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ABSTRACT: 

 

The diagnosis of land use/cover and its implication for the safety of pipelines was used to classify, by way of object-based analysis, 

for the purpose of mapping land use and land cover with a high spatial resolution GeoEye image, for monitoring a sector of industry 

pipelines in Rio de Janeiro-Belo Horizonte, located in the cities of Duque de Caxias and Nova Iguaçu - RJ. The algorithm for 

multiresolution segmentation was used to define objects in the image and for classification of land use/cover, according to the 

hierarchical network proposal, which was done using the algorithm Classification through the fuzzy membership functions. The 

results archived 81.33% overall and 0.79 Kappa coefficient. It is considered that the result of automatic classification by the o object-

based method, has achieved values of accuracy close to the limit for the application of this technique for high resolution image  data, 

with great complexity and diversity of space occupation. Thus, to achieve a better overall classification the manual editing of some 

segments that show misclassification must be done. 

 

 

1. INTRODUCTION 

The classification by object-based analysis was employed in the 

mapping of land use and cover with high spatial resolution 

images for the monitoring of a sector of industry pipelines in 

Rio de Janeiro- Belo Horizonte, located in the cities of Duque 

de Caxias and Nova Iguaçu, located in Rio de Janeiro state, 

Brazil. 

It is considered that the diagnosis of land use and cover and its 

implications for the safety of pipelines is an essential factor to 

guide management decisions of the tracks.  

The monitoring of the tracks is composed of sectors of internal 

and external duct inspections. The internal inspection sector is 

responsible for control of variables such as: pressure, flow, 

temperature, density and volume, during the process of 

transferring products. The external inspection sector is 

composed for aerial and ground observations that run the length 

of the right of way and adjacent areas, to check irregularities 

that may cause an increase of risks, such as erosion, mass 

movements, collapse, vehicle traffic and/or heavy equipment in 

the lane, growth of vegetation; drainage system failure in the 

lane; Fires; Lane occupation because of third parties working 

nearby; outcrop of the duct, crossing streams and road 

crossings, railways , power grids and the traffic conditions on 

access roads (ZIRNIG et al. 2002; HAUSAMANN et al., 2005).  

The application of remote sensing techniques is essential in the 

diagnosis and monitoring of space occupation process. The 

images may be considering an important source of information 

about what occurs on the earth's surface and are essential to 

understand the land use and land cover, helping to identify 

elements that may constitute a risk to the pipeline (DUTTA and 

ROPER, 2005). 

 The complexity of the elements presented on the surface 

becomes a problem for digital classification of land use and land 

cover from high resolution images, since there is spectral 

mixture of objects in the image. Thus, the of object- based 

image analysis to define the objects through association of the 

spectral assign with spatial and context attributes, generating 

segments with homogeneous spectral, geometric, texture and 

position of elements in the image (ENCARNAÇÃO, 2004). 

In classification of land use and land cover, through method of 

object-based, the structuring of classes requires the 

establishment of a hierarchical network based on semantics and 

physical characteristics of objects that compose a particular 

class. The semantic network represents a logical structure that 

relates objects or classes from their meaning and relationships 

(ANTUNES, 2003). According to Hofmann (2001), classes can 

be structured into three types of hierarchical networks: 

hierarchy with hereditary; hierarchy of groups and structured 

groups. 

 

2. METHODOLOGY 

During the course of the study, a hierarchical network was 

created based on the physical characteristics of objects that 

make up the classes of interest in the mapping of land use/cover, 

using the GeoEye image (November/2009) acquired through 

band fusion and through spatial resolution of 0.5 m creating a 

hierarchy of groups. The Figure 1 shows the hierarchical 

network used and the Table 1 shows the interpretation key for 

the land use and land cover classes.  

 

 
Figure 1. Hierarchical network. 

To organize the hierarchical network, a generalized map of land 

use and land cover was developed, composed of the following 

classes Mining, Urban, Non-urban and Rivers (Figure 2). This 

thematic map was utilized as a reference in the creation of 

masks for image cropping, producing images in accord with the 

classes of the thematic map. At this stage, we chose to detail the 

classification of areas included in the non-urban class, because 

it occupies approximately 78% of the study area, with 

approximately 16.32 km2 and is composed of natural vegetation, 

crops land, bare soil, buildings and access roads. 
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Figure 2. Generalized map of land use and land cover. 

