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ABSTRACT:

Traditionally, remote sensing employed pixel-based classification techniques when attempting to obtain land use/cover 
information. Pixel-based approaches have proven to work well with low and medium spatial resolution imagery. Due to the 
increased scale and detail of surface features high spatial resolution images (e.g. from aerial and VHR satellite sensors) have 
proven to be problematic for pixel-based analysis and over the last decade this has driven the research towards object-oriented 
approaches. Despite that object-based classification is more applicable to VHR data we still face challenges in improving the 
semantic classification accuracy. Post-classification often reveals considerable numbers of misclassified objects (irrespective of the 
used classifier). The erroneous outcomes indicate the difficulty of separating objects that share similar attribute characteristics (i.e. 
Japanese knotweed and blackberry). Contrary to this, certain evidently dissimilar objects (i.e. forest patch and grassland) can
occasionally be placed into a forest class due to the over generalised computed list of segment attributes. This article proposes a 
hybrid approach with the aim to incorporate the advantages of pixel-based classification into an object-based image analysis frame. 
At first the general spatial structure information is obtained through segmentation, which is followed by the sub-object analysis in 
the spectral and geometric domain. The object’s spectral signature is obtained and tested for similarity with a reference object class 
using the Kolmogorov-Smirnov test. The sub-object spectral and structural analyses are incorporated into a classification scheme by 
a ruleset. The experimental results for detecting Japanese knotweed showed that the proposed approach allows for the extraction of 
different stages of knotweed growth, and this considerably improves the knotweed classification accuracy. This method has also 
shown improvement in the delineation from the similar blackberry and other species on aerial photographs and WorldView-2 
satellite data.

Introduction1.

Motivation1.1

The continuous progress in the field of remote sensing systems 
produces increasingly detailed data, which leads to improved
interpretation possibilities. With the increased spatial 
resolution we have also observed greater between-class spectral 
confusion and within-class spectral variation (Mathieu and 
Aryal, 2007). The scale and detail of the mapping thus
emphasise the difficulties in the classification and land use 
mapping routines.

Conventional pixel-based classification methods rely on the 
spectral information contained within an individual pixel and 
classify each pixel into an appropriate class according to the 
classification rules. Object extraction then requires specific 
generalisation measures that diminish the “Salt and Pepper”
noise phenomena and approach the basic cartographic 
standards. Over the past decade object-based image analyses 
(OBIA) responded to these drawbacks (Lang and Blaschke, 
2006; Blaschke et al., 2008; Addink and Van Coillie, 2010). 
OBIA processing involves steps that are based on homogenous 
pixel groups (segments) – representations of geographic 

features – and the relations between them. In order to create 
meaningful image objects, suitable for geographical feature
analysis, the process integrates contextual, spectral, geometric 
and textural information as well as all auxiliary data. The 
classification is performed with the use of these segments 
rather than single pixels. OBIA of satellite data provides an 
interpretation that is close to the human perception of the 
environment. Thus, it enables a more coherent understanding 
of geographical features in nature and their representations 
(i.e. geographical objects) on remote sensing data (Hay and 
Castilla, 2006). Although the object-based approach has proven 
successful, some of its shortcomings remain a challenge in its
practical application.

In our experience object-based classification (Veljanovski et 
al., 2011) achieves moderate classification accuracy and 
requires considerable post-processing (corrections of 
incorrectly classified objects). Post-classification is labour-
demanding and in most cases a manual procedure based on
visual inspection. Misclassifications are a result of the poor 
ability of distinguishing between various segments that share 
similar attributes within a given semantic list of target object 
classes (Fig. 1). Besides, they are associated with complex 
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relations between geographical features and their detection, 
analysis and representation in semantic-oriented modelling 
procedures. 

Single geographic features can exhibit multiple characteristic
manifestations, however the aim of land use/cover mapping and 
classification is to achieve an explicit abstraction of each 
geographical feature in the appropriate classification-driven 
(target) object class. In cases in which the material composition 
of the land cover is diverse and heterogeneous, object sub-
division and appropriate definition of multiple sub-objects can
be required for training and classification needs. The sub-
classes might exhibit a variety of spectral characteristics, thus 
they might have unique spectral signatures in the spectral 
domain and a typical geometric subdivision. These 
characteristics should be represented separately in the training 
and classification phases of the object-based image analysis.

