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ABSTRACT: 

Spatial analysis using fine-scale information over broad territories is essential to define efficient restoration strategies from local to 

national scale. We designed an OBIA dedicated to produce operationally reliable fine-scale information over broad territories. The 

originality of our OBIA lies particularly in the top-down approach for the construction of the classification tree and the use of 

„knowledge-based rules‟ classification technique. The implementation of this OBIA over the two study areas –  (i) the Normandy 

region for riparian area land cover mapping (5600 km² riparian area) and (ii) fours departments over the Languedoc-Roussillon 

region (22644 km²) – demonstrates the operability of our approach (time-efficient, reproducible, transferable, portable). Broad scale 

spatial analysis conducted from resulting maps demonstrate the interest of using fine-scale information and highlight that OBIA, 

following our approach,  will be at very short run a broadly applicable method to carry out such analysis. 

 

                                                                 

*  Corresponding author. 

1. INTRODUCTION 

1.1 VHRS and OBIA 

Spatial analysis is a key feature to the understanding of 

structures, dynamics and changes in the environment, societies 

and territories. Furthermore it is essential for the exchange 

between stakeholders in society (citizens, government, socio-

economic) to define coordinated management strategies and 

implement them. Therefore a huge step forward in the remote 

sensing for Earth Observation has been seen in the last two 

decades for producing spatial information required to carry out 

spatial analysis (Turner et al., 2001). Nowadays, with the 

progresses of satellite and airborne imagery in High and Very 

High Spatial Resolution (H&VHSR), fine-scale land cover 

spatial analysis over broad territories could be conducted. 

However, due to the heterogeneity and the volume of 

information within H&VHSR images, extracting it efficiently 

and with lower costs over broad territories is quite challenging. 

The last five years, OBIA have revolutionized the processing of 

H&VHRS remote sensing data by providing effective computer-

assisted classification techniques whose results come close to 

the quality of manual photo-interpretation, while being much 

faster and cheaper and much more reproducible (e.g., Durieux 

et al., 2007, Tiede et al., 2010). As a result, we proposed in this 

paper an operational OBIA procedure designing for the 

extraction of spatial information from H&VHSR remotely-

sensed data over broad territories. Two case studies (CS) 

supporting public politics in France are exhibited: riparian 

corridor and artificial sprawl management. 

 

1.2 CS1: Riparian corridor management 

Maintaining and restoring good riparian buffer area conditions 

could constitute a major action to improve the freshwaters‟ 

ecological status required by the European Water Framework 

Directive (WFD) by 2015. Riparian vegetation, being an 

interface between terrestrial and aquatic systems, influences the 

biodiversity and water quality of stream and river ecosystems in 

many specific ways (Naiman et al., 2005). As a result, the first 

case study (CS1) is dedicated to the fine classification of 

Riparian Area Land Cover (RALC). RALC maps will serve as a 

basis for calculating spatial indicators related to human 

pressures along rivers and riparian vegetation characteristics 

(e.g. composition, continuity and strip width). These indicators 

will help in better understanding and predicting mechanisms 

influencing river ecological status at riparian scale, in order to 

prioritize and design efficient river corridor restoration 

strategies (Gergel et al., 2002, Tormos et al., 2011). The 

classification must, as a minimum requirement, extract: “water 

surfaces” and “semi-natural bare soils” required to better 

delimitated the river bed for building spatial indicators; “arable 

areas”, “urban areas” considered to be the main causes of 

stream ecological status alteration (Allan, 2004); “tree 

vegetation”, “semi-natural herbaceous and shrub vegetation” 

and “permanent agricultural grassland”  constituting the main 

natural elements of the river corridor landscape that maintain 

biodiversity and regulate non-point source pollution (Naiman et 

al., 2005). 

 

1.3 CS2: Artificial sprawl management 

In France, in the peri-urban context, artificial sprawl (i.e., 

sprawl of urban and other artificial land development such as 

roads, quarries, landfills...) dynamics are particularly strong 

with huge population growth as well as a land crisis. The 

increase and spreading of built-up areas from the city centre 

towards the periphery takes place to the detriment of natural and 

agricultural spaces. The conversion of land with agricultural 

potential is all the more worrying as it is usually irreversible 

(Pointereau et al., 2009). As a result, the second case study 

(CS2) is dedicated to the fine extraction of artificial objects at a 

given time. The production of such map on different time steps 

will serve as a basis for calculating spatial indicators related to 
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artificial sprawl. These indicators will help in better localizing 

and quantifying loss of land at both local and regional scales in 

order to prioritize and define efficient restoration strategies 

dedicated to the conversion of land with agricultural potential. 

