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ABSTRACT: 

 

The detection of changes from aerial imagery is an essential task for Ordnance Survey® in order to maintain its topographic database.  

This paper describes the work of the Research department to create a semi-automatic method for change detection in rural 

environments.  The proposed method uses 4-band aerial imagery and a Digital Surface Model (DSM) generated from the 

corresponding panchromatic imagery to automatically classify and identify changes between the imagery and the topographic 

database using eCognition® software.  These automatically generated ‘change candidates’ are then manually checked and any 

necessary map updates are carried out by a photogrammetrist.  A trial of the method found 81.7% of the genuine changes which 

require a map update (completeness), while 25.8% of the ‘change candidates’ were a genuine change (correctness).  These results 

suggest that the method could provide significant efficiency savings if deployed in production.  Other potential uses for the method 

have also been explored, particularly whether the automatic image classification could be used to filter DSMs to DTMs and whether 

it could contribute to a new land cover product for the Ordnance Survey®.  
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1. INTRODUCTION 

1.1 Motivation 

Detecting changes to both manmade and natural topographic 

features is one of the main tasks for any national mapping 

agency.  Ordnance Survey®, Britain’s national mapping agency, 

updates 222,000km2 of ‘rural’ (1:2500 mapping scale) and 

‘mountain and moorland’ (1:10,000) topographic vector data at 

least every 5 years.  While some of these changes are captured 

by our network of 300 field surveyors, outside of urban areas 

the vast majority of map update is completed by 

photogrammetric capture from aerial imagery.  To this end, each 

flying season Ordnance Survey® captures approximately 70,000 

km2 of aerial imagery using Vexcel UltraCam Xp aerial 

cameras.  At present both detecting changes and updating the 

topographic data from this imagery is a fully manual process. 

 

Searching aerial imagery for changed topographic features 

represents a large proportion of the total time that it takes to 

incorporate these changes into the topographic database.  There 

are currently no off-the-shelf solutions available that can 

accurately identify changes between a remotely-sensed image 

and a topographic database.  Therefore, the Ordnance Survey® 

Research department has been developing an automatic method 

of identifying ‘change candidates’ - features in the imagery that 

have changed in a manner that requires an update to the 

topographic database.  These change candidates would be used 

to direct a photogrammetrist to only these potentially changed 

features as part of a semi-automatic flowline, saving them from 

manually searching large areas of imagery where there are no 

changes.  Such a system could significantly increase the 

efficiency of our photogrammetric data capture.  However, since 

the physical appearance of features of interest and the image 

acquisition conditions can vary greatly, developing a single 

transferable method of change detection for all the rural imagery 

we capture across Britain represented a significant challenge. 

 

1.2 Background & Previous Work 

Many different methods for automatically detecting topographic 

change have been presented in scientific literature, several of 

which have been tested at Ordnance Survey®.  Many of the 

techniques rely on a time-series of remotely-sensed data (which 

may be imagery and/or height data) to generate changes (e.g. Im 

et al, 2008).  However, our previous research led us to abandon 

these approaches as, (1) evolving data capture methods and 

specifications mean that historic datasets are often difficult to 

integrate, (2) unless the historic dataset is contemporary to the 

current state of the topographic database (which for Ordnance 

Survey® is often not the case as field surveyors may have 

updated the data since the last photogrammetric survey), any 

changes between the images may not be applicable to the 

topographic database, (3) it is difficult to filter out the huge 

number of changes not requiring a topographic update that arise 

due to differences in illumination conditions, temporary features 

(e.g. vehicles), vegetation condition etc. 

 

The alternative approach is to directly compare the newly 

acquired imagery to the topographic database.  The simplest 

way to do this is to classify an image and directly compare this 

classification to a topographic map to find discrepancies.  

