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ABSTRACT:  Studies on the relationship between urban land use classes and the urban heat island effect have gradually become 
more important, due to the increasing awareness if this environmental problem. Remote sensed data has been an effective measure 
for monitoring and analyzing urban temperature, but they are less effective in discriminating among areas affected by different 
micro-meteorological behaviours. This paper introduces a methodology to discriminate among zone with different urban climate 
starting from panchromatic VHR data. An automated frameworks assist in characterizing the spatial distribution of the urban 
elements (buildings, roads, urban green) which affect the climatic conditions in urban blocks. The proposed methodology combines: 
automated recognition of building concentrations at different spatial scales and automated information fusion framework in order to 
discriminate among typologies. The methodology is validated by showing results in two different case studies. 
 
 

1. INTRODUCTION 

The traditional description of an urban landscape is based on 
urban land use and land cover classes. Although this is a good 
solution for and cartographic mapping applications, it is not 
always the case for environmental mapping applications. For 
instance, the traditional land use classes do not match those 
needed for urban climate and meteorological studies. To solve 
this issue, a first comprehensive classification systems for 
characterizing the urban environment with respect to urban 
meteorology was developed (Stewart and Oke, 2009, Stewart, 
2009), and the same classification scheme was applied in a 
different environment by Nduka and Abdulhamed (2011). These 
works introduced the so called “thermal climate zones” or 
“local climate zones”, defined as regions of relatively uniform 
surface-air temperature distribution across different horizontal 
scales (Stewart and Oke, 2009). These climate zones can be 
differentiated by means of multiple characteristics of the urban 
2D and 3D landscape, such as the built surface fraction, the 
building height-to-width ratio, the sky view factor (percentage 
of sky visible from the ground), the height of roughness 
elements, the anthropogenic heat flux, and the surface thermal 
admittance. Most of these characteristics, being connected to 
physical characteristics of the urban objects, can be tracked by 
remote sensing data. Until now, however, there are only very 
limited attempts to use remotely sensed images to obtain a 
(semi)automatic mapping of urban areas in terms of this 
taxonomy. Specifically, the latest example is Bechtel (2011), 
where coarse resolution (Landsat) data have been used to map 
these zones and to find their temporal behaviour along more 
years. It is therefore interesting to understand whether VHR 
imagery widely available for various parts of the globe may be 
exploited to map urban area according to this peculiar 
environmental land use legend. Specifically, as the urban 
climate zones are defined by various patterns of buildings and 
values of the radiance (together to the mean value of their 
height), it makes sense to see whether pattern recognition 
algorithms applied to VHR data for urban area discrimination 
from its surroundings may be also used for this task. 
Accordingly, the aim of this paper is to design a methodology to 
discriminate among different urban climate zones starting from 
panchromatic VHR data, and including a variety of spatial 

indices computed with respect to the test scene. In section 2 the 
complete methodology will be introduced, describing the 
different processing step implemented. Experimental results for 
the town of Xuzhou (P.R. of China) and Atlanta (Georgia, 
USA) will be provided in Section 3. Finally, conclusions will be 
drawn in Section 4. 
 

2. THE PROPOSED METHODOLOGY  

The proposed methodology is based on two different sub-
chains. The first one is devoted to the extraction of spatially 
homogeneous urban areas within the scene, which may be 
labelled as “block”. The idea is that these blocks may be then 
assigned, using the second part of the procedure, to one of the 
urban climate zone classes by considering a suitable 
combination of spatial and spectra indexes. 
The first sub-chain can be subdivided into two subsequent steps. 
The first one is the identification of the human settlement as 
opposite to all the other land use classes in the area. To this aim, 
we use the PanTEX index proposed by Pesaresi et al. (2008), 
which proved to be extremely effective on panchromatic images 
at 2.5 m spatial resolution. The area identified as human 
settlement is further segmented into homogenous zone using a 
Spanning Tree Reduction scheme (Marpu et al., 2007) or a 
more complex approach based on combination of geometrical 
features into closed boundaries (Lisini et al. 2005). 
The following sub-chain, aiming at classifying each 
homogenous area into a urban climate zone class, is based on 
the joint analysis of a few indexes which we feel may capture 
most of the features listed in the introduction. To this aim, we 
assume that a multi-scale version of the same index used for 
urban area detection may be useful, as it helps in enhancing 
spatial patterns at multiple geographical scales. To obtain a 
multi-scale PanTex, the same textural feature (contrast) used to 
build the original index is computed with different lag distances 
(which is equivalent to assume a different spatial resolution of 
the data). Additionally, the original image and the results of an 
edge extraction by means of a Sobel filter are included, to insert 
spectral and edge density information, respectively. 
Using these indexes, a decision tree classifier is designed using 
training data and eventually applied to the whole data sets, as 
presented here below. 
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2.1 Segmentation approach 

