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ABSTRACT: Surface fractures are important indicators for geomechanical processes and mapping and monitoring of landslide 
surface fissures provide valuable information about the slope activity and related hazards. Mappings of surface fissures are 
traditionally carried out during field surveys, whereas recently aerial photography with sufficient spatial resolution to picture such 
fine structures is becoming more commonly available. This study targeted the development of a semi-automatic image processing 
chain to efficiently extract fissure maps from very-high resolution aerial images recorded at the Super Sauze landslide in the 
Southern French Alps. The developed processing chain combines a Gaussian filters, morphological operators and object-oriented 
image analysis to exploit higher level scene context. The technique was tested with a heterogeneous set of multi-temporal images 
recorded at five different dates and the resulting maps were compared quantitatively with expert maps based on field surveys and 
image interpretation. 
 

                                                                 
*  corresponding author 

1. INTRODUCTION 

Fissures at the surface of natural and artificial slopes are 
elementary geomorphological forms whose spatial extent and 
fundamental properties (characteristic length, density, and 
typology) are helpful to interpret slope activity. Mapping their 
dynamics provides valuable information for the understanding 
of the mechanical processes of a potential or active landslide 
(Krauskopf et al., 1939; Ter-Stephanian, 1946; Fleming and 
Johnson, 1989; Walter et al., 2009) as they represent the first 
signs of slope instability (Petley et al., 2002). Surface fissures 
also have considerable effect on the slope hydrology by 
controlling the infiltration rates of rainfall, and the drainage 
patterns of local groundwater tables (van Beek and van Asch, 
1999; Malet et al., 2005a).  From the increasing availability of 
sub-decimetre images from unmanned aerial vehicles (UAVs) 
and other aerial survey platforms arises the possibility to detect 
and map such features using remote sensing (Niethammer et al., 
2011). Although, the detection and extraction of linear features 
is a fundamental operation in digital image processing 
(Quackenbush, 2004; Mendonca and Campilho, 2006; Papari 
and Petkov, 2011) relatively few studies have explored the 
application of automatic approaches for the mapping of 
geomorphological relevant linear features (Baruch and Filin, 
2011; Shruthi et al., 2011). Therefore, it remains challenging to 
automatically 1) delineate and classify the features to construct 
multi-temporal fissure maps, and 2) track changes in their 
spatial pattern to identify trends in the kinematic regime of the 
landslide. 
This work presents the development of a semi-automatic 
workflow combining line detection (based on Gaussian matched 
filters), morphological operators and object-oriented image 
analysis for the detection and mapping of surface fissures. To 

assess the performance of the automatic workflow results are 
compared with manual mappings based on image interpretation 
and field work. 

 
Fig. 1 (a) Oblique view on the Super-Sauze mudslide and (b-d) 
typical fissure patterns observable in the UAV images. 

2. STUDY SITE AND DATA 

The study site is the Super-Sauze mudslide located in the 
Barcelonnette Basin in the South French Alps. It is a complex 
landslide that has developed in clay-rich black marls, and is 
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characterized by very variable displacement rates in space and 
time. In May 2007 and July 2009, two orthomosaics of optical 
images with full coverage of the landslide were recorded by 
private data providers using medium format cameras mounted 
on an airplane and a helicopter, respectively. In July 2008, 
October 2008, and October 2009 a low-costs UAV system 
equipped with compact camera was operated at flight heights 
between 100 m and 250 m yielding images of the surface with a 
ground resolution between 0.03 m and 0.1 m. The individual 
images were corrected for barrel lens distortion, rectified 
according to ground control points and merged into one large 
orthomosaic. For further details on the image acquisition and 
processing the reader is referred to Niethammer et al. (2011). 
The aerial images have sub-decimetre resolution (Table 1) and 
allow to identify an abundant occurrence of surface fissures ( 
Fig. 1) spatially distributed over the landslide. Their spatial 
patterns signal different deformation mechanisms of the 
landslide, such as lateral shear, extension and compression.  