Several authors report promising results using these methods, 

though most research focuses primarily on finding changes to 

buildings (e.g. Matikainen et al 2010, Le Bris & Chehata, 

2011).  Ordnance Survey® carried out a project to investigate 

this approach, the first stage of which involved an extensive 

evaluation of image classification techniques (Gladstone et al, 

2007).  This research concluded that an object-based image 

classification using eCognition® was the most promising 

technique for our requirements.  eCognition® is an object-based 

image analysis tool that allows the use of object tone, texture, 

shape, and context criteria with an extensive list of built-in 

image analysis algorithms, to generate a significantly more 
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accurate classification than with pixel-based approaches 

(Baltsavias, 2004).  A rule-based classification method was 

used as this means it is fully transferable and can be deployed 

automatically on imagery from different locations and with 

varying conditions without the need for any training data or 

calibration.  A further benefit of using eCognition® is that their 

Server software makes it suitable for deployment in production 

environments. 

 

While initial results were promising (Gladstone et al, 2007), a 

simple image classification approach was an incomplete 

solution as it did not enable identification of changes to linear 

features such as fences, walls and paths.  Therefore the final 

approach presented in this paper also uses edge detection 

methods, which have been successfully employed to detect 

these types of small linear features (He et al, 2009).  Edge 

detection algorithms are built-in to eCognition®.  This means a 

single process can be written that uses image classification to 

find changes to area features and edge detection to find changes 

to linear features, thus searching for all the changes that require 

a map update within one automated system. 

 

 

2. METHOD 

2.1 Input Data 

The proposed change detection method uses imagery obtained 

using Ordnance Survey’s standard procedures.  This means it 

uses imagery from a Vexcel Ultracam Xp camera, captured at 

15-25cm ground sample distance (GSD) for the panchromatic 

imagery.  The corresponding 16 bit 4-band (red, green, blue, 

near-infrared) imagery is used to create an orthomosaic at the 

native multispectral capture resolution (a ratio of 3:1 to the pan 

resolution, so 45-75cm GSD).  The imagery is ortho-rectified 

using the existing OS Land-Form PROFILE® Digital Terrain 

Model (DTM) and mosaicked with ‘Most Nadir’ seamlines, so 

there is no manual intervention in its creation.  

 

A Digital Surface Model (DSM) at 50-75cm GSD is generated 

automatically from the panchromatic imagery, using the image 

matching process in BAE Systems SOCET SET Next-

Generation Automatic Terrain Extraction module (NGATE).  

ESRI® ArcGISTM is used to create a slope model and crude 

normalized Digital Surface Model (nDSM).  This nDSM is 

obtained by subtracting the existing OS Land-Form PROFILE® 

DTM from the DSM.  However, this DTM is a 10m grid and 

has a stated vertical accuracy of only ±2.5m per point 

(Ordnance Survey®, 2010a), so the resulting nDSM must be 

treated with considerable caution in the subsequent analyses. 

 

The final input dataset is the topographic data.  As well as being 

used as the comparison dataset for detecting changes, it is used 

to guide certain elements of the classification (see section 2.2). 

 

2.2 Image classification 

The first stage of the change detection process is to classify the 

image.  This classification is used to detect new, demolished or 

altered area features.  The image is classified into seven land 

cover classes, trees, scrub, grass/crops, unsealed surface, sealed 

surface, buildings and water.  This choice of classes is driven by 

the specification for our topographic database, which states that 

changes to all these types of features must be captured.  There 

are additional linear features such as fences, walls and paths that 

are in our data capture specification but cannot be identified 

from this classification, so these features are identified only as 

part of the change detection processes discussed in section 2.3. 

 

The image classification is a fully automatic process that 

requires no training data or calibration.  This is achieved using a 

rule-based classification built using the eCognition® process 

tree.  The ruleset has been developed using imagery from 

different geography, illumination conditions and times of 

acquisition to ensure transferability.  The classification is 

specific to the input data requirements described in section 2.1, 

the only other known limitation being that the imagery must be 

captured when vegetation is leaf-on (early May - late September 

in the UK). 

