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ABSTRACT: 
 

Gully erosion is a major cause of sediment movement to water courses and can cause significant environmental problems such as soil 

fertility loss, sediment and nutrient discharge, and deterioration of water quality within a catchment. In northern Queensland, 

Australia the discharge of sediments and nutrients into the Great Barrier Reef lagoon may impact on vital marine ecosystems with 

associated consequences for tourism. The volume of sediments discharged from gully erosion in northern Queensland is unknown. 

Therefore, the objectives of this research were to: (1) develop an object-based approach for monitoring gully extent and gully volume 

based on multi-temporal LiDAR data acquired in 2007 and 2010; and (2) assess changes in extent and volume of gullies for three 

selected study sites in northern Queensland. The rule set developed in eCognition 8 could successfully be used for all three study 

sites in the Fitzroy catchment, Queensland to map gully extent and volume. However, the assessment of the results indicated that an 

accurate ground point classification of the LiDAR data will improve the results of mapping gully extent. Although widening of 

gullies was identified in some areas, the main expansion of gully extent occurred near gully heads and meander bends. Deepening of 

gullies resulted in the majority of soil loss. 

 

 

1. INTRODUCTION 

Gully erosion processes significantly degrade land condition 

and have detrimental effects on water quality and sediment 

discharge in a catchment (Poesen et al., 2003). Recent sediment 

tracing work has shown that gullies are a significant contributor 

of sediment loads in the catchments of the World Heritage listed 

Great Barrier Reef in Queensland, Australia. Locating and 

quantifying gullied areas and volumes within a catchment is a 

major challenge for the monitoring and reduction of sediment 

movement to reduce sediment and nutrient discharge into the 

Great Barrier Reef lagoon (McKergow et al., 2005). 

 

Gully erosion can be defined as a process causing removal of 

soil through concentrated surface runoff characterised by 

incised channels greater than 30 cm and generally restricted to 

streams ≤ 3rd order (Peasley and Taylor, 2009). Some of the 

major causes of gullying are triggered by inappropriate 

cultivation and irrigation, overgrazing, logging, road 

construction and urbanization. While gullies have been mapped 

through conventional field surveying, it is labour intensive and 

expensive. Identifying the edges of large gullies is difficult, 

even from in-situ observations. Accurate and spatially extensive 

information on gully location and extent at an appropriate 

spatial scale is essential to reduce sediment movement (Poesen 

et al., 2003). Remote sensing may provide suitable means for 

delineating gully extent. Some studies have successfully 

mapped gully extent using remote sensing, but to derive detailed 

spatial information on gully volume and geomorphic 

characteristics, LiDAR data are required (James et al., 2007). 

Despite the ability to include shape and contextual information, 

object-based image analysis has only been used in very few 

studies for mapping gully extent (Eustace et al., 2009). This 

research builds on that study, but expands the object-based 

processing routine to include the volume estimation and 

assessment of multi-temporal change. 

 

Information on land condition is essential for sustainable 

management of natural resources in rangelands and 

quantification of gully erosion is invaluable for grazing land 

managers and policy makers responsible for sediment loads 

from reef catchments draining into the Great Barrier Reef 

lagoon. Therefore, the objectives of this research were to: (1) 

develop an object-based approach for monitoring gully extent 

and gully volume based on multi-temporal LiDAR data; and (2) 

assess changes in extent and volume of gullies for three selected 

study sites in northern Queensland, Australia. eCognition 8 was 

used for the object-based classification of gully extent and 

volume. Changes occurring in gully extent and volume were 

assessed based on LiDAR data captured in 2007 and 2010 of the 

three study sites. Challenges related to object-based multi-

temporal analysis of gully extent and volume using LiDAR data 

will also be identified and discussed. The derived results will be 

used to support calibration and validation of gully extent and 

volume at the catchment scale using optical and ancillary spatial 

data to map and model the probability of gully erosion. 

 

 

2. STUDY AREA 

The study area was located within the northern parts of the 

Fitzroy catchment, Queensland, Australia and consisted of three 

sites each covering two LiDAR transects that were 5.5 km long 

and 0.4 km wide (Figure 1). The three study sites covered an 

area of approximately 4 km2 each and were selected because of 

extensive gully erosion occurring within them (Figure 2). 

