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ABSTRACT: 

 

Airborne LiDAR point clouds classification is meaningful for various applications. In this paper, an object-based analysis method 

is proposed to classify the point clouds in urban areas. In the process of classification, outliers in the point clouds are first removed. 

Second, surface growing algorithm is employed to segment the point clouds into different clusters. The above point cloud 

segmentation is helpful to derive useful features such as average height of points in a segment, average reflectance, segment 

size/area, orientation, proportion of multiple echoes in a segment, average of elevation differences between first pulses and last 

pulses, slope, elevation difference, rectangularity, eolngatedness, and compactness. At last, SVM-based classification is performed 

on the segmented point clouds with radial basis function as kernel. Two datasets with high point densities are employed to test the 

proposed method, and three classes are predefined. The results suggest that our method will produce the overall classification 

accuracy larger than 96% and the Kappa coefficient larger than 0.96. 

 

 

                                                             

*Corresponding author. linxiangguo@gmail.com  

1. INTRODUCTION 

Over the last passed two decade, airborne Light Detection and 

Ranging (LiDAR) is probably the leading technology for the 

extraction of information about topographic surfaces. The main 

advantage of LiDAR technique is that it provides dense, 

discrete, detailed and accurate point coverage over both the 

objects and surfaces, which has led to an increasing interest in 

utilizing the data for a range of applications such as mapping, 

forestry, urban planning, telecommunication etc. Despite most 

of technical hardware difficulties and system integration 

problems have been solved, the development of algorithms and 

methods for interpretation and modelling of LiDAR data is 

urgently needed (Axelsson, 1999). Considering the unique 

characteristics of LiDAR, the full exploitation of its potentials 

and capabilities needs new data processing methods that are 

fundamentally different from the ones used in traditional 

community of photogrammetry and remote sensing. One of the 

data processing methods urgently needed is to label the point 

clouds with different classes such as ground, building, bridge, 

tree etc. The above labelling process is also known as point 

cloud classification. 

Two ways are often utilized to classify the point clouds into 

different subsets. One is to separate the ground from non-

ground LiDAR measurements first, and then to split non-

ground measurements into low vegetation points, high 

vegetation points, building points etc. Particularly, the process 

of classifying a LiDAR dataset into ground (bare-earth) 

measurements and non-ground measurements is termed as 

filtering. Numerous algorithms have been developed for 

filtering, and the existing approaches can be categorized into 

morphological (Vosselman, 2000; Zhang et al. 2003), surface-

based (Kraus and Pfeifer,1998; Axelsson, 2000) and segment-

based (Sithole, 2005) filters. In 2004, Sithole and Vosselman 

(2004) made experimental comparison of filter algorithms for 

bare-Earth extraction from airborne laser scanning point clouds. 

The results show that all filters perform well in smooth rural 

landscapes, but all produce errors in complex urban areas and 

rough terrain with vegetation. After filtering is performed, low 

vegetation measurements, higher vegetation measurements and 

building measurements can be identified by the features such 

as height differences on the normalized digital surface model 

and local height variance, as done in the commercial 

TerraSolid software (Terrasolid Ltd, 2011).  

The other way is to separate grounds, buildings, trees, and 

other kinds of measurements from LiDAR data simultaneously. 

For example, Elberink and Mass (2000) segments raw laser 

scanner data in an unsupervised classification using anisotropic 

height texture measures, which suggests that anisotropic 

operations have the potential to discriminate between 

orientated and non-orientated objects. Petzold and Axelsson 

(2000) find that the reflectance of the laser echo is a good 

feature to discriminate the neighbouring objects. Secord and 

Zakhor (2007) proposed an approach to detecting trees in 

registered and fused aerial image and LiDAR data, and a 

support vector machine (SVM) is utilized to classify the 

segmented images. Despite the outcomes of data fusion are 

promising, data fusion is not included in this paper due to its 

complexity in registration. Golovinskiy et al. (2009) designs a 

system for recognizing objects in 3D point clouds obtained by 

mobile laser scanning in urban environments, and the system is 

decomposed into four steps: locating, segmenting, 

characterizing, and classifying clusters of 3D points. 

The above classification approaches have made great progress. 

However, most of them only make use of the features about 

local neighbourhood without topological and geometric 

considerations. As a result, the traditional methods cannot 

provide reliable results due to the lack of prior knowledge in 
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the process of classification. Fortunately, the processing of 

LiDAR data can be strengthened by first aggregation points 

and then analyzing segments rather than individual points 

(Filin and Pfeifer, 2006). As a matter of fact, segmentation can 

provide more reliable results since geometric and topological 

information is considered in the step of classification 

(Vosselman, 2009). 