 

Several steps are taken to maximise the transferability of the 

classification.  Firstly, as much reliance as possible is placed on 

the DSM, as height data is largely unaffected by variations in 

image acquisition conditions.  Secondly, where rules relating to 

image tone are used, they are based on normalized ratios of the 

bands rather than threshold values where possible.  However, in 

certain cases threshold values are necessary.  For example, 

shadow is required as an interim class for filtering during 

change detection phases.  This is classified using a threshold for 

image brightness that is derived from the input image itself by 

finding dark objects neighbouring either trees or buildings and 

calculating a quantile of the brightness of these features.  

Similarly, threshold values for both image brightness and mean 

near-infrared are required to classify water.  These are 

calculated using the a priori information available from our 

existing topographic data.  Previous observations indicate that 

features classified as water in our topographic database rarely 

change land cover type, and when they do it tends to be due to 

encroachment by vegetation.  We therefore calculate quantile 

values from the objects that fall within water features in our 

topographic database, after excluding those that are vegetation 

using NDVI.  However, as the input imagery is an orthomosaic 

there are often significant differences in image brightness across 

the entire mosaic due to changes in illumination conditions 

during data capture.  Therefore, the seamline polygon file is 

retained when the orthomosaic is created and is used to 

constrain the calculation of these threshold values. 

 

2.3 Change Detection 

The change detection method finds changes that require a map 

update in accordance with the Ordnance Survey® data capture 

specification.  The definition of what constitutes a change is 

complex, but generally we are concerned with new, removed or 

altered buildings, structures, trees, scrub, water, sealed surfaces, 

roads, paths, fences and walls.  These requirements have been 

distilled into a set of features that we expect to identify from our 

classification and change detection procedures: 

 

1. New or extended buildings > 50m2 

2. Demolished buildings > 20m2 

3. New areas of trees or scrub > 1000m2 

4. Demolished areas of trees or scrub > 1000m2 

5. New areas of water > 100m2 

6. Demolished areas of water > 50m2 

7. New areas of sealed surface > 50m2 

8. Demolished areas of sealed surface (where it has 

changed to grass/crops) > 50m2 

9. New linear features (e.g. fences, walls, hedges, roads, 

tracks and paths) > 25m long 

10. Demolished linear features (e.g. fences, walls, hedges, 

roads, tracks and paths)  > 8m long 
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Whilst in certain cases these size thresholds are the same as in 

the data capture specification (e.g. new areas of trees or scrub 

>1000m2), for other features a larger size than the specified 

minimum is used (e.g. new or extended buildings >50m2, where 

the specified minimum is 8m2).  This proved necessary to 

minimise the number of false positive change candidates.  For 

example, smaller features identified as new buildings were 

usually errors (caused by issues such as overthrow from tall 

buildings or DSM ‘drape’ where the DSM fails to accurately 

model the vertical sides of features such as buildings) or 

genuine features that we do not want to capture in the 

topographic database, such as vehicles or overhanging roofs.  

Initial investigations with our data collection department 

indicate that these minimum sizes still deliver an acceptably 

high proportion of the genuine changes, but the thresholds may 

be reviewed in future if necessary. 

 

The different types of change are detected at different stages of 

the process and with different techniques.  This increases 

accuracy by ensuring the filtering processes are specific to the 

causes of false positives particular to that type of change.  The 

change detection processes take place within the same 

automatic eCognition® workflow as the classification stages. 

 

Possible new area features (items 1, 3, 5, 7 in the list above) are 

found by intersecting the classification result with the 

topographic data to find discrepancies between them.  A series 

of additional rules are then applied depending on the type of 

change to filter out the false positives.  For new buildings, the 

most common cause of false positives is DSM ‘drape’ and 

errors in areas that the image matching software cannot 

correlate correctly due to deep shadow or repeating textural 

patterns (e.g. in recently ploughed fields).  To remove these 

false positives rules relating to the slope, shape and brightness 

of the predicted objects are used.  Another common cause of 

false alarms is temporary ‘clutter’ (e.g. vehicles, spoil heaps), 

which are filtered by height, slope and shape criteria.  For trees 

and scrub, false alarms are primarily caused by overhanging tree 

canopies.  These are filtered using shape criteria.  Finally, for 

new water features the most common cause of false positives is 

deep shadow, which is filtered by shape and context. 