 

Table 1: Image resolutions at the five different dates.	
Date May 

2007 
July 
2008 

October 
2008 

July 
2009 

October 
2009 

Pixel 
size [m] 

0.10 0.10 0.08 0.05 0.05 
 

3. METHODS 

3.1 Fissure candidate detection with Gaussian filters 

A particular well-studied example for the detection of dark 
curvilinear structures is the extraction of blood vessels in 
photographs of the human retina. Based on the observation that 
the cross-profiles of the vessels resembles a Gaussian 
distribution, Chaudhuri et al. (1989) proposed the use of a 
matched filter (MF) that is a Gaussian convolution kernel 
subtracted by its own mean value. As illustrated in Fig. 2, the 
cross-sections of surface fissures can be approximated with a 
Gaussian distribution and a MF scaled to the size of the fissure 
will give a peak response when crossing the fissure at an angle 
of approximately 90°. Because the MF still yields errors such as 
false detections at step edges numerous extensions (Hoover et 
al., 2000; Sofka and Stewart, 2006) and alternative approaches 
(Mendonca and Campilho, 2006; Soares et al., 2006) have been 
developed. Recently, Zhang et al. (2010) proposed modification 
of the original MF filtering approach integrating a first order 
derivative of a Gaussian function (FDOG) to locally adapt the 
thresholds. Compared to other state-of-the-art algorithms their 
approach provided competitive accuracies while being a 
computationally efficient and hence easier to apply on the large 
images resulting from VHR remote sensing.  
In this study the approach was adapted and implemented in 
ENVI-IDL 4.8 (EXELIS) as a first level detection routine for 
the extraction of fissure candidates. For detailed explanation of 
the funtionality of the Gaussian filtering routine the reader is 
refered to Stumpf et al. (submitted), whereas here only the basic 
parameters are described. Accoding to the Gaussian fit obtained 
from cross-profiles (Fig. 2) on the the smallest observed fissures 
the filters function was scaled with σ=0.06 m. In practice σ is 
expressed in units of pixels and adjusted according to the pixel 
size of the image. The length of the filter was set to 1 m which 
corresponds to the typical minimum length of the observed 
features. A threshold parameter Ct controls the sensivity of the 
detection and was set to 3.0, which during a sensivity analysis 
on spatial subsets of the images was found to provid a suitable 
trade of between false negatives and false positives detections. 

 
Fig. 2: Typical fissure patterns and (I-III) grey-value profiles 
(green channel) approximated with Gaussian curves. (IV) Field 
terrestrial photograph. 
 
3.2 Connection of broken lines using structuring elements 

The highly textured surface of the landslide constitutes a noisy 
background that affects the detection especially at section 
where the fissures are very thin or partially occluded. While a 
human operator can easily interpolate broken lines through 
perceptual grouping (Metzger, 1975), this needs special 
attention for an automated mapping technique.  
To close small gaps between broken line segments of the 
detected candidates a hit-or-miss transform algorithm (Serra, 
1982) was used. The transform assigns a value of 1 to each 
pixel whose local neighborhood fulfills the criteria defined by 
hit- and miss structures (Fig. 3a), also known as structuring 
elements. The hit- and miss-structures were defined to address 
all plausible 3-by-3 neighborhoods representing small gaps in 
the detection starting from four prototype hit-structures shown 
in Fig. 3b. The respective miss-structures are derived by simply 
inverting the prototype hit-structures, and both elements were 
rotated to test for a total number of 24 possible neighborhood 
arrangements. For the structuring elements for closing diagonal 
gaps an extended neighborhood was used in the miss-structure 
to prevent connections of parallel lines (Fig. 3b). 
 

 
Fig. 3: Strategy used to connect broken line segments. (a) 
Working principle of the hit- and miss transform and (b) 
structuring elements for the plausible pixel neighbourhoods. 
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3.3 Object-oriented analysis for false positive removal 

Due to visually similar objects such as linear erosion features 
(rills, small gullies) and elongated shadows induced by the 
micro-topography the results of the filtering routine may still 
comprise numerous false positive candidates. While a human 
interpreter can differentiate most of the false positives assessing 
the geospatial context of the scene, the efficient use of such 
information with automated systems is a challenge for object-
oriented image analysis. To exploit the contextual scene 
information for an automatized refinement of the extracted 
fissure candidate maps, an object-oriented routine that 
integrates spatial reasoning into an explicit form was elaborated 
and implemented using eCognition 8.64 (Trimble, 2011). The 
elaborated routine included the following steps: 
1) The ratio of shadow in the smallest enclosing circle around 
each candidate is evaluated and candidates with a ratio above 
33% are regarded as false detections induced by shadings of the 
micro-topography. The threshold for shadow was thereby 
adjusted according to the illumination conditions and the 
dynamic range of the image (Table 2). 
 