Within the study area extensive clearing of woody vegetation 

has occurred in the past and transformed large areas into open 

woodland converted into pastures for beef cattle. However, 

patches of remnant woodland vegetation remain and regrowth is 

common. The major land use is grazing with some agriculture 

also occurring. The soils vary considerably and include 
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extensive areas of fairly erodible red duplex soils and large 

areas of poorly structured sand. The area receives on average 

600-700 mm of rain mainly between October and March. As 

most, but not all, gullies are connected to streams, the sediments 

from gully erosion are often washed into the streams. 
 

 

 

 
 

 
 

    
 

Figure 1. Location of study sites within the Fitzroy catchment in 

Queensland and the area covered by LiDAR data in 2007 and 

2010 within the three study sites. 

 

   

   

Figure 2. Photos of different gully types within the study area. 

 

 

3. DATA AND METHODS 
 

3.1 Image and Field Data 

 

LiDAR data were used to assess changes in gully extent and 

volume and to generate calibration and validation data for 

catchment scale mapping and monitoring. LiDAR data were 

captured for three selected sites in the Fitzroy catchment in 

February 2007 with the discrete return Optech ALTM3100EA 

sensor and in June 2010 using the full waveform Reigl-680 

sensor. The point spacing of the LiDAR data was 0.5 m along 

track and across track. The cloud points were classified into 

ground and non-ground returns by the data providers using 

proprietary software. Substantial research was invested in pre-

processing the LiDAR data sets to understand the effects of 

using different LiDAR sensors and data acquisition 

specifications. Based on this initial LiDAR pre-processing 

research, a suitable spatial scale of mapping was selected to 

account for uncertainties associated with the data.  

 

Field observations of gully location were carried out between 

the 13 and 17 November 2009, including, but not limited to, the 

three study sites. A laptop connected to a GPS receiver was 

used to display pan-sharpened SPOT-5 images with 2.5 m 

pixels in ArcGIS 9.3 while driving along roads. The routes were 

selected based on access and visual identification of potential 

gullies from the pan-sharpened SPOT-5 image data and areas 

with high spatial resolution image data coverage in Google 

Earth. The majority of gullies were identified from the roads 

and immediately marked on the pan-sharpened SPOT-5 image 

in ArcGIS while driving and additional remarks were added 

where appropriate. Other features that had image based 

appearance similar to gullies, such as scalded ground, quarries, 

gravel pits and sandy streambeds were also identified and 

marked on the image. While this allowed classification of 

gullies versus non-gullies, high spatial resolution orthophotos of 

13 cm pixels captured coincidently with the 2010 LiDAR data 

were used to assess and validate the mapping of gully extent. 

 

3.2 Image Processing Methodology 

3.2.1 Data Preparation: To monitor gully extent and volume 

LiDAR derived digital terrain models (DTMs) and terrain slope 

layers were produced from each data set at a spatial resolution 

of 0.5 m. The DTM was produced by natural neighbour 

interpolation of returns classified as ground hits. From the 

DTM, a raster surface representing terrain slope, i.e. rate of 

elevation change in horizontal and vertical directions from the 

center pixel of a 3 x 3 moving window was calculated using 

ArcMap 10. Layers of plant projective cover and a canopy 

height model were also produced as outlined in Johansen et al. 

(Johansen et al., 2011). 

3.2.2 Mapping Gully Extent: As gullies were defined as 

incised channels greater than 30 cm and restricted to streams ≤ 

3rd order, a stream order shapefile provided by the Queensland 

Department of Environment and Resource Management was 

used to eliminate stream banks belonging to streams > 3rd order 

to prevent them from being classified as gullies. This was done 

using the object-based approach described by Johansen et al. 