At the start of the image segmentation, it became necessary to 

divide the study area into three subareas: the Northern Area, the 

Central Area and the Southern Area, because of the limitations 

of the eCognition program to generate the number of segments 

required to target the entire area. Thus, the classification had to 

begin in the Southern Area and an algorithm for multiresolution 

segmentation was used. Segmentation tests were performed 

using a combination of different parameter values, noting that 

the parameter scale promoted greater interference in the 

formation of the segment. The parameters used in level I were 

20 Scale, shape 0.2 and 0.5 Compactness, generating 559,161 

segments. In Level II only the parameter was changed to 50 

(90,000 segments). In Level III, with a parameter value range of 

100 (24,010 segments), the segments did not outline the objects 

belonging to the vegetation and non-vegetation classes, which 

integrate the higher level of the hierarchical network. Thus, 

Level III was not used in the classification process. 

 

 

 

 

 

Classes Description 
GeoEye Image  

(visible composite – RGB 3,2,1) 
Classes Description 

GeoEye Image  

(visible composite – RGB 3,2,1) 

Arboreal 

Vegetation 

Medium to tall 

trees found in 
forest and urban 

areas 

 

Covers/Soils 

Bright ceramic 

roofs and areas of 

bare soil with 

medium color 

tone 
 

Grazing 

Areas 

composed of 

grasses and 

small shrubs 

 

Roads 

Highways and 

streets paved with 

asphalt 

 

Mixed 

Crops 

Areas with 
many types of 

crops 

 

Non-paved 

Roads/Light 

Bare Soil 

Areas of unbuilt 

and no vegetation 

cover, with a 

light color tone 

and non-paved 

roads  

Wetlands 

Areas 

temporarily 

covered by 

water 
 

Mining Mining areas 

 

Urban Urban areas 

 

Rivers Rivers courses 

 

Aluminum 

and Light 

Concrete 

Covers 

Light tone 

concrete or 

aluminum roofs 

and paved areas 

 

Water 

Bodies 

Water courses, 

lakes and 

reservoirs 

 

Table 1 – Interpretation key for the land use and land cover classes. 
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Level II was determined to be the most appropriate for 

implementation of the proposed hierarchical network and the 

acquisition of training samples for classes of use and cover. 

Starting from the analysis of histograms of attributes generated 

by the Sample Editor and through the specific responses of the 

classes, the most suitable attributes for separation of classes in 

each level of the hierarchy were defined. The attributes and 

thresholds defined the fuzzy membership functions were 

employed by way of the algorithm Classification in the image 

classification process. The Table 2 shows the membership fuzzy 

function used to classify each class. 

 
Class Attribute Fuzzy membership 

V
eg

et
at

io
n

 Max. diference 
espectral  

1.385 - 2.402 

Mean Band R 

 

37.797 - 172.049 

NDVI 

 

0.6078 - 0.8901 

N
o

n
-

V
eg

et
at

io
n
 Max. diference 

espectral  

0.614 - 1.846 

Mean Band R 

 

1 - 746.55 

NDVI 

 

0.3059 - 0.8234 

A
rb

o
re

al
 V

eg
et

at
io

n
\C

ro
p

s 

Texture GLCM 

Homogeneity 
Mean das Bands  

0.141 - 0.282 

Texture GLCM 

Homogeneity 

Band B  

0.297- 0.494 

Texture GLCM 

Homogeneity 

Band G  

0.17 - 0.33 

Texture GLCM 
Homogeneity 

Band R  

0.062 - 0.156 

Texture GLCM 
Homogeneity 

Band NIR  

0.231 - 0.415 

Stand. deviation 
Band NIR  

37.50 - 131.81 

B
ar

e 
S

o
il

 

an
d

 

E
d

if
ic

at
io

n
 Texture GLCM 

Homogeneity 

Mean das Bands  

0.019- 0.447 

Mean Band NIR 

 

173.54 - 1473. 28 

R
o
ad

s 

Brightness 

 

401.32 - 520.44 

IHS - Intensity 

 

0.2184 - 0.2874 

Length/Width 

 

4.045 - 29.641 

Mean Band B 

 

344.26 - 417.64 

Mean Band NIR 

 

566.70 - 759.17 

G
ra

ss
la

n
d
 

Texture GLCM 
Homogeneity 

Mean das Bands  

0.15 - 0.45 

Texture GLCM 

Homogeneity 
Band B  

0.32 - 0.68 

Texture GLCM 

Homogeneity 
Band G  

0.17 - 0.51 

Texture GLCM 

Homogeneity 

Band R  

0.069 - 0.267 

Texture GLCM 

Homogeneity 

Band NIR  

0.381 - 0.607 

Stand. deviation 

Band NIR  

14.82 - 90.99 

W
at

er
 B

o
d
ie

s 

Area 

 

1 - 8098.7 

Brightness 

 

144.32 - 243.57 

IHS - Intensity 

 

0.076 - 0.151 

Length/Width 

 

1 - 15.617 

Mean Band B 

 

174.44 - 241.15 

Mean Band NIR 

 