In this paper, an object-based analysis method is proposed to 

classify the point clouds in urban areas. The main innovation of 

the above proposed method is that the classification is made in 

segment-wise style rather than point-wise one, which is helpful 

to make use of more prior knowledge. 

 

 

2. THE PROPOSED METHOD 

The proposed object-based analysis method for point clouds is 

composed of four key steps: outlier removal, point cloud 

segmentation, features extraction and SVM-based 

classification.  

 

2.1 Outlier removal 

Generally, original airborne LiDAR data contains outlier. 

Outlier elimination is one of the key steps in the post-

processing of airborne LIDAR point cloud data, and it has a 

significant influence on the subsequent classification operation. 

In this paper, the method proposed by Silván-Cárdenas and 

Wang (2006) is used to remove the outliers. Particularly, 

outliers were removed by two sub-steps. In the first sub-step, 

the elevation histogram was examined and elevation thresholds 

were set up to eliminate the lowest and highest tails from the 

distribution. Remaining outliers were searched using the 

minimum height difference of each point with respect to all its 

neighbours. A Delaunay triangulation was used to define the 

neighbours of each point. Points that were too high or too low, 

with respect to their neighbours, were removed from the 

dataset. 

 

2.2 Segmentation by Surface Growing 

Segmentation is often the first step in extracting information 

from a point cloud (Vosselman and Klein, 2010). Similar to 

image segmentation, the point cloud segmentation refers to the 

operation that will separate points into different groups based 

on characteristics without knowledge of what they really are. 

The most common segmentations of point clouds are those that 

group points that fit to the same plane, smooth surface, sphere 

or cylinder etc. There are a variety of airborne LiDAR point 

cloud segmentation methods, such as scan line segmentation 

method (Sithole, 2005), slope adaptive neighbourhood method 

(Filin and Pfeifer, 2006), octree-based split-and-merge method 

(Wang and Tseng, 2010). 

Among the methods, surface growing algorithm proposed by 

Vosselman is selected in this paper. Surface growing algorithm 

can be considered as an extension of the well-known region 

growing method into three dimensions. For processing point 

clouds, surface growing algorithm can be formulated as a 

method of grouping nearby points based on some homogeneity 

criterion, such as planarity or smoothness of the surface 

defined by the grouped points (Vosselman and Klein, 2010). 

Surface growing algorithm is composed of two steps: seed 

detection and growing. The seed detection is performed using 

3D Hough transform algorithm. In the seed detection step, 

select an arbitrarily point to be segmented, and chose all points 

within some radius around the point. If a robust plane through 

the above point is found by 3D Hough transform, then the 

coplanar points form a seed surface. In the growing step, the 

points of the seed surface are put into a stack. For each point in 

the stack, the neighbouring points are searched using a data 

structure such as KD-tree (Arya et al., 1998), octree or 

Delaunay triangulation. If a neighbouring point has not yet 

been assigned to a segment, it is verified to determine if the 

point can be inserted into the surface. If the point is qualified, 

i.e. the point is within some distance of the fitted plane by the 

points in surface, the surface label is assigned to the point and 

the point is put into the stack. Otherwise, the point is popped 

out the stack. Later, process the next point in the stack. In this 

way, all points in the stack are processed and the surface is 

expanded until no more neighbouring points are inserted. 

Examples of point cloud segmentation are shown in Figure 

1(b), Figure 2(b), Figure 4(b) and Figure 5(b), respectively. 

 

 
(a) 

 
(b) 

Figure 1. Point cloud segmentation: (a) point cloud coloured by 

height; (b) segmented point cloud coloured by label number. 

 

2.3 Features extraction 

The above segmentation process will produce many segments, 

the points in each segment nearly being coplanar. Thus, some 

useful features will be derived from the segments. Features 

employed in our method consist of average height of points in a 

segment, average reflectance, segment size/area, orientation, 

proportion of multiple echoes in a segment, average of 

elevation differences between first pulses and last pulses, slope, 

elevation difference, rectangularity, eolngatedness, and 

compactness. The above eleven features will be calculated as 

follows: 

(1) Average height is defined as the mean of the elevation 

values of the points belonging to the segment. Height or 

elevation is helpful to distinguish the point clouds in flat 

urban scene. For example, the lowest segment is usually 

the ground, while the highest segment is usually the 

building. However, this is not the case in the urban scenes 

with steep terrain. Thus, the feature about average height 

is selective for the human operators in the classification. 