Table 2: Summary of the thresholds adopted in the object-
oriented analysis. See text for details. 
Feature Thresholds 
Shadows Red < 100*,  40** 
Shadow ratio ≤0.33 
Vegetation Ratio blue ≤0.33 + Otsu 
Rel. border to vegetation ≤0.15 
Min. angular difference >13° 
Min. length (clean up) ≥0.4 m 
Min. area (clean up) >0.1 m2 
Min. fissure density (clean up) >1%/10 m2 

*    for May 2007, July 2008 and October 2008 
**  for July 2009 and October 2009 
 
2) Further false detections may result from vegetation which 
typically shows a lower reflectance in the green and red channel 
compared to the blue. The blue ratio in the sum of all channels 
is consequently typically below one third for vegetated areas. 
The suitable value varies slightly with the illumination 
conditions and the season, and Otsu’s method (Otsu, 1979) was 
employed to automatically adapt to such changes. Through an 
iterative testing of all possible values Otsu’s method determines 
threshold value that maximizes variance between two classes in 
an image. Hence, constraining the search space to all pixels 
with a ratio blue below 33% the algorithm was used to 
determine the thresholds that maximize the contrast between 
vegetation and the background (Fig. 4). Fissure candidates 
covered by the resulting vegetation class, or having a relative 
border length larger than 0.15 were subsequently removed. 
 
3) Another class of false detections resulted from linear 
objects such as rills, gullies and nearly vertical steps at the 
landslide flanks, which may locally obtain similar 
characteristics as the targeted fissures. To test for the presence 
of larger linear features and evaluate their relationship with 
fissure candidates, a strategy to suppress additional false 
positives was required. For the mapping of the larger linear 
elements two sources were adopted. First drainage lines were 
extracted from the LiDAR DTMs using hydrological standard 
tools (Tarboton et al., 1991) and enlarged with a surrounding 
buffer of 0.5 m. A second approach was to repeat the Gaussian 
filtering with the parameter set described above, but with a two 
times increased scale σ and a 5 times coarser image resolution. 

Resampling to the coarser resolution was performed with a 
bilinear interpolation scheme. The linear objects extracted with 
both approaches were virtually overlaid with the fissure 
candidates, and the difference of the orientations of their 
respective center lines was adopted as a criterion to evaluate if 
the fissure candidate was in fact part of a larger linear object or 
constitutes an independent structure (Fig. 5). Image-based 
measurements of the angular offset of the fissured indicated a 
minimum offset of about ± 13°. Considering that the lowest 
effective friction angles measured for the landslide material are 
ϕ’ = 26° (Malet et al., 2005a), the threshold are consistent with 
the orientation of ϕ'/2 that the Coulomb criterion predicts for 
the orientation of shear fissures at the landslide boundary 
(Tchalenko, 1970). 
 

	
Fig. 4: Automatic threshold detection for the intermediate 
mapping of vegetation. (a) Subset of the October 2008 image at 
the toe of the landslide. (b) Ratio blue. (c) Initial thresholding at 
ratio blue < 0.33 to obtain vegetation candidates (yellow). (d) 
Histogram of the vegetation candidates with the automatically 
selected threshold. (e) Final map of the vegetation (green). 
 

 
Fig. 5. Illustration of the object-oriented routine to remove false 
positves induced by larger linear structures. (a)  Fissure 
candidates that overlapped with linear structures. (b) Linear 
structure detected at a ten times greater filter scale. The fissure 
candidates aligned with the linear structures at angles below 
± 13° were removed. 
 
4) A last filtering step was implemented removing all 
candidates with length not longer than 0.4 m and an area 
smaller than 0.1 m2. Finally all fissure candidates falling in 
areas with a fissure class density lower than 1% in a 
surrounding neighbourhood of 10 m2 were considered as noise 
and also removed. 
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4. RESULTS 

The primary output of the developed processing routine is a 
map of the detected fissures represented by polygons. Applying 
a Delauny triangulation that extracts the skeleton of those 
polygons (Trimble, 2011) a 2D line representation, which 
enables a more immediate comparison with expert mappings, 
can be obtained. 

 
Fig. 6: Exemplary comparison of the obtained fissure maps with 
the expert mapping for October 2009 (fissures in red). (a) Area 
with relatively high agreement of the mapped fissure patterns. 
(b) Area with relatively high rate of false negatives and false 
positives. (c) Test area. The scale of the representations 
corresponds approximately to the scale used for the expert 
mapping (1:250). 
 