(2011) to map streambed and riparian zone extent. The 

subsequent classification of gullies was based on the DTM and 

slope layers (Figure 3a,b). To identify edges of gullies, a pixel 

min/max filter using the difference of brightest to darkest pixel 

mode with a 2D kernel size of 5 x 5 pixels based on the DTM 

was applied to produce a new layer (Figure 3c).  
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Figure 3. Steps in the rule set used to map gully extent. (a) 

DTM; (b) slope; (c) filtered layer; (d) strong and weak gully 

edges; (e) buffered gully edges; and (f) final gully classification. 

 

The new layer produced using the filter was used to classify 

strong and weak edges of gullies by setting a threshold of 0.6 

and 0.45, respectively. Weak edges having a relative border of 

less than 10% with strong edges were unclassified to avoid 

classifying sloping land as gullies (Figure 3d). This provided an 

outline of most gully edges within all three study sites. 

Subsequently, strong and weak edges were merged and 

remaining small objects of less than 100 pixels were 

unclassified. The pixel-based object resizing algorithm and the 

coating mode was then used to create a 25 pixel wide buffer 

around objects classified as gully edges (Figure 3e). This 

process was applied to fill out the centre of the gullies with flat 

or limited sloping surfaces generally found at lower elevation 

than the classified gully edges. A chessboard segmentation 

(object size = 5) followed by a multiresolution segmentation 

(scale parameter = 9, shape = 0.1, compactness = 0.5) was 

applied based on the DTM and slope layers to create objects on 

both the outside and inside of the gullies. Those newly created 

objects within the buffer that bordered unclassified objects were 

unclassified. A number of steps then followed to eliminate those 

remaining buffer objects that did not belong to the gullies, 

assuming that buffer objects belonging to a gully would have a 

large relative border to gully edge objects, a small relative 

border to unclassified objects and a lower DTM value than 

adjacent gully edges (Figure 3f). As the buffer did not cover the 

centre sections of large gullies, additional processes were added 

to the rule set to expand these gullies (Figure 4a,b). 

 

  
 

   
Figure 4. Mapping of large gullies. (a) Google Earth image of 

gully extent; (b) initial classification of large gully; (c) 

segmentation of remaining unclassified parts of the large gully; 

and (d) final classification of the large gully. 

 

Those parts of large gullies already classified were reclassified 

as large gullies based on their large area, their compactness and 

density relative to other classified gullies (Figure 4b). A 
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chessboard and multiresolution segmentation (scale parameter = 

10, shape = 0.1, compactness = 0.5) based on the DTM layer 

was applied (Figure 4c). The obtained objects, as opposed to 

using single pixels and the pixel-based object resizing 

algorithm, were required, as the external edge of the large 

gullies did not form a continuous classified edge, but occurred 

with some minor gaps due to sections with limited slope. Using 

pixels or small objects, the growing of the large gullies outside 

the extent of the actual gully occurred due to local elevation 

decreases. The use of larger objects ensured that objects on the 

inside of the gully edges had lower mean DTM values than the 

gully edges and those objects on the outside of the gully edges 

not forming a part of the actual gully. Based on these elevation 

characteristics, the image object fusion algorithm was used to 

grow the large gully objects into non-classified objects of the 

remaining unclassified parts of the large gullies (Figure 4d). 

 

3.2.3 Mapping Gully Volume: To calculate the volume of the 

extent classified as gullies, the outer layer of pixels classified as 

gully edges were initially identified using the pixel-based object 

resizing algorithm and the shrinking mode to classify this line 

of pixels (Figure 5a). The volume per pixel within the gullied 

areas was calculated using a number of Update Variable 

algorithms developed. First the mean elevation difference 

between edge pixels and the adjoining gully pixels were 

calculated. This layer of joining pixels was then classified as 

edge pixels, i.e. two layers of edge pixels were produced. A 

loop was then introduced where the following four steps were 

progressively repeated to calculate the elevation difference 

between the gully pixels and the edge pixels within the closest 

Euclidean distance: (1) For pixels adjoining the new layer of 

edge pixels, the accumulated elevation difference of the 

adjoining edge was calculated; (2) Next the difference in 

elevation between the edge pixel and adjoining pixels was 

calculated; (3) An updated accumulated elevation difference 

measure was calculated by adding the accumulated elevation 

from (1) with the elevation difference from (2); and (4) The 

pixels adjoining the edge pixels were classified to become the 

new edge pixels (Figure 5b). This loop was then repeated for the 

next adjoining layer of pixels until all pixels classified as gully 

were processed. This means that each single pixel classified as 

gully consisted of a calculated volume in relation of the nearest 

gully edge (Figure 5c). 