 

Figure 1.  The results of object based classification for 
vegetation elements from a WorldView-2 satellite image clearly
indicate that the dark fields can be misclassified as forest (dark 

green) and bright rooftops as open soil.
 

Considering the capabilities of the currently available software 
(i.e. Definiens Imaging Developer, ENVI Feature Extraction, 
Erdas Objective) on one hand, and the potential of the object-
based paradigm for analysis on the other, we can state that the 
possibilities for a complex analysis of the sub-object spectral 
and geometrical domain are rather unexploited. Thus, we 
propose a shift towards the expansion of the set of computed 
attributes towards the description of the object’s spectral 
signature and geometrical (sub)structure on the sub-object 
level. The introduction and proper use of such complex 
attributes could substantially facilitate the detection and 
distinction of objects that share similar attribute characteristics 
in remote sensing data (ploughed fields – paved surfaces, bright 
rooftops – gravel roads, forest patch – field, knotweed –
blackberry).

References to related work1.2

Only a few published works deal with the sub-object analysis 
within object-based classification. Rarely do they consider the 
use of more complex descriptors of spectral and structural 
characteristics on the object sub-level in order to support the 
classification. Lloyd et al. (2004) exposed the problems related 
to the fact that pixels included in the segments do not 
necessarily exhibit normal distribution, thus using the mean or 
standard deviation (conventionally used in OBIA) may not fully 
capture and properly describe the signatures of pixels within the 
segment. They also stated that the shapes of histograms that 
belong to the pixels within a segment for a certain geographical 
feature may be characteristic and thus diagnostic.

Sridharan (2010) presented the capability and potential of the
sub-object spectral domain exploration with the Kolmogorov-
Smirnov (K-S) test used for classifying trees in urban 
environments (on WorldView-2 data). The analysis and tree 
species classification is based on the candidate object’s (or 
region) empirical cumulative frequency distribution and its

comparison to the referential (target class) cumulative 
frequency distribution. The results proved that using the K-S 
based classifier was successful. Stow et al. (2012) explored the 
potential and evaluated the capabilities of the curve matching 
approach with the classification of the multi-pixel frequency 
distribution. Object histogram signatures were used for 
determining the characteristic frequency distribution. Through 
this they quantified the similarity between the histogram 
curves that represent the within-object pixels. Their 
application context was to classify and map the general land 
use types and socio-economic status of the residential areas 
within Accra (Ghana) with the use of VHR satellite imagery. 
The curve matching based classifier gave results that were 
more effective than the standard classifiers based on the closest 
neighbour classifier.

The recent approach to a number of issues related to the use of 
object-oriented classification and sub-structure characteristics 
with aerial images in the detection of the invasive species of 
Japanese knotweed was elaborated by Jones et al. (2011).

Aims of the study1.3

The objectives of this study were to: (1) examine the sub-object 
and between objects class variability within the spectral and 
structural domain, on the sub-object level, using cumulative 
frequency distribution and the Kolmogorov-Smirnov test to 
determine within-class similarity and between class 
separability, and (2) exploit the potential of combining object- 
and pixel-based routines in order to improve the overall 
classification of complex landscapes represented on remote 
sensing data.

The application context is to identify and map the invasive 
plant (Japanese knotweed) in the urban fringes of Ljubljana, 
Slovenia. The ENVI object-based feature extraction module
was supplemented by the sub-object pixel-based approach 
(developed in Matlab), in combination with VHR data from 
multispectral satellite data (WorldView-2) and orthophotos.

Study area, data and USED approach 2.

Study area and data2.1

Recently the field of biological invasion investigation has 
shown considerable interest in remote sensing techniques 
(Jones et al., 2011). A key prerequisite for effective 
management of invasive species is to delineate the spatial 
extent and information on the severity of the invasion in a 
particular area or environment (Ustin et al., 2002). Our study 
area is the urban fringe of Ljubljana, the capital of Slovenia
(Fig. 2). Recent studies of tree-species and Japanese knotweed 
delineation in urban environments attempt to integrate VHR 
satellite (WorldView-2) and aerial (orthophoto) data and object-
based classification with the goal of obtaining a tree-species 
and Japanese knotweed land use map (•uri•, 2011). As 
Japanese knotweed belongs to one of the fastest growing and 
highly invasive plants, which is hard to permanently eliminate 
from the environment, it is necessary to obtain information on 
its spatial distribution and start a regular inventory of its new 
occurrences. Therefore, it was necessary to develop a 
methodology that would be capable of recognizing the various 
stages of growth in Japanese knotweeds.
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Figure 2.  Sites investigated in the study area of the Ljubljana 
urban fringe. Data used and their overlap area: WorldView-2 