Two classes are required: “artificial areas” (i.e., urban and 

fabric areas, transport infrastructures…) and “non artificial 

areas”. 

 

2. DATA AND METHODS 

2.1 Study areas, datasets and pre-processing 

2.1.1 For the CS1  

We classified RALC on a part of the Normandy river network 

(25 000 km² basin; 6000 km long river network, 5600 km² 

riparian area) located in the North of France (see Figure 1). This 

area is dominated by a strong agricultural occupation, primarily 

focused on field crops and livestock, with specific structures in 

the riparian buffer, such as tree vegetation and grassland near 

the river. This agricultural landscape is dotted with urban zones, 

from small to large. 

Datasets were chosen according to both their availability and 

their cost effectiveness on the overall French territories for 

managers. A comparative economic analysis of the different 

data led to the collection of two types of H&VHSR 

multispectral remotely sensed data: orthophotos and SPOT 5 

satellite images. The characteristics of these image and pre-

processing data are summarized in table 1. Orthophotos (0.5 m 

pixel) provide the textural information required to detect narrow 

and fragmented cover types along rivers (Müller, 1997). SPOT-

5 XS (10 m pixel) is also acquired in order to get information in 

the NIR band essential to discriminate vegetation classes 

(Johansen et al., 2006). In addition existing spatial thematic 

data, relevant for RALC classification were collected. This data 

gives a precise (metric precision) spatial information on 

artificial continuous areas (city centre), roads, hydrographic 

surfaces (lakes and reservoirs) and the majority culture of farms 

declared in the frame of the European common agricultural 

policy. 

The European land cover database, CORINE Land Cover 

(CLC), was collected also to perform the spatial analysis of this 

case study. CLC was built by visual interpretation of both 

Landsat and SPOT satellite images acquired from 1990 and 

2000 years. Interpretation of the images is based on 

transparencies overlaid on 1/100.000 hard copy prints of 

satellites images (Bossard et al., 2000). It is based on a standard 

nomenclature organized into a 3-level hierarchy containing 44 

classes. CLC features, characterized by a 25 ha minimum area, 

are either homogenous areas or combinations of land cover 

types with a certain recognizable structure.  

 

2.1.2 For the CS2 

We extracted artificial objects over the four coastal departments 

(Aude, Gard, Hérault and Pyrénées-Orientales) of the 

Languedoc-Roussillon region located in the South of France. 

The region covers 22644 km² and had a population of 2548000 

in 2007. This is one of the most productive regions in wine in 

France. Over the last three decades, population pressure in 

Languedoc-Roussillon has led to rapid and poorly managed 

urbanization of the coastal plain which comprises notably the 

most productive land in the region (Abrantes et al., 2010). This 

phenomenon was increased by the successive crises that 

occurred in the wine making sector in recent years (Jarrige et 

al., 2009). 

 

 

Figure 1. Localization of study areas for the two case studies 

 

RapidEye images, HSR multi-spectral satellite images, were 

collected in order to extract artificial object at summer 2009. 

Summer period is a suitable period for this work because 

vegetation is in active growth on this region that limits 

confusion between bare soils (natural or agricultural) and 

artificial areas. These images are produced by the remote 

sensors in a five-satellite constellation in use since 2008. This 

constellation can quickly provide homogenous and recent data 

covering large areas. Images are delivered in 25 km large 

orthorectified blocks with a spatial resolution of 5 m. Given the 

difficulties involved in extracting roads from remotely sensed 

images, we collected this information from available French 

topographic data.  

An earlier map informing on artificial objects in 1997 was 

collected also to perform the spatial analysis of this case study. 

This map was produced by (Dupuy et al., 2012) from indian 

remote sensing images (5.8 m pixel for panchromatic image and 

23 m for multi-spectral image). 

 

2.2 OBIA approach 

The originality of our OBIA approach lies in (i) the employment 

of the thematic spatial information into the classification, (ii) 

the classification tree; and (iii) the definition of the 

classification rules. 

