feature ranking and selection not 
only provides the possibility to reduce the model complexity 
but also to identify generically relevant object features for 
further studies and future operational applications. 
 

 
Fig. 5: (a, c) Results of the backward feature selection after σH-
based QBC sampling and the (b, d) 20 highest ranked features 
at the test sites A and B, respectively. 
 
The training sets resulting from σH-based QBC and the 
corresponding reduced feature set were introduced in the last 
step of the analysis to compensate the remaining classification 
bias toward the majority class. 
 

 
Fig. 6: (a, c) Development of the class ratio in the training 
sample over 20 iterations of the different sampling techniques 
and (b, d) results of the routine to balance user’s and producer’s 
accuracy for the two test sites, respectively. 
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Fig. 6 b and d display the OOB accuracy curves resulting from 
atrifically biasing the class ratios in the training sample via the 
stratified bootstrapping described above. The approach results 
in smooth accuracy curves with a clear crossing marking the 
estimate of βn. The barplots in Fig. 6 b and d also show the 
final accuracies on the test set obtained when using the estimate 
βn for stratified bootstrapping of a full RF with 500 trees. It can 
be seen that the the estimated βn provides indeed an aproximate 
balance of user’s and producer’s accuracies on the test set, and 
that the selected feature set provides equally good accuracies as 
the full initilally used feature set (Fig. 4c, f). 
The final maps and corresponding accuracy measure integrate 
test set predictions and training data and are displayed in Fig. 7. 
 

 

 
Fig. 7: Final classified maps (center points of objects) and 
accuracy measures resulting after σH-QBC sampling, feature 
selection and accuracy balancing at (a) test site A and (b) test 
site B. 

At the test site A aproximately 6% of area were made available 
for training and resulted in nearly balanced accuracies between 
77%  and 79% (Fig. 7a). The final training set at test B 
comprised aproximately 10%  of the area and resulted in nearly 
balanced but significantly lower accuracies between 55% and 
58% (Fig. 7b). Although QBC sampling proofed to provide 
enhancements over spatial coverage sampling on both datasets, 
test site B still constitutes a challenging scenario. Complex 
scene characteristics and significant class-overlap resulting 
from small debris flows that were mapped during field surveys 
but are barely visible through the satellite images contribute to 
relatively low performance of the method. Under such 
conditions the use of post-event imagery alone appears 
insufficient for an accurate mapping and also a further 
integration of neighborhood relationships and topographic 
variables as used at test site A seems desireable. Interestingly, 
many false positives  show a rather disperse distribution 
indicating that an adittional morphological filtering might be 
usefull to enhace the accuracy and visual appearance of the 
final maps. 
 

4. CONCLUSIONS 

The cost-efficient collection of training data, the selection of 
relevant features, and class-imbalance are issues frequently 
encountered in the application of supervised machine learning 
techniques and object-oriented analysis. This study adopted the 
Random Forest framework to address those three aspects in the 
context of landslide inventory mapping from VHR satellite 
images. It was demonstrated that an active learning heuristic 
(σH-based QBC) can yield significantly improvements above 
the performance of spatial coverage sampling. Unlike most 
previously developed active learning heuristics the proposed 
technique works explicitly in the spatial domain by selecting 
sample batches in spatial neighbourhoods with a high variance 
of the vote-entropy. 
It was demonstrated that backward feature selection is a feasible 
instrument to identify the most relevant features for subsequent 
studies and future operational applications. Furthermore, a 
resampling scheme was developed to compensate class-
imbalance and proofed useful to balance user’s and producer’s 
accuracies. Integrating QBC sampling, feature selection and the 
iterative routine to compensate class-imbalance it was possible 
to achieve map accuracies of up to 78%   on a bi-temporal 
dataset using only 6% of the data for training. On the other 
hand, the analysis of a mono-temporal dataset with more 
challenging scene characteristics also revealed that further 
methodological enhancements are still desirable. Since 
historical imagery with coarser resolution is typically available 
at low costs further studies should target the integration of 
multi-modal sensor data and enhanced object features sets. The 
feature selection framework may thereby proof useful to 
quantify the relevance of further potentially useful object-
features. 
Focusing on areas with high standard deviations of the vote 
entropy the proposed active learning routine indirectly 
encourages diversity within the batch, whereas a more explicit 
integration of a criterion for sample diversity (e.g. Demir et al., 
2011) could yield further improvements. For remote sensing 
applications batch diversity and batch size seem to be related 
with aspects such as spatial auto-correlation and the operating 
radius of users (during image interpretation or field surveys), 
and call for a closer integration of active learning techniques 
with geographic object-oriented analysis. 
 
 

277



 

References 
 
ASTER-GDEM-VALIDATION-TEAM, 2011. ASTER Global 

Digital Elevation Model Version 2 – Summary of 
Validation Results, METI/ERSDAC, 
NASA/LPDAAC, USGS/EROS. 

Avelar, A.S., Netto, A.L.C., Lacerda, W.A., Becker, L.B., 
Mendonça, M.B., 2011. Mechanisms of the recent 
catastrophic landslides in the mountainous range of 
Rio de Janeiro, Brazil, Second World Landslide 
Forum, Rome, Italy, pp. 5. 

Baatz, M., Schäpe, A., 2000. Multiresolution Segmentation – an 
optimization approach for high quality multi-scale 
image segmentation. In: J. Strobl, T. Blaschke, G. 
Griesebner (Eds.), Angewandte Geographische 
Informationsverarbeitung XII. Wichmann, 
Heidelberg, Salzburg, pp. 12-23. 