false colour composite and digital orthophoto.
The WorldView-2 satellite image of the Ljubljana area was 
acquired on 10.08.2010, in 8-band multispectral resolution and 
a panchromatic band. The applied pre-processing involved 
precise orthorectification and pan-sharpening to a spatial 
resolution of 0.5 m. The aerial dataset (digital orthophotos –
DOF) was obtained from the Surveying and Mapping Authority 
of the Republic of Slovenia (2006 and 2011 imaging cycles). 
We considered images acquired in colour and infra-red 
wavelengths with 0.5 m (RGB: DOF050) and 1 m spatial 
resolution (CIR: DOF100 IR). Two dates (summer 2006 and 
2011) were tested for colour orthophotos (RGB bands), but only 
2006 imagery was available for infrared orthophotos (IRRG 
bands). Referential data for Japanese knotweed occurrences was 
obtained through a field survey performed on 5.9.2011 and 
6.10.2011. Individual spots were documented by photographs.

Japanese knotweed2.2

The World Conservation Union listed the Japanese knotweed 
(Fallopia japonica) as one of the world's top 100 invasive 
species. There are several subspecies and all of them form 
persistent, pervasive, dense and suppressive monocultures that 
trigger severe problems throughout Europe, North America and 
Asia (Jones et al., 2011). In Slovenia, Japanese knotweed grows
mainly in riparian zones and habitats influenced by human 
activities (within green areas of new residential zones, along 
communication infrastructures and multi-purpose agro-
recreational zones). It is mainly spread by constructions and 
natural soil materials, while natural dispersal mechanisms such 
as rivers and wind also play their role.

Once fully established in the new environment, it grows rapidly 
and forms dense and mono specific strands, excluding other 
native and endemic floral and faunal species (Gerber et al., 
2007). The removal and elimination of Japanese knotweed is 
extremely hard as it forms a deep and branched root system (up 
to 10 meters deep) and has extremely high capabilities for re-
growth from minor root residuals found in the soil. The typical 
representation of Japanese knotweed on high resolution remote 
sensing data is shown in Fig. 3.

Figure 3. Typical texture and colour representation of Japanese 
knotweed. Upper row: DOF050 (2006), DOF100 IR (2006), 
DOF050 (2011). Lower row: DOF050 (2006), DOF100 IR 

(2006), DOF050 (2011), WorldView-2 (2010).

Delineation, classification and mapping2.3

Object extraction from VHR data typically covers several steps: 
data pre-processing and preparation, segmentation, 
computation of segment characteristics (attributes), contextual 
object classification and object extraction, post-classification 
and accuracy evaluation. The data processing flow chart used 
in the experimental study for Japanese knotweed detection is 
shown in Fig. 4 (•uri•, 2011). The upper part (white boxes) 
that deals with the classification for defining the broader 
landscape elements, masking the vegetation and vegetation re-
segmentation, belongs to the object-based approach. The lower 
part of the flow chart (grey boxes) belongs to the pixel-based 
approach and involves the candidates’ selection (on the finer 
scale) to capture individual Japanese Knotweed plants and the 
subsequent sub-object analysis. The object spectral signature 
characteristics of the candidates are tested against a referential 
(representation) knotweed object class and evaluated with the 
Kolmogorov-Smirnov test. Ground validation (field survey) 
data was used to define the training examples and develop a 
reliable algorithm for detecting Japanese knotweed. The results 
were visually evaluated and compared to the field survey data.

VHR IMAGE

VISUAL INTERPRETATION CLASSIFICATION

DELIMIT VEGETATION
Mask of vegetation

RE-SEGMENTATION
CANDIDATES

Japanese knotweed

ATTRIBUTION OF SPECTRAL 
VALUES

Object spectral signature

OBJECT SUB-STRUCTURE RATE
Sub-object density

KOLMOGOROV-SMIRNOV TEST

Figure 4.  Data processing and flow chart used in the study of
Japanese knotweed detection with the hybrid (supervised 

object- and pixel-based) approach.

Sub-object IMAGE analysis3.