(2) Average reflectance defined as the mean of the reflectance 

values of the points belonging to the segment. Vegetations 

often have high reflectance compared to the other types of 

objects when the near-infrared laser is employed.  

(3) Segment size is defined as the number of points in a 

segment. The size is probably the most distinguishable 

feature for the segmented point clouds in urban areas. It is 

most likely that the larger segments belong to the ground, 
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the segments with medium sizes belong to the building, 

and the smaller segments belong to the vegetation, as 

shown in Figure 1(b) and Figure 2(b). 

(4) Orientation is defined as the angle between the segment 

plane and the horizontal plane. For example, ground 

surfaces are often horizontal, walls are usually vertical, 

roofs are never vertical.  

(5) Proportion of multiple echoes is defined as the ratio of the 

number of the points belonging to the multiple echoes to 

the segment size. Currently, the multi-pulse airborne 

LiDAR system is capable of recording both singular 

returns/echoes and multiple returns, and the difference 

between the above two types of echoes is that whether a 

laser pulse would occur multiple reflections (Shen et al., 

2012). Experiments suggest that segments belonging to 

the trees contain few points in which the multiple returns 

occupy a proportion more than 50%. Simultaneously, the 

segments belongings to the building contain a large 

number of points in which singular returns occupy a 

proportion more than 90%.  Therefore, the feature about 

proportion of multiple echoes is also informative, as 

shown in Figure 2(c) and (d). 

(6) Average of elevation differences between first pulses and 

last pulses is defined as the mean of the elevation 

differences between first pulses and last pulses in a 

segment. This feature is also useful to detect trees. 

(7) Slope of a segment is defined as the angle between some a 

segment and a horizontal plane. Slope is also predictable. 

For example, ground surfaces are somehow horizontal in 

urban, walls are usually vertical, roofs are never vertical.  

(8) Elevation difference is calculated as average heights 

difference between some a segment and the segment with 

lowest average height within a fixed radius. Elevation 

difference is also a good feature to differentiate the point 

clouds. For example, the vegetations and the buildings are 

usually higher than the ground segments, and the trees are 

usually higher than the grasses. 

(9) The three features about rectangularity, eolngatedness, 

and compactness reflect the geometric shape of a segment. 

Their calculation refers to (Benz et al., 2004). The shape 

is useful to detect the man-made objects. For example, the 

buildings are rectangular, the roads are elongated. The 

cores of calculating the three shape features are to obtain 

the minimal oriented bounding box (MOBB) and 

polygonal boundary of each segment/cluster, as shown in 

Figure 3. The details of calculating MOBB and polygonal 

boundary referrer to Wang and Tseng (2010). 

 

   

(a)                                             (b) 

 

(c)                                             (d) 

Figure 2. Point cloud segmentation and comparison of pulse 

returns for grounds, buildings and trees: (a) point cloud 

coloured by height; (b) segmented point cloud coloured by 

label number; (c) points which belong to pulses with single 

returns, coloured by label number; (d) points which belong to 

multiple returns, coloured by label number. 

  
(a)                                (b) 

Figure 3. A cluster’s boundary (a) and minimal oriented 

bounding box (b). 

 

2.4 SVM-based classification 

SVM is a mathematical tool which is based on the structural 

risk minimization principle and it tries to find a hyperplane in 

high dimensional feature space to solve some linearly 

inseparable problems (Vapnik, 1995). The SVM has been 

applied within the remote sensing community to multi-spectral 

and hyperspectral imagery analysis. In the following, the 

mathematical formulations of SVM are outlined briefly. 

Considering a two class classification task, 

1 1 2 2( , ),( , ), ,( , ), { 1, 1}k kx y x y x y y  
 denotes the 

training samples with k members. The objective function and 

constraints of the primal problem for classification of SVM can 

be written in equation (1) and (2): 

                             (1) 

s.t                      

                     (2) 

where  is the number of training samples, and the slack 

variables  the regularization parameter  are introduced to 

take into account non-separable data. The constant  is used as 

a penalty for the samples that are located on the wrong side of 

the hyperplane, and it controls the shape of the discriminant 

function. The minimization problem in equation (1) can be 

solved through a Lagrange dual optimization, and the final 

hyperplane decision function can be defined using the kernel 

methods: 

              (3) 

where  is a kernel function and  are Lagrange 

multipliers.  is the set of support vectors, which is the subset 

of training samples corresponding to the non-zero Lagrange 

multipliers. The kernel function is introduced into the SVM so 
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that the original input space can be transformed non-linearly 

into a higher dimensional feature space where linear methods 

may be applied. A Gaussian radial basis function (RBF) is 

used in this study since it has been proved effective in many 

classification problems: 

)                       (4) 

where    is the RBF kernel parameter. 