 

3.2.4 Multi-Temporal Analysis of Gully Extent and Volume: 

Visual interpretation of the mapping results revealed that some 

areas with sloping land had incorrectly been classified as 

gullies. To ensure a more appropriate interpretation of changes 

in gully extent and volume, the classified gullies or sections of 

gullies within each of the study areas were subset to exclude 

areas with sloping land. This produced 10, 5 and 4 subsets 

within the three study sites, respectively. For the selected gully 

subsets, a change detection map of gully extent was produced. 

In addition, the overall extent and volume of the gullies in 2007 

and 2010 were calculated. A comparison of the extent and 

volume assessed within 1 m depth intervals was conducted for 

the gullies mapped by the LiDAR data from 2007 and 2010. 

 

3.2.5 Accuracy Assessment: Only gully extent mapped from 

the 2010 LiDAR data was validated based on the high spatial 

resolution orthophotos captured coincidently with the 2010 

LiDAR data. A total of 50 validation points within each study 

site using the subset gullies were selected from the orthophotos 

as well as another 50 validation points within areas classified as 

gullies using the object-based approach. This produced a total of 

300 validation points for the three study areas. User’s and 

producer’s accuracies were calculated for gully extent. 

 
 

 
 

 
Figure 5. Mapping gully volume. (a) Classification of gully 

edge; (b) calculation of gully volume for each pixel based on 

elevation difference to the gully edge; and (c) final gully 

volume classification. 

 

 

4. RESULTS AND DISCUSSION 
 

4.1 Object-Based Image Classification 

The results of the object-based classification of the three 

LiDAR study sites revealed that the same rule set could be used 

for both the 2007 and 2010 LiDAR data and for the three sites 

for mapping gully extent. The only part of the rule set that 

required minor adjustment, was the step that eliminated 

remaining buffer objects not belonging to the gullies (Figures 

3e,f). The calculation of the gully volume worked in all cases, 

but relied on the accurate mapping of the gully extent. However, 

it is recognised that the proposed method for mapping gully 

volume is only one of several approaches. The approach used in 

this project may produce a disjointed appearance of gully 

volume in the centre of the gully, as the volume is calculated in 

relation of the edge elevation within the closest Euclidean 

distance. However, the calculation of the gully volume 
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performed in this research was not affected by rugged gully 

edges of different elevation and the volume calculation was 

based on a direct measure of elevation difference to the gully 

edge as opposed to interpolating the landscape surface within 

gullies and then estimating the height difference between the 

interpolated surface and the elevation of the gully floor (Eustace 

et al., 2009). Future work should focus on comparing different 

approaches and related results of estimating gully volume. 

 

Based on the 300 validation points, and overall accuracy of 

mapped gully extent was 92.3% for the LiDAR data from 2010. 

The main contributing factor to classification error was areas of 

sloping land, especially when located next to gullies, which in 

some cases resulted in errors of commission. All classification 

errors occurred close to the gully edges. The user’s and 

producer’s accuracies were 93.9% and 98.2%, respectively, 

indicating the difficulty of discriminating between gully edges 

and adjacent sloping land in the classification process. 

 

4.2 Change Detection Results 

 

The comparison of gully extent between 2007 and 2010 showed 

that the extent had increased by 4639 m2 for site 1, but 

decreased by 1235 m2 and 1023 m2 for sites 2 and 3, 

respectively. From visual assessment of the mapping results, it 

was apparent that the gully extent was overestimated in the 

classification of the 2007 data, because the point cloud 

classification of ground and non-ground points were less 

accurate for the 2007 data than the 2010 data. Some areas with 

trees and shrub cover appeared with minor increases (0.1 – 1.0 

m) in elevation in the 2007 data, whereas these elevation 

increases were not detected in the 2010 data (Figure 6a). In 

many cases where trees or shrubs occurred along the edge of 

gullies, these areas were incorrectly included as part of the gully 

edge in the 2007 data because of the incorrect elevation 

differences producing steep slopes similar to those of gully 

edges. However, in those situations where the trees and shrubs 

were not adjacent to the gully edges, they were not mapped as 

gullies because of their small areal extent. 