Preparation of object-level information imagery3.1

Extracting land use structure data from remote sensing imagery 
requires methods that are capable of providing an appropriate 
level of observed details. The segmentation delimits a digital 
image into smaller parts (image segments), in accordance to a 
given homogeneity criteria. The segmentation used in the 
ENVI EX is controlled by two parameters: the initial 
segmentation rate (scale level) and the merge level, both with a 
range between 1 and 100%. The degree of fragmentation 
(details) is determined by a single input parameter (scale 
level). Following the merge parameter (merge level) segments 
can be combined according to the combination of spectral and 
spatial properties, which leads to merging smaller segments 
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into larger ones. Both parameter values have a critical influence 
on the classification results and must therefore be carefully 
selected.

The next step applies the different attributes (geometric, 
spectral, textural and the ratio between two bands) to the 
segments. Based on the values  of the attributes, the 
segments are classified into classes based on training examples 
set or controlled by rule-based definitions. The classification 
links the selected attribute and its value, and this determines 
which segments are classified into a selected (target) class. We 
used this procedure for the first classification level – creating
the vegetation mask and establishing the Japanese knotweed 
candidates (see Fig. 4).

The vegetation mask that excludes anthropogenic and water 
related surfaces was obtained with the classification of the 
normalised difference vegetation index (NDVI) layer (Table 1). 
NDVI can be achieved either from WorldView-2 data (as Red-
Edge NDVI from RE and R band) or as modified NDVI from 
infrared orthophotos (from R and G band, since DOF100 IR 
does not contain the source original of the R and IR band).

Then, using the vegetation masks, attributes were used to 
define the candidates for Japanese knotweed in the process of 
rule-based classification (Table 2). Appropriate thresholds were 
defined so that they provided the best description of the 
spectral, textural and/or other characteristics representative of 
the Japanese knotweed on a given image. We assumed that not 
all objects found in the Japanese knotweed class candidates 
were in fact Japanese knotweed. We captured several other 
objects that behave like Japanese knotweed in the spectral 
region or selected attribute values: blackberry bush, goldenrod, 
arable land (field, grassland), green zones in urban areas and 
shrubs.

DOF100 IR WorldView-2
Segmentation level 54 54
Merge level 58 58
Attribute (Input data) Modified NDVI Red-Edge NDVI
Rule Attribute > 0.295 Attribute > 0.36

Table 1. Parameter values  and attributes used to create 
vegetation masks in the ENVI FE module on IR orthophoto and 

WorldView-2 data.

DOF100 IR WorldView-2
Segm. level 33 36
Merge level 58 74
Attributes Red band Mean (Att.1) Green 

band Mean (Att.2)
Modified NDVI (Att.3)

Red-Edge NDVI (Att.1),
Red-Edge band Mean (Att.2)
IR2 band Mean (Att.3)

Rule 1. set of attributes:
Att.1  [177, 210] AND

Att.2  [27, 51]
2. set of attributes:

Att.1  [185, 210] AND
Att.3  [0.64, 0.67]

Att.1  [0.900, 0.984],
Att.2  [690, 776],

Att.3  [1016, 1172]

Table 2. Parameter values  and attributes used to extract 
Japanese knotweed candidates on IR orthophoto and WV-2 

data.

In the next step objects from the candidate class were sorted 
into selected (target) object classes. First step in this process 
used the criteria of sub-object density as a measure for object 
structural domain while in the second step the Kolmogorov-
Smirnov test was used in order to determine the object spectral 
domain fit.

Sub-object structural domain3.2

The sub-object structural domain encompasses a variety of 
descriptions of the object’s geometrical (structural) 
characteristics. The sub-object density used in this study is 
defined (Jones et al., 2011; •uri•, 2011) as the ratio between 
the total area of  the object (outer boundaries) and the 
number of segments (sub-objects) in the object at a given 
observation scale (Fig. 5). This represents the average area of 

 the segment and provides a measure of the object 
fragmentation (texture) characteristic that can be distinguished 
in certain (land) uses. This measure predominantly 
distinguishes between arable or anthropogenic surfaces and 
vegetation.

The segments for sub-object density were obtained through the 
use of the minimum segmentation level (a segmentation level 
of 10% was used in the study). The segments were not merged; 
we calculated their attributes and exported them to a vector 
layer. The procedure was implemented in ArcGIS. The 
examples of object sub-density calculation are shown in Fig. 5 
(the sub-object density is given by the mean). It turns out that 
the value of farmland density is significantly higher than for 
other uses that occur within a candidate layer. Besides, we also 
discovered that the majority of Japanese knotweed polygons 
share a similar value of sub-object density (<7 on orthophotos), 
yet the sub-object density of blackberry and bush approached 
this value.