 

Possible demolished features (items 2, 4, 6, 8 in the list above) 

are detected by first intersecting the features in the original 

topographic database with the classification.  However, features 

that are initially predicted as demolished from the classification 

undergo additional tests to remove false positives.  For example, 

buildings in the topographic database are flagged as potentially 

demolished if less than 80% of their area is classified as 

building.  Further checks on the height and perimeter slope of 

the building footprint from the topographic database are used to 

minimise false positives caused by low buildings being omitted 

from the initial classification.  Similarly for water features, 

those predicted as demolished by the classification are tested 

further using more generous image tone thresholds relative to 

those used in the initial classification.  

 

Possible new and demolished linear features (items 9 & 10 in 

the list above) cannot be identified using the classification.  

Instead Canny edge detection and line extraction algorithms are 

used to identify significant linear edges in the imagery.  For new 

linear features, all the detected lines that fall outside buildings 

or lines already in the topographic database are identified as 

possible new linear features.  However, extensive filtering using 

image brightness and shape criteria is required to reduce the 

many false positives created during this process by features such 

as shadows, transitions between grass and crops not associated 

with boundary features, tractor lines etc.  Tractor lines through 

crops (created during crop-spraying) present a particular 

challenge as they often appear visually similar to genuine paths.  

These are filtered by determining their position relative to the 

main direction of all detected lines within a given field and to 

the field perimeter.  This enables the process to retain a new 

path running across a field while filtering out the tractor lines.   

 

Finally, demolished line features are detected by testing the 

existing ‘obstructing’ lines (which includes fences, walls and 

hedges) and road, track and path edges from the topographic 

database against the results of the Canny edge detection and line 

extraction algorithms.  This is done in two stages, to identify 

any existing line in the database that either appears completely 

removed or that has a gap of at least 25m within it.  The 

classification is used to mask out areas of trees because the 

presence of a line feature cannot be verified 

photogrammetrically where there are overhanging trees.  

 

 

3. TRIAL RESULTS 

3.1 Trial data 

The classification and change detection results were tested on a 

5x5km area of rural geography near Coventry, West Midlands, 

UK.  The imagery was captured by COWI (a third-party 

contractor for Ordnance Survey®) on 22nd May 2010 at a 

panchromatic resolution of 25cm GSD.  This is the lowest 

resolution imagery that the method is designed to use, so better 

results would be expected on higher resolution imagery.  The 

existing topographic data was then updated in ESRI® ArcGIS® 

10 using the ‘change candidates’ produced by the method 

described above (sections 2.1 and 2.2).  The results of this trial 

are discussed in two parts, first the classification (section 3.2) 

and then the change detection (section 3.3). 

 

3.2 Classification Results 

It is important to ascertain the accuracy of the classification 

itself as it is instructive in interpreting its suitability as the basis 

for change detection.  It is also relevant as there are other 

potential applications for the classification output discussed in 

section 4.2).  The classification accuracy is assessed against a 

stratified random sample of 600 points based on the strategy 

recommended by Congalton (1991).  For the less common land 

cover types 50 samples were used (water and scrub), while for 

the more common land cover classes and those with greater 

intra-class variability 100 samples were used (buildings, sealed 

surface, unsealed surface, trees, grass/crops).  Due to logistical 

constraints, it was not possible to complete a ground survey. 

Therefore, the land cover was assessed by manual interpretation 

of the corresponding pansharpened RGB imagery, which was 

deemed sufficient given the broad classes involved.  

 

The image and classification result for a part of the test area are 

shown in Figure 1, below. 
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Figure 1: Aerial image and classification results (pink = 

buildings, dark green = trees, mid-green = scrub, light green = 

grass/crops, yellow = unsealed surface, grey = sealed surface) 

 

The classification error matrix is shown in Table 1. 