The two segmentation approaches tested in this work 
correspond to two very different methodologies aiming at 
subdividing a urban area into texturally homogenous blocks. 
Correspondingly, their results are very different on different 
scenes, and the availability of both of them allows choosing 
the best solution for the subsequent analysis and 
classification of these blocks into climate zones. The main 
idea is in any case to avoid under-segmentation (i.e., the 
subdivision into large blocks) and aim at over-segmentation, 
although this may require additional efforts and 
computational power to analyse more blocks that the actual 
number of them in the scene. 
The Spanning Tree Reduction scheme (Marpu et al., 2007) 
adopts an approach, aiming at a spanning tree minimization 
inspired by Duda et al. (2001), together with a region 
growing technique where the graph is used to guide the 
merging process.  The algorithm is based on building a graph 
over the image connecting all the objects, using the Standard 
Deviation to Mean Ratio (SMR) as the homogeneity criterion 
while merging the objects (higher value of this ratio will 
yield bigger objects and vice-versa). This approach was 
designed for multispectral data, and cannot be directly 
applied to panchromatic data, as it is based on a pixel by 
pixel analysis and aggregation. As such, it would result into 
either a hugely under-segmented or a vastly over-segmented 
scene in most of the cases. Better results can be obtained by 
considering as additional band(s) the spatial index(es) 
computed to extract the urban extents. By this way the 
segmentation, although performed at the pixel level, include 
information about the pixel neighbourhood, possibly at 
multiple scales. 
An alternative approach is based on the tools available in the 
Built-up area RECognition tool – BREC (Gamba et al., 
2007), a software developed by the TLC &RS Lab of the 
University of Pavia. The idea is that building blocks in urban 
areas are usually surrounded by rings of roads, and thus any 
area surrounded by a closed road loop can be considered as 
an excellent proxy to an urban block. The segmentation 
approach is therefore made by two steps: 

a) the extraction of the road network in urban areas 
following the approach in Negri et al. (2006) applied 
to the original VHR panchromatic scene of the area. 
The approach extracts road candidates, recognizes 
road junctions and improves the road network by 
minimizing a functional quantifying the plausibility 
of new connections, removals of small or isolated 
segments, or addition of missing roads or road 
segments; 

b) a further regularization of the extracted network to 
characterized closed road loops by considering 
perceptual grouping rules, as suggested for instance  
in Lisini et al (2005) for urban road extraction in 
VHR images. 

As a result, the urban blocks are recognized and made 
available for the following labelling step, performed by 
means of a decision tree. 
 
2.2 Decision Tree definition 

The Decision Tree structure used to label the segmented 
blocks and assign them to the different climate zones has 
been obtained by a detailed analysis of a small sample of the 
blocks in the first test case described in next section. Despite 
this approach is apparently biased by a specific city structure 
and location, the same rules apparently works in different 
locations, as also discussed in the following paragraphs. The 
main rationale is that these rules refer to spatial indexes that, 
in turn, describe quantitatively the spatial structure of the 
different parts of a town.  
The Decision Tree, tuned with empirical tests as explained in 
next section, accepts as inputs three images: 

a) the original image (labelled as OR) 
b) the PanTex filter output with a kernel of 5 x 5 pixels 

applied at the full scale data (P1); 
c) the PanTex filter output applied to a subsampled data 

set at 5 m/pixel. 
The extracted rules are as follows: 
• areas with a pixel value in P5 >= 400 will be labelled as 

"Open set mid rise"; 
• areas showing a pixel value in OR < 120 and in P1 < 

2000 and P5 < 200 will be labelled as "Compact low 
rise"; 

• areas showing a pixel value in OR >= 125 and P5 >= 
210 will be labelled as "Extensive low rise"; 

• areas showing a pixel value in P1 < 2000 will be 
labelled as "Open set low rise"; 

• the rest of the pixels will be labelled as "Dispersed low 
rise". 