201.63 - 329.91 

G
ra

zi
n

g
 

Brightness 

 

259.17 - 507.4 

IHS - Intensity 

 

0.105 - 0.192 

Mean Band NIR 

 

508.13 - 1355.32 

M
ix

ed
 C

ro
p

s 

IHS - Saturation 

 

0.53 - 0.74 

Max. difference 
spectral  

1.44 - 2.09 

NDVI 

 

0.62 - 0.84 

Rate Band G/Sum 

Band (B, R, NIR)  

0.239 - 0.321 
A

lu
m

in
iu

m
 a

n
d

 

L
ig

h
t 

C
o
n

cr
et

e 

C
o
v

er
s 

Brightness 

 

727.86 - 926.43 

Mean Band B 

 

514.92 - 768.56 

Mean Band G 

 

746.008 - 1070.39 

Mean Band R 

 

434.31 - 596.26 

C
o
v

er
s/

S
o
il

s 

Brightness 

 

128. 8 - 476.36 

Mean Band B 

 

165,67 - 345,88 

Mean Band G 

 

150,86 - 487,73 

Mean Band R 

 

22,35 - 278,09 

W
et

la
n

d
s 

Brightness 

 

199,57 - 368,35 

IHS - Intensity 

 

0,095 - 0,151 

Mean Band NIR 

 

351,678 - 877,921 

A
rb

o
re

al
 

V
eg

et
at

io
n
 

IHS - Saturation 

 

0.55 - 0.85 

Max. difference 
spectral  

1.730 - 2.728 

NDVI 

 

0.696 - 0.934 

Rate Band G/Sum 

Band (B, R, NIR)  

0.158 - 0.296 

Table 2 - Membership fuzzy function used to classify each class. 

 

The assessment of the classified thematic map was done using 

error matrix and Kappa coefficient. The samples were collected 

by visual interpretation of the image. The sampler method was 

stratified random (CONGALTON and GREEN, 1999), being 50 

acquired samples per class. 

 

3. RESULTS 

We observed that the process of classification was done 

allowing for the identification of limitations in the object-based 

approach in implementing the proposed hierarchical network. 

The first limitation identified in the production of map use and 
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land cover is from the diversity of classes, which are composed 

of differently sized objects. Therefore, it is necessary to perform 

the classification in a more detailed level of segmentation, so 

that objects that take up a smaller area can be individualized. 

However, more detailed segmentation excessively subdivided 

the objects that occupy larger areas. Figure 3 shows the number 

of segments generated in different levels of segmentation. In 

Figure 3(A) we observed that grazing areas were outlined by 

only one segment in Level III and Level I, the more detailed, are 

subdivided into several segments. In Figure 3 (B) we can also 

observe the outline of ceramic tile object, which is considered to 

be the object with the smallest area in the proposed 

classification. In Level II of segmentation, this object is defined 

by a segment while at Level I is subdivided into various 

segments depending on the variation of shading on the roof. 

The Error matrix and the statistical results of classification are 

observed in Tables 3 and 4. In the Figure 4 shows the resulting 

map of land cover and land use classification of the study area. 

 
Figure 3. Comparison of segmentation in levels I, II and III. (A) 

grazing area, (B) ceramic roof tile. 

 

Land  Use and Land Cover 

Classes 

Reference Data 

Grazing 
Water 
Bodies 

Mixed 
Crops 

Aluminum and 

Light Concrete 
Covers 

Covers/S
oils Wetlands 

Arboreal 
Vegetation 

Non-paved 

Roads/Light 
Bare Soil Roads Total 

C
la

ss
if

ie
d

  
D

a
ta

 

   

Grazing 47 0 0 0 0 15 1 0 0 63 

Water Bodies 0 25 0 0 1 0 0 0 0 26 

Mixed Crops 1 4 46 0 1 4 0 0 0 56 

Aluminum and Light 
Concrete Covers 

0 0 0 36 0 0 0 0 0 36 

Covers/Soils 0 19 2 0 47 8 0 0 0 76 

Wetlands 0 0 0 0 1 23 2 0 0 26 

Arboreal Vegetation 2 0 2 0 0 0 47 0 0 51 

Non-paved 

Roads/Light Bare Soil 

0 2 0 14 0 0 0 50 5 71 

Roads 0 0 0 0 0 0 0 0 45 45 

Total 50 50 50 50 50 50 50 50 50 450 

Overall = (366/450) 81.33% 
Kappa = 0.79 

Table 3 – Error matrix. 
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Land use and land cover class Producer`s Accuracy Omission 

Errors (%) 

Commission 

Errors (%) 

User`s Accuracy 

Samples (%) Samples (%) 