 

% O 3.4 14.4 14.4 6 5.2 18.2 17.5 - 

 

Table 1: Error matrix for classification (B= Buildings, SS = 

Sealed Surface, US = Unsealed Surface, W = Water, T = Trees, 

SC = Scrub, G = Grass/crops, % of C = Percent of Commission 

Errors, % of O = Percent Omission Errors,) 

 

The error matrix for the classification shows that the 

classification has a high overall accuracy of 88.5% (Table 1).  

This indicates it is potentially suitable as the basis for an 

automatic change detection method. 

 

The scrub class has the lowest classification accuracy, with a 

commission error of 28%.  The majority of this error was due to 

‘rough’ grass being misclassified as scrub (also accounting for 

the majority of the grass omission error of 17.5%).  Scrub often 

displays similar spectral and height characteristics to ‘rough’ 

grass meaning that making a satisfactory distinction between 

these classes is difficult, particularly because the segmentation 

often fails to split these classes correctly.  Errors also occur in 

residential gardens where grass is often misclassified as scrub 

because the relatively low resolution DSM does not model 

‘clutter’ in back gardens satisfactorily. 

  

Scrub was also occasionally misclassified as trees (and vice 

versa), which accounts for the vast majority of the scrub 

omission error of 18.2%.  The classification does not use an 

nDSM height threshold to distinguish scrub from trees, because 

the nDSM is unreliable (as discussed in section 2.1).  Instead it 

relies on DSM height relative to neighbouring objects, which is 

also not always reliable.  It is not possible to improve the 

classification using spectral characteristics as the scrub and tree 

classes can be composed of the same species.  Indeed, it is often 

difficult for a photogrammetrist to manually distinguish 

between these two classes.  

 

Unsealed surface also had a relatively low classification 

accuracy, with an omission error of 14.4%.  The majority of this 

error was due to sparse or patchy (low NDVI) grass being 

misclassified as unsealed surface.  Fields that have been cut for 

hay production, thus exposing grass stubble and bare earth, 

were also occasionally misclassified as unsealed surface.   

 

Whilst the building classification accuracy looks reasonable, the 

commission error (14%) was higher than expected for a number 

of reasons.  Unsealed surface (and to a lesser extent, sealed 

surface) is sometimes misclassified as building due to ‘drape’ in 

the DSM.  Highly textured ground surfaces (such as recently 

ploughed fields) occasionally produce errors in the production 

of the DSM resulting in reasonably large areas of unsealed 

surface being misclassified as building.  Finally, as the imagery 

was captured during the early part of the flying season some of 

the trees are covered in blossom.  These trees and shrubs exhibit 

similar height and slope values to buildings, whilst also 

displaying spectral ratio values which prevent them from being 

correctly classified as trees.  This can result in small areas of 

vegetation being misclassified as buildings. 

 

The water classification accuracy was better than expected 

based on previous observations.  A lower than expected 

omission error of 6% reflected the fact that the waterbodies in 

the test area were relatively spectrally invariant.  Higher spectral 

variation between waterbodies within a scene can cause errors 

as the threshold values in the classification are set from the 

scene (as described in section 2.2).  In addition, we have 

previously observed accuracy issues with turbid and part-

vegetated waterbodies.  The observed commission errors were 

confusion between sealed surface and water, due to the spectral 

similarity between water and asphalt or tarmac. 

 

 

 

 Reference data  

Class B SS US W T SC G Total 

B 86 3 9 0 2 0 0 100 

SS 3 89 5 3 0 0 0 100 

US 0 9 83 0 0 1 7 100 

W 0 3 0 47 0 0 0 50 

T 0 0 0 0 91 6 3 100 

SC 0 0 0 0 3 36 11 50 

G 0 0 0 0 0 1 99 100 

Total 89 104 97 50 96 44 120 600 

% C 14 10 17 6 9 28 1 - 

88.5 Overall accuracy (%) 

Kappa coefficient  0.86 
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3.3 Change Detection Results 