Fig. 6 displays exemplarily a comparison between an expert 
map and the corresponding result of the automatic detection. A 
first visual assessment of the obtained maps suggested better 
agreement of the fissure patterns in areas with high contrast and 
low texture (Fig. 6a), whereas false positives and false 
negatives concentrated in sections with low contrast and 
increased surface texture (Fig. 6b).  
For a quantitative assessment of the mapping accuracy the 
obtained results were compared with the expert mappings at the 
central part of the landslide (Fig. 6c) at all five dates. While 
several accuracy measures for geographic line datasets have 
been already proposed, there is still no consensus about one 
generally applicable technique and the metrics should be 
selected according to the problem at hand (Ariza-López and 
Mozas-Calvache, 2012). Here we focused on three crucial 
aspects of the map accuracy that may have direct implications 
for their further use, namely the size of the fissured area, the 
length and density of the fissures, and their orientation. 
 
4.1 Size of the affected area 

Tveite and Langaas (1999) suggested an accuracy measure for 
line datasets based on repeated buffering and overlay operations 
of both, detected and reference line datasets. A similar strategy 
was adopted in this study by repeatedly calculating true positive 
and false positives rates from two raster representing the 
detections and the expert mapping at increasingly coarser 
resolutions. Raster were calculated at 10 cm steps for 
resolutions between 0.10 m and 1.00 m, and each pixel was 
assigned as fissured or non-fissured area according to the 
presence of a fissure in the detections and the reference map, 
respectively. The resulting receiver operating characteristics 
(ROC) plots of the best and the worst obtained results are 
presented in Fig. 7. The analysis showed a correspondence with 
the expert maps at true positive rates typically above 40 % and 
up to 65%. The false positive rates were below 5% except for 
the scenes recorded with full sunlight at the surface where false 
positive rates up to 9% could be observed (Fig. 7a). 

 
Fig. 7: Receiver operating characteristics (ROC) plots of the 
fissured area at different map resolutions for (a) the worst 
results and (b) the best results. The sky conditions for the 
different dates are indicated. 
 
4.2 Fissure length and density 

Hydrological models that integrate the influence of surface 
fissures on infiltration and preferential flow have demonstrated 
that the fraction of fissures per unit area is an important 
parameter with considerable influence on the modeled water 
storage (Malet et al., 2005b). Such models are typically 
generated at slope scale with grid resolutions below 10 m. To 
assess the accuracy of the extracted maps with respect to this 
potential application the fissure density was calculated as the 
line length in circular sliding windows with diameters between 
2 and 10 m, and compared among automated detection and 
expert mappings. The regression plots in Fig. 8 illustrate the 
correlation of the fissure density estimates with a 5 m circular 
sliding window. The regression analysis indicated generally 
higher densities resulting from false positive detections of the 
automatic detection but also from a stronger generalization of 
the fissure line drawings within the expert mapping. 
 

 
Fig. 8: Strongest and weakest correlation of the fissure densities 
from automatic detections and expert mappings at 5 m raster 
resolution. The bar plots at the bottom display the R2 coefficient 
at different raster resolutions. 
 
The correlation of the fissure densities was characterized by a 
coefficient of determination (R2) typically above 0.5. An 
exception was the mapping obtained from the image of July 
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2008 which was recorded at a low sun incidence angle leading 
to a relatively low R2= 0.36.   
The bar plots in Fig. 8 display the generally higher R2 values at 
increasing resolutions of the density raster. This is a well-
known effect of spatial aggregation on correlation statistics 
(Gotway and Young, 2002) but also reflects the contrast 
between stronger discrepancies of local details and a better 
correspondence of the global fissure pattern pictured in the 
respective maps. The highest correlation was observed among 
the mappings for May 2007 with an R2 =0.88 at 10 m resolution. 
 
4.3 Fissure orientation 

Different fissure patterns may signal respective mechanical 
processes and statistics of the principal fracture orientation 
often allow to estimate the directions of the principal stresses 
involved in their formation (Pollard and Fletcher, 2005). The 
fissure orientations were therefore quantified as a third factor to 
assess the accuracy of the extracted maps using rose diagrams 
frequently employed for the analysis and interpretation of two 
dimensional orientation data. Rose diagrams with a bin width of 
10° were computed on a 10 m regular grid for the automatic 
detections and the expert mappings at all five dates. 
Taking into account all cells containing fissures in both the 
expert map and the automatic detection the mean absolute error 
(MAE) of the mean orientations provides a quantitative 
measure for the orientation accuracy. The rose diagrams plots 
and error statistics in Fig. 9 depict MAEs between 9.7° and 
22.5° as the best and worst results among the five analyzed 
dates. The detections on the three scenes recorded under cloudy 
sky resulted in MAE not larger than 10.7°, whereas the error 
rate clearly exceeded 20° with the scenes of July 2008 and 2009 
recorded with full sunlight at the surface. The lower orientation 
accuracies are largely consistent with the relatively low 
accuracies in terms of area and density resulting from the 
detection at the latter two dates. 