Figure 5. Sub-object density is a measure of the object 
fragmentation rate at a given observation scale. Japanese 

knotweed on an orthophoto and WorldView-2 (left, right), 
compared to farmland (centre).

The use of the sub-object density criterion is an optional 
classification step, which allows for the removal of 
predominantly arable land and facilitates further work on the 
candidate class classification.

Sub-object spectral domain3.3

The sub-object spectral domain is associated with the object 
spectral signature, a concept known from pixel-based spectral 
analysis. In opposition to the pixel-based approach, in which
the spectral signature represents multi spectral characteristics 
of an individual pixel, the spectral signature in this case is 
obtained for a selected region – object or segment. 

The spectral object signature can be represented as a 
distribution function similar to the histogram distribution or as 
a cumulative frequency distribution (CDF) function. The latter 
provides better support for various statistical investigations. 
Two samples of the Kolmogorov-Smirnov (K-S) test represent
the nonparametric statistical test, and through the comparison 
of the empirical distribution functions of the two samples we 
estimate their similarity. The empirical distribution function 
(EDF) is the CDF associated with the empirical measure of the 
sample. In this way we account for every pixel within the 
object (region) instead of merely one or two summary 
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measurements (Sridharan, 2010).

The two sample K-S statistic quantifies the distance between 
the EDFs of two samples (Wikipedia, 2012). The null 
distribution of this statistic is calculated under the null 
hypothesis that the samples are drawn from the same 
distribution. In each case the distributions considered under the 
null hypothesis are continuous, yet otherwise unrestricted. The 
test does not specify the common distribution (normal or not 
normal; the statement that suits the remote sensing data
characteristics), and is thus one of the most useful and general 
nonparametric methods for comparing two samples. It is 
sensitive to the differences in both, the location and shape of 
the two samples’ EDF.

A connection between the object polygons and the multispectral 
image enables the attribution of all spectral values (through all 
spectral bands) to the given objects. The outputs are therefore 
regions in which each pixel is defined by the following 
attributes: the identification label of the pixel, geographical and 
pixel coordinates and the spectral value in each spectral band.
The described regions constitute the starting point for the K-S
test. The main assumption of the test is that different types of 
geographical entities (for example, different bush-like species) 
exhibit characteristic EDFs, which are determined according to
the spectral values  of all pixels in all wavelengths in the 
region (i.e. object spectral signature). The comparison of EDFs
from various geographical entities (with the use of the K-S test)
enables us to distinguish between them.
In the first step of the classification EDFs are provided for
regions for which we know with certainty which features they 
represent (reference regions). This means that we choose the 
reference samples and through them define the information
classes, and this makes the K-S based classification supervised. 
It is important to select representative and sufficiently large 
samples. The presence of a geographical entity type in a given 
area should thus be confirmed by a field survey or appropriate
topographic or thematic maps. Selection of referential regions 
in which Japanese knotweed was detected was conditioned by 
the used data and the characteristics of the study area.

The next step is to compare an unknown region to all of the 
reference regions, i.e. compare the EDF of an unknown region
to the EDF from a reference sample, for each spectral band, and 
determine the statistics significance measure (maximum 
absolute difference between the EDFs). The unknown region in 
each band belongs to a class with the lowest value of this 
statistic (Sridharan, 2010; •uri•, 2011). Each distribution pair 
with a 95% confidence level needs to have its value h
ascertained (value 0 or 1). If the value is 1, the null hypothesis
is rejected (the unknown region does not belong to the target 
class), otherwise it is accepted (the unknown region belongs to 
the target class). Described procedure was developed in Matlab.

The classification capabilities of the K-S test were analysed in 
the orthophoto area for which we know that Japanese knotweed 
is present, but was not included in the formation of the 
candidate class. We want to determine how many and which 
areas will be classified as Japanese knotweed with the K-S test. 
For referential use we selected verified samples of Japanese 
knotweed, blackberry bush and field. Fig. 6 shows the 
distribution function of the reference uses and the object that 
has not been classified as Japanese knotweed in the process of 
rule-based classification.

Figure 6. Empirical distribution functions of 3 reference uses 
and an unknown object; for the orthophoto spectral bands.

RESULTS AND DISCUSSION4.

