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ABSTRACT: 
 
A list of color-infrared images captured from the new generation of remote platforms known as unmanned aerial vehicles (UAV), 
specifically a quadrotor, was tested for site-specific weed management applications. The aim was to identify and classify the crop 
rows within a maize crop-field, with the ultimate objective of distinguishing small weed seedlings at early stages for in-season site-
specific herbicide treatment. An object-based image analysis (OBIA) procedure was developed by combining several scene, 
contextual, hierarchical and object-based features in a looping structure. The procedure integrates several features from the crop-field 
patterns: 1) field structure, such as field limits and row length, 2) crop patterns, such as row orientation and inter-row distance, and 3) 
plant (crop and weeds) characteristics, such as spectral properties (NDVI values) and plant dimensions; as well as 4) hierarchical 
relationships based on different segmentation scales, and 5) neighboring relationships based on distance, position and angle between 
objects. The algorithm identified and counted the rows with 100% accuracy in most of the images and the definition of the 
longitudinal border of the crop rows was successful with 90% of overall accuracy, comparing to on-ground measures of weed 
emergence. 
 
 
 

1. INTRODUCTION 
 
Site-specific weed management (SSWM) refers to the 
application of customising control treatments, mainly 
herbicides, only where weeds are located within the crop-field, 
using adequate doses according to weed density (Srinivasan, 
2006). This technique generally uses new technologies to 
collect and process data from spatial information of the crop-
field. Therefore, its efficient development somehow relies on 
the use of remote sensing technology, which is a major source 
to obtain crop information. In the context of SSWM, a remote 
image could be used to locate weed patches within the crop-
field and, afterwards, to create herbicide application maps to be 
used by specific spraying machinery (López-Granados, 2011). 
This technology has been widely applied in agricultural studies 
and, in the case of SSWM, relevant results have been obtained 
in the mapping of weed patches in late growth stages (Peña-
Barragán et al., 2007). Nevertheless, in many weed-crop 
systems, it is impossible to apply treatments in late phases due 
to the unavailability of herbicides or the toxicity of the existing 
ones. The optimal treatment is recommended for when the 
weeds and crop are in the seedling growth stage (early seasons). 
At this stage, some limitations of using remote imagery are 
usually attributed to: 1) insufficient imagery resolution for 
discriminating between bare soil and seedlings of crop and 
weeds, 2) early-stage weed and crop plants have similar spectra 
and a very similar appearance, and 3) the reflectance of the 
background soil interferes with detection.  

 
Nowadays, these problems could be overcome by utilising the 
new generation of remote platforms known as unmanned aerial 
vehicles (UAV), whose potential lies on the fact that UAVs 
(e.g., a quadrotor) can work on demand with great flexibility in 
critical moments according to each agronomic goal. In addition, 
they can operate at low altitudes and thus, capture images at a 
very-high spatial resolution (a few centimeters or milimeters), 

not feasible with conventional planes or satellites. This is 
crucial for discriminating between small weed and crop 
seedlings at early stages in the majority of fields. Together to 
the requirement of very high spatial resolution of the images, 
the other important aspect in this case is that a powerful 
procedure of image analysis is needed. At this growth stage, 
classification methods based only in pixel information are very 
limited due to the spectral similarities between weed and crop 
plants. To solve this limitation, object-based image analysis 
(OBIA) might be the only way to discriminate both classes. In 
this process, the definition of the row structure formed by the 
crop is essential for further identification of plants (crop and 
weeds), because relative position of every plant with reference 
to the rows might be the key feature to distinguish them 
(Burgos-Artizzu et al., 2009). The UAV technology has been 
adapted and utilised by diverse groups interested in agricultural 
investigation (Lelong et al., 2008; Berni et al., 2009) and only a 
few studies have reported the use of UAVs in assessing weed 
distribution or invasion of plants in rangeland monitoring (e.g., 
Göktoğan et al., 2010; Laliberte et al. 2010). 
 
Therefore, the objective of this research was to develop an 
OBIA procedure for the automatic definition of crop rows 
within a maize field in early-season, by combining the specific 
object-based and contextual features typical of this technology 
within a customized looping rule-set algorithm. 
 