Please note that different “range” of pixel values in Pesaresi 
results depend on the specific kernel size used. 
 

3. EXPERIMENTAL RESULTS 

The experimental results of this research come from two 
different datasets. The first test corresponds to the analysis of 
a scene by ALOS PRISM, with a spatial resolution of 2.5 m, 
acquired on August 12, 2008 and depicting a portion of the 
town of Xuzhou, in the Jiangsu province, P.R. of China. The 
second test is small subset of a panchromatic Worldview-2 
image (0.5 m/pixel) covering a portion of the town of Atlanta 
(USA), kindly provided by Digitalglobe.  
For both areas the challenge, as highlighted in the previous 
section, was to use 2D data, without spectral information, to 
obtain spatial indexes allowing an analysis of different zones 
and their classification into thermal climate zones. Results 
depend on both segmentation and decision tree accuracy. An 
incorrect segmentation may result into less precise 
classification of the urban blocks, as the spatial indexes used 

Figure 1.  The overall framework of the proposed procedure. 
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by the decision tree are averaged for each block. The rules 
defined for the decision tree are however more important, as 
they allow to assign each block to a climate zone, once its 
spatial boundaries have been individuated by the 
segmentation step. For this reason, and since the segmented 
urban image can be obtained by various means – not least the 
possibility to use available GIS layer for a town, the 
evaluation will focus in the following paragraph mostly on 
the second step of the procedure, without paying much 
attention to the approach used to achieve a correct 
segmentation. 
 
3.1 1st test area: Xuzhou 

For the first test area five urban climate zones were 
considered, those which are present in the scene settlements: 
“open set mid rise”, “compact low rise”, “open set low rise”, 
“dispersed low rise”, “extensive low rise”. By applying the 
procedure introduced in Section 2 to a first set of urban 
blocks, roughly extracted from the original data and taken as 
a sample set, good results are expected, as this set was used 
to design the rule set described above. Indeed, encouraging 
results are achieved, as shown in fig. 2 together with the 
corresponding colour legend. Misclassifications are of course 
present, but the overall accuracy of the map at the object 
level is quite high, 81%. 
 

   
(a)                                            (b) 

 
Typology Color 

Open set mid rise Red 

Compact low rise Blue 
Open set low rise Green 
Dispersed low rise Yellow 

Extensive low rise Purple 

(c) 
 
Figure 2.  Experimental results: (a) the obtained urban 
climate zone map, to be compared with (b) a ground truth 
obtained by visual classification and superimposed to the 
original data set. Classes are identified by colours according 
to the legend displayed in (c). 
 
In the previous example, the blocks were obtained manually, 
as the focus was on the definition of the decision rules to be 
applied for block labelling. The same approach was however 
applied to the whole urban area, after performing a 
segmentation by means of the two algorithms introduced in 
the previous section. The results are depicted in fig. 3. 
Since the best result is obtained by the second approach, this 
set (including 301 blocks) was used as input to the labelling 
procedure. The final results are shown in fig. 4(a), and should 
be compared with the detailed ground truth in fig. 4(b). 

Although the colour patterns appear visually similar, the 
overall accuracy at the block level is about 51% if computed 
regardless of the block size. Overall accuracy at the pixel 
level instead reaches 63%. The worst discrimination is 
achieved between the “open set low rise” and “dispersed low 
rise” classes and this may be due to the fact that the two 
typologies are very similar considering only two texture 
scales. In the future, the possibility to consider multiple 
scales and possibly (differential) attribute profiles (Della 
mura et al, 2011) will be considered.  
 

   
(a)                                          (b) 

Figure 3.  Segmentation of the PRISM image of Xuzhou, 
P.R. of China: (a) results by using the STM approach, (b) 
results by delineating blocks using the road network. 
 