Classification results and evaluation4.1

Figs. 7 and 8 show the detection of Japanese knotweed in a 
riparian and suburban area, at which the sub-object spectral 
signature classification approach was used.

The coincidence of the reference data and the detected 
polygons is relatively large; yet some false-negative sites are 
present. A large part of the overlooked areas represent 
embankments of streams, where tree crowns hide the Japanese 
knotweed. For accurate validation one should also consider the 
temporal component: classification involved an orthophoto 
from 2006, while the field visit was performed 5 years later. In 
some cases, it is known that Japanese knotweed was not 
present on the orthophoto image, though it was observed in the 
field (Fig. 9).

Figure 7. Classification results for Japanese knotweed, 
obtained with the first set of attributes in riparian and 

communication areas. Green polygons are the identified 
candidates from the candidate layer, while the red dots

represent actual knotweed occurrences.

Figure 8. Classification results for Japanese knotweed, 
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obtained with the first set of attributes in the city suburbs. 
Green polygons are the identified candidates from the candidate 
layer, while the red dots represent actual knotweed occurrences.

Figure 9. Time constraints are highly relevant in the 
identification of invasive plants. Ortopohoto from 2006 on the 

left and Japanese knotweed at the spot in 2011.

The quality determination of Japanese knotweed detection was 
assessed only visually (Fig. 10). The individual layers of the 
candidates, obtained through the use of different attribute sets, 
were compared to reference (field) data. Results are optimal for 
ortopohoto and WorldView-2 datasets. We can conclude that by 
selecting appropriate values  for the attributes we can 
exclude (detect) the majority of knotweed strands in the broader
area.

Figure 10. An example of correct classification results for 
Japanese knotweed detection (based on the first set of 

attributes).
Taking into account the spectral resolution of the involved 
imagery we have to promote the use of multispectral data, 
particularly the Red Edge NDVI index, for the results based on 
it are truly promising. The period in which the image was 
acquired (August) coincided with the top annual harvest cycle 
of Japanese knotweed (blooms in late summer, August and 
September). Thus, the Red Edge NDVI index is a highly 
appropriate indicator for detecting the occurrence areas of 
Japanese knotweed. The use of attributes from WorldView-2 
band 6 (Red Edge) and 8 (IR2) also play an important role in 
determining these areas.

In our classification of Japanese knotweed we performed an 
evaluation of the candidate layer (not presented herein) and of 
the classification results using the K-S test, in which the 
candidate layer represented starting point for the classification.

Accuracy assessment of the Kolmogorov-Smirnov based 4.2
classification results

We used the K-S test to check the efficiency of Japanese 
knotweed detection in overlooked areas (areas where strands 
were not detected). We analyzed all 32 areas on the selected 
orthophoto subset in which we used the first set of attributes to 
classify the candidate class. From the 32 mistreated areas of 
Japanese knotweed, 17 additional sites were classified as 
Japanese knotweed using the K-S tests, i.e. 53% of the 
otherwise neglected areas. The remaining undetected areas 
were mainly characterized by the occurrence of small areas of 
Japanese knotweed or areas in which knotweed is hidden under 
the tree foliage, making it impossible to see.

Conclusion5.

This paper provides an insight into the authors’ current 
thoughts on object-based classification challenges with regard 
to the potential elements and technical capabilities necessary to 
move beyond the current OBIA commercial software support.
The main challenge is to improve the classification accuracy so 
that the post-classification work would be significantly 
reduced. We conducted an experimental approach that 
combines the advantages of object- and pixel-based 
classifications. At first segmentation was used to provide the 
basic processing units, and this was followed by sub-object 
(pixel- and object-based) analyses with which we analysed the 
object’s spectral and structural domain in greater detail. In the 
object’s spectral domain we used the Kolmogorov-Smirnov test 
to compare the object’s spectral signatures and thus facilitate a 
better distinction between the candidates. In the object’s
structural domain we implemented a measure of object sub-
density in order to improve the characterisation of the object 
fragmentation rate at a given observation scale. The proposed 
hybrid approach was implemented in the detection of Japanese 
knotweed in the urban fringe of the city of Ljubljana. The 
results have shown that the classification accuracy obtained 
from the K-S based classifier for invasive species was 
improved greatly when compared to conventional object based 
classifiers. The K-S test classification algorithm is currently 
being implemented into the IDL programming language, and 
this will enable further extensive testing within ENVI.
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