 

2. STUDY SITE AND UAV IMAGES 
 
A set of aerial images were taken on a maize field located at 
Arganda del Rey (Madrid, Spain) in mid-May 2011, just when 
post-emergence herbicide or other control techniques are 
recommended. Maize field was naturally infested by 
Amaranthus blitoides (broad-leaved weed) and Sorghum 
halepense (grass weed). The maize was at the stage 4-6 leaves 
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unfolded and the weeds had leaf sizes similar to maize leaves or 
smaller (Figure 1a). The images were collected with a 6-channel 
multispectral camera (mini-MCA, Tetracam, Inc., CA, USA) 
mounted in an UAV, model microdrone md4-1000 
(microdrones GmbH, Siegen, Germany. CartoGalicia Company 
at Spain), provided with autonomous system for waypoint 
navigation (Figure 1b). The flight altitude was 30 m above 
ground level, yielding 16 images ha-1 of 2-cm spatial resolution. 
The channels were configured with independent bandpass filters 
(Andover Corporation, NH, USA) with center wavelengths at 
530, 550, 570 (green region of the electromagnetic spectrum), 
670 (red region), 700 and 800 nm (near-infrared region). The 
software PixelWrench2 was supplied with the camera to provide 

full camera control and image management, including the 
building of multi-band TIFs from RAW image sets (Figure 1c). 
A number of vegetation indices derived from different 
combinations of the six channels were evaluated in order to 
select the best one for the discrimination between vegetation 
and bare soil. After a preliminary analysis (data not shown), the 
normalized difference vegetation index (NDVI, eq. 1) was 
selected:  
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Figure 1.  a) In-field view of the study site, showing the maize crop rows and several weed plants; b) Unmanned aerial vehicle, type 
quadrotor, flying over the crop-field; c) Aerial image (color-infrared composition) collected by the UAV at 30 m altitude. 

 
 

3. DESCRIPTION OF THE RULE-SET ALGORITHM 
 
3.1 Work-flow 
 
The OBIA procedure for the identification and classification of 
crop rows was developed by using the commercial software 
eCognition Developer 8 (Trimble GeoSpatial, Munich, 
Germany). The UAV images (e.g., Figure 2a) were segmented 
into homogeneous multi-pixel objects using the multiresolution 
algorithm (Baatz and Schäpe, 2000). Two levels of 
segmentation were independently used throughout the 
procedure: 1) Level at scale 140, to defining the structure of the 
crop rows (Figure 2b), and 2) Level at scale 10, to generate the 
smaller objects within a crop row (Figure 2c). In both cases, the 
rest of the parameters involved in the segmentation were 0.9, 
0.1, 0.5 and 0.5 for color, shape, smoothness and compactness, 
respectively. After segmentation, the general process tree is 
formed by the following steps:  
 
1) Calculation of row orientation: This parameter was 
computed from the statistical value "mean of main-direction" of 
all the objects created at the initial segmentation at scale 140 
and then saved as a scene variable for further use in the rule-set 
algorithm. A number of segmentation outputs were checked in a 
parallel study in order to determine the proper scale to define 
the row orientation within the studied field, concluding that no 
significant differences were between scales of 100 and 160. 
Next, the segmentation output is deleted to avoid influence in 
the subsequent bottom segmentation outputs. 
 
2) Discrimination between objects of vegetation and bare-soil: 
The image was then segmented at scale 10 (objects smaller than 

vegetation plants) and the new objects were classified according 
to NDVI values. In this case, vegetation objects were attributed 
to NDVI ≥ 0.2, and bare-soil to NDVI < 0.2 (Figure 2d). 
 
3) Definition of seed-objects: A customized merging operation 
was performed between vegetation-objects that fulfil the next 
rule: two candidate vegetation-objects are merged only if the 
length/width ratio of the target object increases after the 
merging. In this way, the new objects are only created 
lengthwise and following the shape of a crop row. Next, the first 
seed-object is selected for being the largest vegetation-object 
whose main-direction was the closest to the row orientation 
(Figure 2e).  
 
4) Identification and classification of the first crop row: The 
seed-object grows in both directions by performing a looping 
merging process in which every candidate object is selected for 
having the angle to the seed-object closest to the row orientation 
angle as well as being right next to an extreme of the seed-
object. The selected candidate object is then merged to the seed-
object and the looping process follows until the end of the crop 
row in both directions (Figures 2f and 2g).  
 