To ascertain the accuracy of the change detection output a 

rigorous manual comparison was made between the topographic 

data and the pansharpened RGB aerial imagery, in order to find 

all the changes that required an update according to Ordnance 

Survey’s capture specification.  This was then compared to the 

automatically produced ‘change candidates’ to produce the 

following statistics, 

 

 

 Completeness = (TP / (TP + FN)) *100  (1) 

 

 Correctness = (TP / (TP + FP)) *100  (2) 

 

 

Where: 

TP = True Positives, the number of correctly predicted changes 

requiring a map update 

FP = False Positives, the number of predicted changes that are 

either incorrect or do not require a map update 

FN = False Negatives, the number of changes requiring a map 

update that were missed 

 

Results show a completeness value of 81.7% (compared to a 

completeness of approximately 90% from fully manual change 

detection) (see table 2).  Considering the large variety of 

changes included in the method and the very small extent a 

change can be to require a map update, this result is very good.  

Completeness values are generally highest for demolished rather 

than new features, with completeness of 100% for demolished 

buildings and trees.  This reflects the fact that it is easier to test 

a feature of known class for conformance to that class rather 

than to find a new feature. 

 

Lowest completeness values were seen for new buildings and 

new linear features.  This is due to the stringency of the data 

capture specification for these features.  The new buildings that 

are missed are primarily small (5 are <50m2, and are therefore 

not tested for in the method), or single-storey, flat-roofed 

buildings which are harder to detect.  Similarly, 16 of the 26 

new lines missed were <25m, so although they are within our 

specification, they are below the minimum length the method is 

designed to detect.  Most of the remaining false negatives for 

new lines were alterations to property boundaries, which were 

particularly difficult to detect as they often coincide with garden 

‘clutter’ such as shrubs and sheds. 

 

The results show a correctness value of 25.8%.  In order to 

completely eliminate the need to manually sweep the imagery 

for changed features, it is necessary to detect a very high 

percentage of the true positives present in the scene (i.e. the 

completeness should be a high value).  This was achieved at the 

expense of a low correctness value (i.e. the method identifies a 

relatively high proportion of regions which are not true 

topographic changes).  This trade-off is necessary because it is 

not possible to achieve a high enough completeness percentage 

without creating a significant amount of false positive change 

candidates.  However, a relatively high number of false 

positives is in itself not prohibitive to the success of the 

proposed method, providing that it is quick and easy for a 

photogrammetrist to dismiss these false alarms, which we 

believe to be the case (see figure 2).  This is especially true 

because the proposed change detection flowline has been 

largely automatic up to this point.  To put the reduction of 

manual checking effort into perspective, the 5km x 5km test site 

discussed here contains 11184 topographic area features and 

30184 topographic line features.  Therefore, identifying 799 

features as change candidates, represents a small fraction of the 

topographic data within the area. 

 

The results indicate that correctness was widely variable for the 

different types of change.  New or modified line features had 

the lowest correctness of 18.9% and 134/301 false positive new 

line features were due to tractor lines in crop covered fields.  A 

significant amount of work has already gone in to filtering out 

edges and lines that are detected but are not suitable for 

topographic update.  As discussed in section 2.3 the contextual 

relationship to other tractor lines in a given field is vital to help 

eliminate new line feature false positive change candidates.  

However, any large field that is in practise used by a farmer as 

two or more separate fields, but is represented as one field in 

our data, creates problems that cannot realistically be solved 

using another method without significantly increasing false 

negatives.  The second most common cause of new line false 

positives (67 out of 301) were field margins or other distinct 

linear boundaries between two or more spectrally dissimilar 

crop/grass types.  Ordnance Survey® only maps these boundary 

features where they have fences, hedges or walls associated with 

them.  False positives result where these features are detected 

but exist without an associated obstructing boundary feature.  A 

further 41 new false positives were due to unsealed paths or 

tracks, predominantly around the perimeter of fields.  Those 

features, which are temporary (and almost always only 

accessible by the land owner), are not captured for map update. 

