
DATA MINING TECHNIQUES AND GEOBIA APPLIED TO LAND COVER MAPPING 
 
 

C. N. Francisco a*, C. M. Almeidab 

 
a Dept. Geoenvironmental Analysis, Fluminense Federal University, Campus Praia Vermelha, 24210-346 Niterói – RJ, 

Brazil - cristianenf@id.uff.br  
b National Institute for Space Research,  Division for Remote Sensing, 12227-010 São José dos Campos – SP, Brazil - 

almeida@dsr.inpe.br 
 
 

 
KEY WORDS:  Decision Tree, Texture Features, ALOS images, Tropical Montainous Area 
 
 
ABSTRACT: 
 
This article is committed to evaluate the performance of a semantic network generated by data mining for the classification of land 
cover using GEographic Object-Based Image Analysis (GEOBIA) in a tropical mountainous area. The study area corresponds to the 
Nova Friburgo County, with an extension of 933 km², located in the region of the Fluminense Ridge, presenting thus a steep 
mountainous relief. Based on a visual interpretation of the images, eight land cover classes were defined: rockies, forest, grasslands, 
sparse grasslands, burn scars, reforestation, shadow, and urban areas. The dataset used for data mining was composed by 130 
attributes and by 225 training samples accounting for all land cover classes. The algorithm C4.5, implemented in the software Weka 
3.6.4, was employed for the data mining procedure. The following attributes were selected by C4.5: NDVI, fourth principal 
component, second angular moment, homogeneity, entropy, and slope. The obtained global accuracy was 88%, and the Kappa index 
reached 0.81. Only the class ‘urban areas’ presented omission errors greater than 50%, being confused in some cases with sparse 
grasslands, forest, and burn scars. In view of the obtained value for the Kappa index, we can state that the classification presented an 
excellent accuracy according to a rating scale specially elaborated for such index.  
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

The traditional techniques for the classification of remotely 
sensed images consist either of pixel-per-pixel or region-based 
approaches, focussing on the targets spectral peculiarities in 
order to extract thematic information. In the GEOBIA domain, 
pixels are grouped in segments acknowledged as objects, 
according to their spectral properties and taking into account 
geometrical characteristics of the generated segments, so that 
such objects become the primitive entities for classification 
(Navulur, 2006). In a diverse way from the traditional 
classifiers, which solely use spectral information to identify the 
probable class to be assigned to each element of analysis, 
GEOBIA takes into account a wide range of information 
extracted from objects. In this way, besides spectral properties, 
objects own manifold attributes (descriptors), associated with 
their shape and geometric characteristics, texture, contextual and 
semantic relationships between classes belonging to the same or 
any other level of segmentation, which can be used for image 
analysis in a way to resemble human cognitive processes for 
image interpretation (Navulur, 2006; Marpu, 2009; Camargo et 
al., 2009a). 
GEOBIA basically consists of two methodological stages: (1) 
segmentation, a technique used to regionalize the scene into 
multiple disjunct objects; and (2) classification based on 
decision rules, which reveal the objects properties expressed by 
their attributes (Navulur, 2006; Lang, 2008). The segmentation 
algorithms subdivide an image into regions or segments, 
reducing its level of detailing and complexity, since it is now 
formed by objects (Lang, 2008). The object corresponds to a 
discrete region of an image that is internally coherent and at the 
same time different from its surroundings (Castilla and Hay, 
2008). 