(i) Thematic spatial data contain fully reliable information to 

make maps. Therefore, this is the first information that is 

exploited by our OBIA procedure. A first level segmentation is 

created from this information. The study area is segmented 

according to the boundaries of thematic data entities. Then, the 

image objects that result are affected - or not - to a thematic 

class using Boolean rules. Within these boundaries, other(s) 

segmentation level(s), suitable for extracting objects of interest, 

are built. The classification tree is implemented on the resulting 

hierarchical image object network. 
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Case 

studies 
Data Footprint 

Spatial 

Resolution 

Spectral 

resolution 
Acquisition date 

Number 

of Blocks 
Producer Pre-processing 

CS1 

Orthophotos 5 km 0.5 m B,G,R 
Summer period, 

between 2003 & 2006 
2455 IGN® mosaic 

SPOT 5 XS 60 km 10 m 
G,R,PIR,S

WIR 

Summer period, 

between 2003 & 2007 
11 

Spotimage© 

Archive 

images 

TOA 

radiometric 

corrections 

and mosaic 

CS2 RapidEye 25 km 5 m 
B, G, R, 

RE, NIR 
Summer 2009 91 RapidEye© mosaic 

Table 1. Image data characteristics for the two case studies  

(B = Blue, G = Green, R = Red, RE = Red Edge, NIR = Near InfraRed, SWIR = Shortwave Infrared) 

 

 (ii) The construction of the classification tree can be 

categorized as top-down (i.e., low to high level) image 

interpretation. The tree starts from the classes that are the 

easiest to extract, according to available data sources, to the 

classes of interest (e.g. “water surface” / “land surface”, and 

then within “land surface”, “soils with high vegetation” / “soils 

with low vegetation”…).  

(iii) For each decision in the classification, rules are developed 

using fuzzy or crisp membership function based on one or 

several relevant spectral, spatial and contextual features selected 

by either expert knowledge or trial and error runs or sole visual 

judgment. Tree classification is implemented over the specific 

hierarchical image object network. 

A complete description of OBIA implemented over the two 

cases studies can be found in (Tormos et al., 2012) for CS1 and 

(Dupuy et al., 2012). 

 

2.3 Classification automation 

The study zone is first divided into homogeneous mapping 

regions according to the image acquisition date. Then, a master 

ruleset is designed according to the OBIA approach on a pilot 

zone. Finally, the master ruleset is implemented for each 

mapping region in adjusting classification rules and eventually 

added some classes to the classification tree for taking into 

account regions specificities. 

Master ruleset and classification rules adjustment have been 

developed using eCognition 8 developer. OBIA processing for 

each mapping region was performed with four licenses of 

eCognition 8 server (for running 4 CPU on server) using tiling 

and stitching process. 

 

2.4 Classification validation 

As a metric accuracy of boundary location was not crucial for 

the final aim of the studies, we did not assess planimetric 

accuracy of boundaries but focused on assessing the semantic 

quality of the classification (i.e. assessment of object nature). 

Obviously, the semantic quality depends on planimetric 

accuracy. The semantic quality assessment was performed using 

a confusion matrix (Foody, 2002).  

The confusion matrixes were computed after grouping classes 

according to the typology targeted for each study (see 1.2 for 

CS1 and 1.3 for CS2). Given that the features used for 

classification are calculated at the object scale, objects or 

polygons have been chosen as sampling units for the selection 

of control data (Grenier et al., 2008, Tiede et al., 2006). 

However, confusion matrixes were computed using the area of 

the selected control objects (expressed as a number of 0.5 m 

pixels) because the land-cover maps result from the 

implementation of the multilevel OBIA scheme and contains 

objects of different sizes, from fine to large. For each CS, to 

select control data with the objective of a spatially and 

thematically well distributed sample over the studied zone, as 

suggested by (Congalton, 2004),the entire sampling frame is 

divided into N equal grid cells. Next, a stratified random 

sampling is performed using grid cells as geographical strata 

(equal area for all strata). The number of cells (N) is equal to 

the desired sample size, in order to have at least one object of 

each class per grid cell. As suggested by (Congalton, 1991), 50 

samples are collected for each class in order to build the 

confusion matrix. Considering the size of the study areas (and 

mapping regions), collecting field data for the control sample 

would be extremely labour intensive and time consuming. As 

suggested by (Zhu et al., 2000), selected control objects are 

photo-interpreted using the image with the highest spatial 

resolution as control data. To maintain objectivity of photo-

interpretation, the classified maps were not viewed during the 

process. 