 

New or modified buildings had a correctness of 19.7%.  As 

mentioned in section 3.2, leafless or blossoming trees display 

similar spectral and height characteristics as buildings at the 

resolution of the input data used here.  The resulting 

misclassification of trees as buildings accounts for 50 of the 122 

building false positive change candidates.  A further 34 false 

positives result from the misclassification of sealed or unsealed 

ground surface due DSM ‘drape’ in the input DSM (and 

therefore also in the nDSM and slope model). 

 

New and demolished buildings and line features account for 

67.5% of the total true positive change candidates.  This 

highlights the importance of correctly identifying these types of 

features, despite them also having relatively low correctness 

values. 

 

Table 2: Change Detection results (NB = New 

Buildings, DB = Demolished Buildings, NS = New 

Sealed surface, DS = Demolished Sealed surface, 

NW = New Water, DW= Demolished Water, NT = 

New Trees or scrub, DT = Demolished trees or 

scrub, NL = New Linear features, DL = Demolished 

Linear features, Cm% = % Completeness, Cr% = % 

Correctness)

 NB DB NS DS NW DW NT DT NL DL 

TP 30 21 28 22 1 5 4 7 70 18 

FP 122 39 21 20 1 16 2 11 301 60 

FN 8 0 6 1 0 1 0 0 26 4 

Cm% 78.9 100 82.4 95.7 100 83.3 100 100 72.9 81.8 

Cr% 19.7 35.0 57.1 52.4 50.0 23.8 66.7 38.9 18.9 23.1 

Overall completeness = 81.7 % 

Overall correctness = 25.8% 
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Figure 2: Predicted changes against topographic database 

(yellow = new line features, pink = new buildings, purple = new 

sealed surface, blue dashed = demolished water) 

 

It was not possible to calculate potential efficiency savings as 

part of this trial because we were not able to employ the current 

topographic data capture production software and the trial was 

not completed by data capture production staff.  However, a 

previous internal trial indicated that a method similar to that 

described here could save approximately 50% of the time taken 

to manually search for features requiring an update. 

 

 

4. CONCLUSIONS & FURTHER WORK 

4.1 Production Trial of a Semi-Automatic Change 

Detection Flowline 

Following extensive testing in the Research department, we are 

now planning a full production trial of the proposed change 

detection method.  This trial is expected to take place in 

Spring/Summer 2012.  We are currently working with our data 

collection department to determine the optimum way to display 

‘change candidates’ to photogrammetrists, as this will have a 

crucial role in determining the usability and efficiency of the 

overall process.  This production trial will allow us to carry out 

a full assessment of the time saved by using the change 

detection tool, as well as a more complete accuracy assessment 

of the results.  It is hoped that following this trial the method 

will be implemented in production. 

 

4.2 Alternative Applications for an Automatic Image 

Classification 

The creation of a fully automatic and highly accurate image 

classification as part of this change detection project has 

implications for several other research themes.  The image 

classification could potentially be used both to improve internal 

processes and as a component of future products. 

 

An initial investigation into using the results of the image 

classification element of this work to assist in the automatic 

filtering of DSMs to DTMs has already been completed.  This is 

an important area of research for Ordnance Survey® as we are 

currently assessing how best to produce an enhanced DTM 

product to replace the existing Land-Form PROFILE®.  This 

project used the first pass filtered DTM created by BAE 

Systems SOCET SET NGATE that is automatically generated 

as part of the DSM creation process.  The above ground features 

from the classification (namely buildings, trees and scrub) are 

then used to automatically run additional local filters in areas 

where the DSM has not been correctly filtered to ground level.  

The initial results of this work were encouraging and we intend 

to pursue this further in future.  Increasing automation of the 

filtering processes could significantly increase efficiency, 

though some manual intervention will remain necessary for 

checking the data and adding breaklines for features such as 

retaining walls. 

 

Ordnance Survey® is continually reviewing its product 

portfolio.  One area that several customers have expressed 

interest in is an improved land cover dataset.  As part of a 

project to investigate this market, several organisations have 

been supplied with sample data based on the image 

classification method described above.   
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