Benediktsson, J.A., Pesaresi, M., Amason, K., 2003. 
Classification and feature extraction for remote 
sensing images from urban areas based on 
morphological transformations. Geoscience and 
Remote Sensing, IEEE Transactions on, 41(9), 1940-
1949. 

Borisov, A., Tuv, E., Runger, G., 2011. Active Batch Learning 
with Stochastic Query-by-Forest (SQBF), JMLR 
Workshop on Active Learning and Experimental 
Design, pp. 59-69. 

Breiman, L., 2001. Random Forests. Machine Learning, 45(1), 
5-32. 

Brinker, K., 2003. Incorporating diversity in active learning 
with support vector machines, International 
Conference on Machine Learning  Washington, DC, 
pp. 59–66. 

Civil-Protection-Sicily, 2010. Landslide and mud food 
emergency Messina province, Itlay, October 1st 2009, 
Regione Siciliana - Presidenza, Dipartimento dellla 
Protezione Civile. 

Demir, B., Persello, C., Bruzzone, L., 2011. Batch-Mode 
Active-Learning Methods for the Interactive 
Classification of Remote Sensing Images. Geoscience 
and Remote Sensing, IEEE Transactions on, 49(3), 
1014-1031. 

Diaz-Uriarte, R., 2010. varSelRF: Variable selection using 
random forests. R package version 0.7-3. 

Diaz-Uriarte, R., Alvarez de Andres, S., 2006. Gene selection 
and classification of microarray data using random 
forest. BMC Bioinformatics, 7(1), 3. 

Guyon, I., Elisseeff, A., 2003. An Introduction to Variable and 
Feature Selection. Journal of Machine Learning 
Research, 3, 1157-1182. 

He, H., Garcia, E.A., 2009. Learning from imbalanced data. 
IEEE Transactions on Knowledge and Data 
Engineering, 21(9), 1263-1284. 

Laliberte, A., Rango, A., 2009. Texture and scale in object-
based analysis of subdecimeter resolution unmanned 
aerial vehicle (UAV) imagery. IEEE Transactions on 
Geoscience and  Remote Sensing, 47(3), 761-770. 

Laliberte, A.S., Browning, D.M., Rango, A., A comparison of 
three feature selection methods for object-based 
classification of sub-decimeter resolution UltraCam-L 
imagery. International Journal of Applied Earth 
Observation and Geoinformation(0). 

Liu, A., Jun, G., Gho, J., 2009. Spatially Cost-sensitive Active 
Learning, Ninth SIAM International Conference on 
Data Mining Sparks, Nevada, pp. 814-825. 

Michel, J., Malik, J., Inglada, J., 2010. Lazy yet efficient land-
cover map generation for HR optical images, 
Geoscience and Remote Sensing Symposium 
(IGARSS), 2010 IEEE International, pp. 1863-1866. 

Nussbaum, S., Niemeyer, I., Canty, M.L., 2006. SEaTH – A 
new tool for automated feature extraction in the 
context of object-based image analysis., 1st 
International Conference on Object-based Image 
Analysis, Salzburg, Austria. 

Pal, M., Foody, G.M., 2010. Feature Selection for Classification 
of Hyperspectral Data by SVM. Geoscience and 
Remote Sensing, IEEE Transactions on, 48(5), 2297-
2307. 

Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J., 
2011. Improving active learning methods using 
spatial information, Geoscience and Remote Sensing 
Symposium (IGARSS), 2011 IEEE International, pp. 
3923-3926. 

Serpico, S.B., Bruzzone, L., 2001. A new search algorithm for 
feature selection in hyperspectral remote sensing 
images. Geoscience and Remote Sensing, IEEE 
Transactions on, 39(7), 1360-1367. 

Seung, H.S., Opper, M., Sompolinsky, H., 1992. Query by 
committee, Fifth Workshop on Computational 
Learning Theory. Morgan Kaufmann, San Mateo, 
CA, pp. 287–294. 

Shannon, C.E., 1948. A Mathematical Theory of 
Communication. Reprinted with corrections from The 
Bell System Technical Journal, 27(379–423, 623–
656). 

Stumpf, A., Kerle, N., 2011. Object-oriented mapping of 
landslides using Random Forests. Remote Sensing of 
Environment, 115(10), 2564-2577. 

Tesfa, T.K., Tarboton, D.G., Watson, D.W., Schreuders, 
K.A.T., Baker, M.E., Wallace, R.M., 2011. Extraction 
of hydrological proximity measures from DEMs using 
parallel processing. Environmental Modelling &amp; 
Software, 26(12), 1696-1709. 

Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J., 
2011. A survey of active learning algorithms for 
supervised remote sensing image classification. 
Selected Topics in Signal Processing, IEEE Journal 
of, PP(99), 1-1. 

Van Coillie, F.M.B., Verbeke, L.P.C., De Wulf, R.R., 2007. 
Feature selection by genetic algorithms in object-
based classification of IKONOS imagery for forest 
mapping in Flanders, Belgium. Remote Sensing of 
Environment, 110(4), 476-487. 

Walvoort, D.J.J., Brus, D.J., de Gruijter, J.J., 2010. An R 
package for spatial coverage sampling and random 
sampling from compact geographical strata by k-
means. Computers & Geosciences, 36(10), 1261-
1267. 

Xi, C., Tao, F., Hong, H., Deren, L., 2011. Graph-Based 
Feature Selection for Object-Oriented Classification 
in VHR Airborne Imagery. Geoscience and Remote 
Sensing, IEEE Transactions on, 49(1), 353-365. 

 
 

278