Grazing 47/50 94 6 25.4 47/63 74.6 

Water Bodies 25/50 50 50 3.85 25/26 96.15 

Mixed Crops 46/50 92 8 17.86 46/56 82.14 

Aluminum and Light Concrete 

Covers 

36/50 72 28 0 36/36 100 

Covers/Soils 47/50 94 6 38.16 47/76 61.84 

Wetlands 23/50 46 54 11.54 23/26 88.46 

Arboreal Vegetation 47/50 94 6 7.84 47/51 92.16 

Non-paved Roads/Light Bare 
Soil 

50/50 100 0 29.58 50/71 70.42 

Roads 45/50 90 10 0 45/45 100 

Mean 40.6/50 81.33* 18.66 14.91 40.6/50 85.08 

* Standard deviation 20.42% and coefficient of variation 25.1%. 

Table 4 – Classification evaluation 

 

 

 
Figure 4. Land use and land cover map 

 

The result of classification achieved 81.33% producer`s 

accuracy and 0.79 kappa index, considered by Landis and Koch 

(1977) a classification with strong agreement. This allows us to 

consider the land use and land cover classification through 

oriented-based approach satisfactory for this context. 

In the analyses of Table 4 it was observed that the best 

producer’s accuracy occurred for Non-paved Roads/Light Bare 

Soil class, with 100% accuracy, however the same class showed 

70.42% for user’s accuracy. Through Table 3 it is possible to 

identify that Aluminum and Light Concrete Covers objects were 

misclassified as Non-paved Roads/Light Bare Soil class. The 

histograms in Figures 6 and 7 show the spectral confusion using 

the classification descriptors, in which the meaningful overlaps 

of band means R, G and B descriptors, were observed.  

The opposite situation occurs with the Water bodies and 

Wetland classes, that showed the worst producer’s accuracy 

results, 50% and 46% respectively, and high user’s accuracy, 

96.15% and 88.46%. The results make sense because just 

wetland and water bodies were sampled with little influence 

from bare soil, vegetation and material in suspension, as it is 
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observed in Figures 7 and 8.Thus, water object with influence 

from different material were not correctly classified. 

 
Figure 5. Histograms of attributes descriptors of Covers/Soils 

(blue) and Non-paved Roads/Light Bare Soil (black) classes. 

 

 
Figure 6. Histograms of attributes descriptors of Aluminium and 

Light Concrete Covers (blue) and Non-paved Roads/Light Bare 

Soil (black) classes. 

 

 
Figure 7. Histograms of attributes descriptors of Wetlands 

(blue) and Mixed Crops (black) classes. 

 

 
Figure 8. Histogram of attribute descriptor of Water Bodies 

(black) and Covers/Soils (blue) classes. 

The other classes showed producer's accuracy above 72%. But 

it is important to note that despite the 81.33% producer's 

accuracy mean, the 20.42% standard deviation suggests a 

variance to the producer's accuracy, with a 25.1%.coefficient of 

variation. This coefficient does not suggest a high 

heterogeneity, but having a coefficient of variation higher than 

10%, it also does not suggest a result with high homogeneity. 

However, the classification process was not susceptible to this 

level of variation, as evidenced by the Kappa coefficient. 

When considering the performance by class, it was verified that 

the Aluminum and Light Concrete Covers and Roads classes 

have not included other classes (with 100% user’s accuracy), 

demonstrating that the attributes parameters used by these 

classes were adequate. The classes that produced higher 

inclusion error were Covers/Soils (38.16%), Non-paved 

Roads/Light Bare Soil (29.58%) and Grazing (25%). In the 

Covers/Soils class an inclusion of Water Bodies class occurred, 

because of spectral responses similarity for the presence of 

materials in suspension in water and exposed soil in wetlands. 

The inclusions in the Non-paved Roads/Light Bare Soil class 

occurred by the spectral response similarity with the Aluminum 

and Light Concrete Covers and Roads classes, once the 

segmentation process used did not allow a consistent definition 

of these objects contours. The Grazing class showed a large 

inclusion of the Wetlands class because of the high frequency of 

flooding in grassland areas located in the lower regions of the 

land. 

 

4. CONCLUSIONS 

The details in the segmentation process produces a loss of shape 

and context attributes, making it difficult to differentiate 

objects. Thus, we intend to improve the border limits of objects 

in order to better portray the geometrical characteristics and 

location of features, so that we can deepen the exploration of 

software resources and features and also so that there can be a 

refinement of the classes of land use and land cover. 

It is considered that the result of automatic classification by the 

o object-based method, has achieved values of accuracy close to 

the limit for the application of this technique for high resolution 

image  data, with great complexity and diversity of space 

occupation. Thus, to achieve a better overall classification the 

manual editing of some segments that show misclassification 

must be done. 
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