 

      
(a)                                          (b) 

Figure 4.  Climate zone extraction for the town of Xuzhou, 
P.R. of China: (a) final results of the proposed segmentation 
and classification procedure (b) detailed ground truth 
obtained by manually delineating and labelling individual 
blocks. 
 
One important comment ion these numbers is that the ground 
truth maps was not obtained by a meteorologist, but by a 
remote sensing specialist, and using the panchromatic band 
only. Accordingly, we do not expect a 100% accuracy of the 
ground truth, and a better validation procedure, including in 
the loop local experts, is definitely required. As such, the 
level of accuracy shown above should be considered as 
matching the level of uncertainty in the validation set. Just to 
further prove this fact, in fig. 5 a panchromatic and the 
corresponding pansharpened image of a small portion of the 
area are depicted. The two additional images in this figure 
correspond to two different visual assessments of the urban 
climate zones, made by two different experts and using the 
same colour legend as in fig. 2. It is clear that the 
panchromatic image do not allow an easy discrimination of 
the classes, “open set mid rise” and “open set low rise”. The 
colour image may provide hints for discrimination, but these 
are connected to a priori knowledge of building typologies 
and thus not easily generalizable. 
 

072



       
 (a)                                       (b) 

      
(c)                                          (d) 

Figure 5.  Example of problematic assignment of urban 
blocks to urban climate zones: (a), (b) two different visual 
interpretations by remote sensing experts, to be compared 
with the block borders superimposed to (c) the panchromatic 
and (d) the colour image of the same area. 
 
3.2 2nd test area: Atlanta 

For the second test site, a panchromatic image covering a 
portion of the town of Atlanta was used. The corresponding 
multispectral data set is depicted in fig. 6.  
 

                    
Figure 4.  Second test set used for validation: a portion of the 

town of Atlanta (USA). 
 

For this area, the same methodology was applied, with the 
only difference that only 4 urban climate zones were used; 
“Open set mid rise”, “Open set low rise”, “Dispersed low 
rise”, “Extensive low rise”. Indeed, visual inspection of the 
area cannot discriminate more than 4 different urban patterns.  
As for segmentation results, the two methodologies proposed 
above were tested, but didn’t provide a fine enough 
delineation of the city blocks. Thus, confusing demarcation 
would have decreased accuracy results in the next step. 
Therefore, while further research is ongoing on this first step, 
and in order to focus on testing the decision rules, a manual 
block delineation using multispectral data was performed. 
Accordingly, the scene was subdivided into 17 blocks as 
shown in fig. 7(a).  
The final mapping results using the same rules described in 
section 2 for the Xuzhou test are proposed in the same figure. 
A comparison with a manually extracted ground truth (fig 7c) 

show that only three blocks (highlighted in red) are 
misclassified, an excellent result, especially because it was 
obtained by using the same parameters considered on a 
different location, with very different data.  
As a matter of fact, he overall accuracy value for this second 
test site was computed as 82.5%, higher than in the previous 
test case, mostly because of the reduced number of classes 
and the smaller number of blocks considered in this image. 

 

 
(a) 

 

 
(b) 

 
Figure 7. Experimental results second test set: (a) the 
extracted urban climate zone map (color legend is the same 
as in fig. 2), to be compared with (b) the ground truth 
obtained by visual classification of the segmented blocks into 
climate zones. 
 
 

4. CONCLUSIONS 

The preliminary results reported in this work show that it is 
feasible to use VHR optical data for urban climate zone 
discrimination. The proposed approach is based on spatial 
indexes, able to model building patterns and this recognize 
dense versus sparse area. The information about the third 
dimension may be inferred from the availability of shadows, 
and thus again by spatial patterns in the original image, but 
the results in this work show that this is not an easy task, and 
that it is very difficult to use this kind of information in an 
efficient manner. The straightforward extension of this 
approach would be the use of VHR data including both 2D 
and 3D information, such as the multi-views data sets 
available by Worldview-2, from which a complete Digital 
Surface Model can be extracted to complement the bi-
dimensional image data. 
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