 

2.5 Spatial analysis 

2.5.1 Building riparian indicators (CS1) 

A spatial indicator is invariably defined by aggregating a 

landscape structure attribute over a delimited area (spatial 

scale). Some examples of structural attributes are the number of 

different cover types, the proportion of each cover type, the 

shape of patches, and the spatial arrangement and connectivity 

of patches (Li et al., 1995). The domain over which spatial 

indicators are computed at the riparian scale for the modelling is 

generally defined by combining a lateral distance to the river 

with longitudinal distances upstream and downstream from the 

ecological station where stream ecological status is measured 

(Tormos et al., 2011). 

We analysed here the land cover composition (area percentage 

of each land cover category) according to different buffer 

widths (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 m) on 3-km 

upstream distance from an ecological station. We used the 

typology targeted for this study (see 1.2). According to the 

definition, this makes a total of 10 spatial indicators for each 

land cover category. These indicators were computed from 

H&VHRS derived map (resulting of OBIA) and CLC database 

in order to highlight the gain of H&VHRS remotely sensed data 

for characterizing RALC. This spatial analysis in this study was 

conducted using ESRI GIS tools. 

 

2.5.2 Building artificial patches (CS2) 

To quantify artificial sprawl we need before to compute 

artificial patches. Artificial patch is defined as a continuous 

geographic entity of neighbouring artificial objects (Dupuy et 

al., 2012). Artificial patches are built generally from a 

mathematical morphology operation, the dilatation and erosion 

algorithm (Haralick et al., 1987). Distant objects up to 50 m 

(Euclidean distance) were considered as neighbouring objects in 
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our study. This distance was chosen by trial and error runs of 

this algorithm using different Euclidian distances (Dupuy et al., 

2012). Artificial patches were built from 2009 artificial object 

maps (resulting of OBIA) and 1997 artificial object maps. The 

spatial analysis in this study was conducted using ERDAS 

imagine tools. 

 

3. RESULT 

3.1 Classification accuracy and processing time 

Fine-scale maps were obtained for the two case studies (see 

Figure 2 RALC map). Accuracy and time-efficiency of OBIA 

are summarized in Table 2. A high accuracy was obtained for 

the two case studies with a relatively operational time-

efficiency.  

 

Case 

studies 

Total 

accuracy 

threshold adjustment & 

processing time 

CS1  85 % 16 hours / 1000 km² 

CS2 90 % 12  hours / 1000 km² 

 

Table 2. Total accuracy (average of total accuracies obtained for 

each mapping region) and time-efficiency of OBIA for the two 

case studies: riparian corridor mapping (CS1), artificial object 

mapping (CS2) 

 
 

Figure 2. Extract of riparian area land cover map in obtained 

over the Normandie region (CS1) from OBIA combining SPOT 

XS, orthophotos and ancillary data.  

3.2 Comparison of riparian spatial indicators (CS1) 

Figure 3 shows the evolution of the land cover composition 

(area percentage) according to the lateral distance to the river 

channel (buffer width from 5 m to 50 m) from H&VHSR-

derived map and CLC database. Not surprisingly, the spatial 

resolution of land-cover maps has a strong influence on our 

ability to quantify landscape indicators (Lattin et al., 2004). We 

can see that major landscape patterns inside the riparian areas 

(i.e., semi-natural vegetation types) which are revealed by 

H&VHSR maps are totally smoothed in CLC maps. According 

to CLC (Figure 3B), only two land cover category are present in 

riparian area (grassland and urban areas) and spatial information 

does not significantly change with the buffer width whatever the 

land cover category, in contrast to the H&VHSR-derived map 

(Figure 3A). 

 

Urban areas Arable areas Grassland

Shrub & Herb. Veget. Tree vegetation Bare soil

Lateral distance to the river channel (m)

0%

20%

40%

60%

80%

100%

5 10 15 20 25 30 35 40 45 50

0%

20%

40%

60%

80%

100%

5 10 15 20 25 30 35 40 45 50

B- CLC derived map

A- H&VHSR derived map resulting of OBIA

 
 

Figure 3. Riparian spatial indicators: Area percentages of a 

given land cover type according to the lateral distance to the 

river channel upstream of a stream ecological station (3km 

upstream). In A, built from High and Very High Spatial 

Resolution (H&VHSR)-derived map resulting of OBIA; in B 

built from CORINE Land Cover (CLC) database. 