5) Identification and classification of the remaining crop rows: 
A looping process similar to points 3 and 4 was built to define 
one row after another. To avoid infinite looping, each row must 
be separated by a gap between each other (Figure 2h) defined 
by the crop planting distance (e.g., 75±15cm in maize crops), 
which makes the algorithm to finish when the last row reaching 
the limits of the parcel (Figure 2i). 
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Figure 2.  Partial view of the outputs from the rule-set algorithm at each step: a) original color-infrared image, b) segmentation at 
scale 140 to calculate row orientation, c) segmentation at scale 10 to define object size, d) classification of objects of vegetation (in 

green) and bare-soil (in white), e) selection of a seed-object (in black) belonging to a crop row, f) the crop row grows from the 
extreme of the seed-object and following the row orientation, g) the objects within the crop row are merged to create a single object 

(in red), h)  the next crop rows (in green) must be located to a specific distance from the previous one, i) final classification, in which 
crop rows are in red, other vegetation objects (weeds) are in green and bare soil (inter-row spaces) are in white. 

 
 

 
3.2 Crop-field features involved in the algorithm  
 
The described procedure combines several scene, contextual, 
hierarchical and object-based features derived from the specific 
structure of the studied parcel and crop, as affected by the image 
object level (Figure 3).  
 
1) Entire image level: The general crop-field structure was 
used to define the scene features "crop-orientation" (from the 
averaged main-direction of the objects segmented at scale 140) 
and "crop-row separation" (from the planting distance used by 
the farmer). Also, the image boundary defined the features 
"crop-row limits" and "crop-row length". 
 
2) Image object level: The orientation (similar to crop-
orientation defined at the entire image level), position (within 
the crop-row separation thresholds), shape (lengthwise) and size 
of the vegetation-objects were used to classify them as a seed-
object belonging to a crop-row. Next, the relative position of 

every vegetation-object with reference to the crop-row was used 
to classify it as crop-row or weed.  
 
3) Neighboring relationship: The distance between a crop-row 
and the candidate objects was used to merge the object to the 
crop-row (neighbor to the seed-object and within the crop-
orientation angle) as well as if the vegetation-objects are 
classified as crop-row (if the distance to the crop-row is within 
the crop-row width) or otherwise as weed. 
 
4) Hierarchical relationship: Every new crop row is submitted 
to a customized quality control based in the percentage of sub-
objects (generated by a chessboard segmentation of the super-
object formed by the crop row) belonging to vegetation (NDVI 
> 0.2). 
 
5) Pixel level: Averaged NDVI values from pixels of every 
object defined the classification of the objects at the lower level 
as vegetation or bare soil. 
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Figure 3.  Field and crop features involved in the rule-set algorithm as affected by the image object scale (the figure in the left was 
extracted from Definiens Developer 7, User Guide) 

 
 
 

4. EVALUATION OF THE METHODOLOGY 

The rule-set algorithm was trained and developed in two of the 
aerial images and was tested in the rest of images. To evaluate 
the algorithm results, a systematic on-ground sampling 
procedure was carried out in the course of the UAV flight. The 

sampling consisted of placing 49 square white frames of 1x1 m 
distributed regularly throughout the studied surface (1.5 ha; 
Figure 4). Every frame was photographed and georeferenced to 
record on-ground data regarding to crop and weed cover in 
order to compare it with outputs from image classification. 

 
 

         
 

Figure 4.  Example of a 1x1 m frame used in the ground-truth sampling: a) On-ground photography, and b) UAV image. 
 
 
 

The algorithm identified and counted the rows with 100% 
accuracy in most of the images and only made minor errors in 
the extremes of some images because the short size of these 
rows. The definition of the longitudinal border of the crop rows 
was successful with 90% of overall accuracy, based on the 
results obtained in the selected frames. This process is strongly 
affected by the presence of weed plants very close or within the 
crop rows. Therefore, weed discrimination was higher than 95% 
effective in the frames with low weed infestation, but decreased 
to lower accuracies in the frames with moderate or high weed 
infestation (preliminary results, analysis still in progress). The 
figure 5 shows an example of the final classification output. 

 
 
 
 

5. CONCLUSION 
 
An effective and robust OBIA procedure has been developed 
for the identification and classification of crop rows in a maize 
field in early season. The task is complex because spectral 
properties and general appearance of weed and crop plants are 
very similar at this growth stage, plus the difficulties of 
variability and changing conditions in natural crop-fields. The 
rule-set algorithm was designed by combining several scene, 
contextual, hierarchical and object-based features in a looping 
structure, reporting very satisfactory results in the identification 
of the crop rows in most cases. These results showed that this 
procedure might be very useful for a further discrimination and 
classification of small weed and crop plants. Once detecting 
crop rows, next work will be to discriminate weed seedlings in 
the early season for site-specific weed management strategies. 

a) b)
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Figure 5.  General scheme of the OBIA procedure, showing the original UAV image (in the left), the segmentation process (in the 
middle), and the classification output (in the right) with crop rows in red, weed patches in green and bare soil in white.  
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