 
Fig. 9: Rose diagram plots for the best and worst mapping 
results with mean orientation (red line) and error statistics for 
the mean fissure orientation per 10 m grid cell for the test area. 
For visualization, the rose diagrams where plotted over a 
hillshade of the landslide surface and the scatterplot angles 
were centred at 90°. 

5. DISCUSSION 

While Sowers and Royster (1978) argued that aerial 
photographs do not provide sufficient resolution for detailed 
mappings of surface fractures, modern digital sensors and new 
aerial platforms such as UAVs today provide the necessary 
level of detail. This study demonstrated the possible use of a 

semi-automatic image processing chain for the extraction of 
surface fissure maps. The accuracy of the method was assessed 
by comparisons with expert maps and demonstrated 
heterogeneous areal accuracies with true positive rates of up to 
65% and false positive rates generally below 10%. Similarly, 
the orientation accuracy showed a variable quality of the 
resulting maps with mean deviations between 9.7° and 22.5°. 
The fissure densities derived from both maps displayed 
significant correlations (R2 between 0.36-0.78), whereas the 
automatic detections yielded typically higher density estimates. 
The best agreement among detection and expert maps was 
measured for the scene of May 2007 showing that lower 
resolution does not necessarily yield lower accuracies. 
Generally lower accuracies were however observed for scenes 
recorded with full sunlight at the surface in July 2008 and 2009. 
The worst results were obtained for July 2008 when images 
were recorded at a relatively low sun incidence angle.  
Low-level linear feature detectors based on Gaussian filters 
yield competitive results in medical image analysis (Zhang et 
al., 2010), whereas the accuracies achieved with aerial images 
in this study are still significantly lower. This must be attributed 
to the generally higher complexity of outdoor scenes and 
requires additional steps and parameters to take the contextual 
scene information into account. The use of OOA based 
heuristics proofed useful for the removal of false positives, 
enabled the integration of mechanical laws in the image 
analysis, and helped objectify the image analysis by transferring 
expert knowledge in an explicit form. However, the analysis 
also still relies on a number of empirical fixed thresholds which 
may hinder an easy transfer of the entire processing chain to a 
different geographic area. The OOA heuristics already 
considers multi-scale information to some degree (see 3.33), 
whereas an explicit integration of an automatic scale selection 
technique at the low-level filtering stage may appear as a 
promising approach to further reduce heuristics and tunable 
parameters. 
Despite room for methodological improvements, the obtained 
fissure maps already provide sufficient detail to infer the 
landslide dynamics and mechanical processes at the slope scale. 
Density maps from both automatic and expert mappings picture 
a strong spatial and temporal variability of the fissure 
abundance point toward important local and temporal contrasts 
in the infiltration capacity. 
 

6. CONCLUSION 

This study developed an image processing chain to extract 
surface fissures from heterogeneous sets of VHR aerial images 
and tested the approach with a challenging multi-temporal set of 
images recorded at the Super-Sauze landslide for five different 
dates. The first two stages of the workflow combine families of 
Gaussian matched filters and morphological operators and are 
followed by an object-oriented analysis to reduce the amount of 
false positive detection exploiting contextual information and 
auxiliary topographic information. 
Under homogenous illumination conditions a comparison of the 
results with expert mappings demonstrated detection rates of up 
to 65% and orientation errors below 10°. The detection is 
relatively sensitive to shading effects and prone to errors when 
applied on images recorded at low sun incidence angles.   
Though the processing chain has been specifically designed for 
the mapping of landslide surface fissures, the first and second 
stage of the method are generic for the detection of dark linear 
features and may be applicable to other geomorphological 
objects with such characteristics. For the mapping of erosion 
gullies, fault line fractures or ice-glacier crevasses, which 
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typically exhibit a high contrast to the surrounding homogenous 
surface, the proposed technique might be of interest. A 
subsequent object-oriented analysis will typically require 
adaption to the specific domain and should be useful to 
explicitly integrate process knowledge in the image analysis 
chain. 
Considering the intrinsic disagreement in expert mappings of 
linear features, especially in the inter- and extrapolation of lines 
(Sander et al., 1997), further studies should target to include a 
general assessment of uncertainties of the expert fissure maps. 
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