 

3. EXPERIMENTS AND RESULTS ANALYSIS 

A prototype system for object-based point clouds classification 

is developed in VC++6.0 IDE plus OpenGL library under Win-

XP OS to verify our approach. For the implementation of SVM, 

the software package LIBSVM by Chang and Lin (2001) was 

adapted. 

 

3.1 Testing data 

Two point cloud datasets are used to test our approach. The 

first data is over a residential of Melbourne, Australia with 

82m width and 122m length, as shown in Figure 4(a). The 

dataset is with a point density approximately 40 points/m2, and 

maximum number of returns of per pulse reaches to 4. The 

ground surface is very flat, and there are many trees around the 

houses. The sizes and heights of trees vary very much. The 

second data is over the town of Enschede, the Netherlands with 

201m width and 152m length, as shown in Figure 5(a). The 

dataset was recorded with the FLI-MAP 400 system with 

approximately 30 points/m2, and maximum number of returns 

of per pulse reaches to 4. The ground surface is flat. There are 

some very large trees and some large buildings in this scene. 

The sizes of buildings vary greatly while most of the shapes of 

building roofs are rectangular. 

 

 
(a) 

 
(b) 

ground

vegetation

building

vehicle  
(c) 

Figure 4. Point cloud classification of the first scene: (a) point 

cloud coloured by height; (b) segmented point cloud coloured 

by label number; (c) classification result by our method. 

 

 

3.2 Results 

In the process of classification, the samples of three classes, 

including ground, building,  trees, and vehicles are selected 

and used to train the SVM classifier for the first dataset. The 

former three classes are focused on for the second dataset. ( , 

) is set to (115.0, 0.25), and (90.0, 0.29) for the two tests, 

respectively.  

The two experimental results are showed in Figure 4 (c) and 

Figure 5(c) respectively. Visual observation tells us that our 

proposed method works well on the two testing datasets. In 

detail, it is capable of distinguishing most of the ground points, 

building points and trees points, and there are few ground 

points misclassified as other types of objects. However, there 

are indeed some misclassified points. Obviously, some tree 

points are mistakenly classified into the building points in the 

first scene, as shown in Figure 4(c); some dormer points on the 

roofs are misclassified into tree measurements, as shown in 

Figure 5(c). Overall, the results of the classification are 

satisfied. 

 

  
(a) 

 
(b) 
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ground

vegetation

building  
(c) 

Figure 5. Point cloud classification of the second scene: (a) 

point cloud coloured by height; (b) segmented point cloud 

coloured by label number; (c) classification result by our 

method. 

 

In order to quantitatively evaluate our proposed algorithm, we 

manually perform a classification of the above two datasets, 

which makes the reference data. In the reference data, the wall 

points are labelled as building points, power lines points are 

labelled as tree points. Thus, a confusion matrix is derived by 

comparing the automatic classification results and manual 

classification results. 

The statistics suggest that our proposed method has a very high 

classification accuracy for both the two testing datasets. 

Particularly, the overall classification accuracy is larger than 

96%, and the Kappa coefficient is not lower than 0.96. 

Additionally, both of produce accuracy are higher than 98% for 

the ground class, 92% for tree class, 94% for building class; 

both of user accuracy are higher than 97% for the ground class, 

83% for tree class, 91% for building class. The above accuracy 

is meaningful to other applications such as digital terrain 

model generation and building detection. Overall, our method 

obtains a desired accuracy in point cloud classification. 

 

 

4. CONCLUSION 

Airborne LiDAR point cloud classification is meaningful for 

various applications, but it is a changeling task due to its 

complexity. In this paper, an object-based analysis method is 

proposed for classifying the point clouds in human settlements. 

In the process of classification, surface growing algorithm is 

employed to segment the point clouds into planar faces or 

smooth surfaces, and eight features are derived and employed 

to separate the point clouds into ground measurements, 

building measurements and tree measurements. Two datasets 

are employed to test our proposed method. The results suggest 

that our method will produce good classification. However, the 

proposed method still has some limitations such as it will 

misclassify some building points and tree points. The future 

work will focus on improvement of the surface growing 

algorithm, introduction of topological analysis, and selection of 

better classifier to increase the accuracy of classification. 
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