 

3.3 Map of artificial sprawl 

Figure 4 shows an extract of the artificial sprawl map between 

1997 and 2007 years. It demonstrates that this phenomenon 

occurs in Languedoc-Roussillon region (an artificial sprawl of 

18% in total was observed over the study area) localized 

globally around each town whatever the size. 
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4. DISCUSSION 

Through these two case studies, we confirm OBIA have 

revolutionized the processing of H&VHSR remote-sensing data 

and demonstrated that our OBIA approach is an operational 

method for producing reliable spatial information in order to 

conduct fine-scale spatial analysis over broad territories.  

Our approach appears (1) reproducible:  whatever the mapping 

region, defined in the two case studies, the total accuracy was 

good to very good (see Table 2); (2) easy transferable: despite 

the diversity of landscapes in study areas, it has been possible to 

use the same parameters of segmentation and the same class 

hierarchy on all mapping regions, without changing 

classification features: the major operator task was to adjust the 

threshold values of the different features used to define classes. 

This is partly due to the top-down approach for the construction 

of tree classification (that divides the feature space into finer 

and finer units) and the use of „knowledge-based rules‟ 

classification technique. Top-down approach promotes the use 

of simple rules that are easier to transpose to other mapping 

regions and facilitates the appropriation of the methodology by 

new operators. Moreover specific classes of a given mapping 

region can be integrated in the tree classification without 

questioning its overall construction; (3) quickly applicable over 

broad areas: the OBIA processing is little time consuming (see 

Table 2). The adjustment time of rules obviously depends on 

the experience of the operator and his knowledge of the study 

area and its land-cover diversity. As observed by (Lucas et al., 

2007, Tiede et al., 2010) “knowledge-based rules” classification 

technique appears more flexible: all rules could be refined with 

the full control of the user, at any time in the classification 

process and, in most cases, without changing the class 

allocation of other objects (which is generally not the case with 

the “supervised” classification technique). Moreover, while the 

knowledge-based rules‟ classification technique can be 

distributed easily on a cluster machine, thus drastically reducing 

the computation time, the „supervised‟ classification technique 

cannot be distributed because it requires the processing of a 

mapping region as a whole in order to collect a spatially 

representative training sample.; and (4) Portable and scalable 

(i.e. able to integrate new data sources): the method can easily 

manage information from multiple data sources by resolving 

conflicts between these sources using fuzzy logic. This property 

has been particularly valuable in the CS1 to resolve conflicts 

between SPOT 5 XS and orthophotos data sources. For 

instance, information for assigning an object to one of these two 

classes, „soil with high vegetation‟ and „soil with low 

vegetation‟, can be contradictory because data were not 

acquired in the same season on the mapping region. Thus, fuzzy 

logic appears indispensable to treat multisource information in 

this OBIA classification. Thanks to fuzzy logic, new data 

sources could easily be integrated and combined with the initial 

data sources. 

This reliable and fine-scale spatial information over broad 

territory is crucial to better understand the structures, dynamics 

and changes in the environment, societies and territories. 

Through the CS1, we can point out the interest of RALC 

H&VHRS map over broad territory. This map characterizes 

more finely and reliably riparian landscape than traditional land 

cover databases (see Figure 3). It provides accurate and original 

information on the presence and intensity of pressures close to 

the stream and on forested riparian strip attributes (uniformity, 

mean width and continuity). Given these results, new challenges 

emerge in view of gaining a better understanding of the 

relationships between land cover pressure and stream ecological 

status. This better understanding will offer valuable information 

for managers in order to achieve the WFD aims in prioritizing 

and designing efficient river corridor restoration strategies. 

Through the CS2, we can note that fine-scale artificial sprawl 

maps over broad territories allow to better quantify and localize 

from local to regional scale the loss of land (natural or 

agricultural) to the detriment of built-up areas (in the centre and  

periphery of the city). Such information is essential for French 

managers in order to prioritize and define efficient restoration 

strategies dedicated to the conversion of land with agricultural 

potential.  

 
 

Figure 4. Extract of the artificial sprawl map between 1997 and 

2007 years. 

 

 

5. CONCLUSION 

To conclude, through these two case studies, concerning 

riparian corridor and artificial sprawl management from local to 

national scale, this paper demonstrates the drastic need of fine-

scale information for supporting action strategies and the high 

interest of our OBIA approach for producing this information. 

Our approach, based on a top-down approach for the 

construction of the classification tree and the use of 

„knowledge-based rules‟ classification technique appears 

operational given the high accuracy results and relatively short 

processing time obtained in the two case studies. OBIA, 

following our approach, will be probably at very short run a 

broadly applicable method for producing reliable spatial 

information dedicated to carry out broad scale spatial analysis 

supporting public policies.  
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