 

Several cases of gully expansion were identified in the change 

detection between the gully extent classifications based on the 

2007 and 2010 LiDAR data. Figure 6 provides an example of a 

14 m expansion of a gully head. While many gullies did widen, 

the majority of change occurred at the gully head and in 

meander bends. Gully head expansion up to 23 m between 2007 

and 2010 was detected. When assessing the change in gully 

extent at different gully depth intervals, the extent of depth 

intervals of 1-2 m, 2-3 m, 3-4 m, 4-5 m, 5-6 m, 6-7 m, and >7 m 

increased for the 19 gullies assessed in 88-100% of cases. When 

assessing all gullies for each of the three sites, it can be seen 

that all, but the 0-1 m gully depth interval, showed an increase 

in extent (Figure 7). Study site 1 had significantly deeper gullies 

than the other two study sites. For study site 1, the 3-4 m depth 

interval had the highest levels of soil loss (Figure 8). The largest 

amount of soil loss within gullies for study sites 2 and 3 

occurred in the gully depth interval of 1-2 m. Figure 9 provides 

an example of a gully that expanded and deepened between 

2007 and 2010 within study site 1. Because of some 

misclassifications of gully edges in the 2007 data caused by the 

misclassification by the data provider of LiDAR ground points, 

the extent and volume were assessed excluding the 0-1 m depth 

interval. Table 1 shows that gully extent and volume increased 

for all three study sites when excluding the 0-1 m depth interval. 

When excluding the 0-1 m depth interval, an average soil loss of 

0.33 m3, 0.32 m3, and 0.27 m3 per m2 of gully extent was 

mapped for study sites 1, 2 and 3, respectively.  

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 

 

 
Figure 6. Change detection of gully extent. (a) Slope layer from 

2007; (b) slope layer from 2010; (c) gully volume based on 

2007 LiDAR data; (d) gully volume based on 2010 LiDAR 

data; and (e) change in gully extent between 2007 and 2010. 
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Figure 7. Gully extent in 2007 and 2010 within different gully 

depth intervals. 

 

 
Figure 8. Positive values in volume indicate a loss of soil within 

gullies between 2007 and 2010, whereas the negative values for 

the 0-1 m depth interval were caused by incorrectly gully edge 

mapping of the 2007 LiDAR data. 

 

 
Figure 9. Slope layers and associated classification of gully 

volume of a subset of the 2007 and 2010 LiDAR data. 

Table 1. Gully extent of the subset gullies within each study site 

with and without the 0-1 m depth interval included. 

Site no 

and 

year 

Extent 

(m2) 

Extent excl. 0-1 m 

deep gullied areas 

(m2) 

Volume 

(m3) 

Volume excl. 0-

1 m deep gullied 

areas (m3) 

1/2007 92843 50536 158207 137053 

1/2010 97483 56429 176169 155643 

2/2007 27836 4296 18239 6469 

2/2010 26601 5378 17963 8171 

3/2007 34172 9630 28592 16321 

3/2010 33148 11218 30346 19381 

 

 

5. CONCLUSIONS 

This work focussed on the development of a rule set for 

mapping the extent and volume of gullies occurring within three 

study sites. The developed rule set could be used for all three 

study sites to map gully extent and volume. However, an 

overestimation of gully extent mapped from the 2007 LiDAR 

data was caused by poor LiDAR ground point classification in 

areas with trees and shrub cover. The majority of gully 

expansion occurred at gully heads and meander bends. When 

excluding the 0-1 m gully depth interval, both gully extent and 

volume increased for the three study sites between 2007 and 

2010. The expansion and deepening of gullies within the three 

study sites indicate that erosive processes are active in the 

landscape and may over time lead to significant soil loss, which 

will require management activities to focus on reducing 

sediment discharges from reef catchments into the Great Barrier 

Reef lagoon. 
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