Segmentation is followed by the creation of an object-based 
knowledge model, which is represented as a hierarchical 
semantic network, responsible for storing the interpreter´s 
knowledge on the study area and guiding the objects 
classification. During the knowledge model construction, the 
following issues must be observed: (a) appropriate definition of 
classes and subclasses according to the segmentation level; (b) 
selection of adequate attributes for the objects classification 
(spectral, texture, morphological, topological), which are 
inherited by the corresponding subclasses; and (c) 
determination of the fuzzy membership functions (curve design 
and thresholds) (Mavrantza and Argialas, 2008). Blaschke et al. 
(2008) suggest that the focus of GEOBIA must lie on the 
development of intelligent geographical databases, which gather 
applicable information for a given geographical context. 
The construction of a semantic network is one of the most 
important stages in an object-based classification. Nevertheless, 
it is also an effort consuming task due to the difficulty in 
selecting the best set of attributes, among an enormous amount 
of attributes that can be extracted from the objects and that 
appropriately describes the classes to which such objects 
belong. The semantic network can be elaborated heuristically by 
the human interpreter, who interactively and iteratively tests the 
attributes, functions and thresholds for a proper discrimination 
of classes, or in an automated form, through the application of 
data mining techniques. These techniques consist in the 
extraction of knowledge from a huge database by means of 
intelligent methods. One of the models available in the realm of 
data mining is the decision tree, represented as a flowchart 
resembling the structure of a tree and which can be easily 
converted in classification rules (Han and Kamber, 2006).  
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The strength of GEOBIA lies on the fact that objects provide a 
massive database for classification (Marpu, 2009). Since objects 
correspond to a grouping of neighboring pixels, it is possible to 
extract for each them statistical parameters and other attributes 
related to their properties. Thus, a set of attributes is associated 
to each object, which, in the case of spectral properties, 
correspond to the statistical treatment of the pixels digital 
numbers, and in the case of texture properties, to the 
mathematical manipulation of the digital numbers spatial 
distribution in each object.  
In the case of images generated by mathematical transforms of 
spectral bands, like principal components or vegetation indices, 
or of any other raster data, like discrete numerical grids  
(thematic maps) or continuous ones (e.g. digital elevation 
models - DEM, slope, temperature, etc.), the pixel digital 
number does not correspond to spectral properties, but rather to 
the value derived from a mathematical operation, or the value 
associated with a thematic class, or the value corresponding to 
the magnitude of the event being represented. In this way, the 
original attributes resulting from the statistical treatment of the 
digital numbers are denominated as statistical properly speaking, 
and may correspond to the mean, standard-deviation or variance 
of spectral values, indices and magnitudes, depending on the 
input data subject to the statistical manipulation. 
The texture of targets found on the Earth surface, which 
corresponds to the spatial distribution of the digital numbers of 
an image, is one of the most important characteristics used for 
interpretation. However, it is not easy to be described (Haralick 
et al., 1973; Marpu, 2009).  The advantages of applying texture 
information on targets of medium spatial resolution has been 
demonstrated in several studies (Dekker, 2003; Dell´Acqua and 
Gamba, 2003; Riedel et al., 2008). Haralick et al. (1973) 
proposed the calculation of texture metrics through the Gray 
Level Co-occurrence Matrix - GLCM and created 14 parameters 
characterizing texture.  This method extracts texture by means of 
the spatial relationship existent among the digital numbers in 
several directions. According to Ito et al. (2011), due to its 
simplicity and effectiveness, it is regarded as a reference method 
by many authors worldwide. 
This article aims at evaluating the performance of a semantic 
network meant for an object-based land cover classification 
generated by data mining. For this purpose, this network 
consists of statistical attributes, resulting from the statistical 
treatment (mean and standard-deviation, in the particular case of 
this work) of the digital numbers belonging to each object, as 
well as of texture attributes, calculated by the GLCMs according 
to the method of Haralick et al. (1973). 
 
 

2. MATERIAL AND METHODS 

The study area is the Nova Friburgo county, which extends over 
a surface of 933 km², sheltering a population of 182 thousand 
inhabitants (IBGE, 2011a). It belongs to the Rio de Janeiro 
State, southeast of Brazil, between the geographic coordinates 
22º08’ and 22º28’ S; 42º44’ and 42º11’ W. The county is 
located on a geomorphological unit named as Reverse Plateau of 
the Fluminense Ridge Region, and presents steep mountainous 
relief, with altitudes ranging from 400 to 2,300 m, and hence, it 
is highly prone to landslides and erosive events in face of the 
high steepness of its slopes associated with the expansion of 
economic activities in this region (Dantas, 2001). The highest 
and steepest areas, due to their constrained accessibility, 
maintain the Atlantic Forest in good preservation conditions.  
The land cover mapping in Nova Friburgo was based on the 
application of GEOBIA in the Definiens Developer 7.04. This 

platform contains different segmentation algorithms, like the 
multiresolution or FNEA algorithm, and classifiers, including 
the nearest neighbor and fuzzy logic.  
The multiresolution segmentation algorithm generates objects 
according to homogeneity criteria in different levels of scale, 
which can then be grouped or subdivided into further objects in 
new levels (Definiens, 2007). When it is applied to a database 
with a pre-existing segmentation level, it will merge objects at 
higher levels into coarser superobjects, or subdivide them into 
finer scale subobjects at lower levels, what enables the creation 
of a hierarchical network connecting all segmentation levels. 
The homogeneity criteria used in the multiresolution 
segmentation are set based on the combination of the pixels 
spectral properties (color) and the shape of the generated 
objects.  The shape and color parameters sum to one and 
respectively determine the extent to which color and shape 
information is used in the segmentation process. The shape 
parameter is additionally subdivided into compactness and 
smoothness. A high value of compactness leads to smaller and 
very compact segments, and hence, is more suitable for man-
made objects, while a high value of smoothness leads to 
segments optimized to have smooth borders, which are on their 
turn more suitable for natural objects (Kressler and Steinnocher, 
2006). 
The scale factor is an important parameter employed by the 
multiresolution segmentation algorithm and it estimates the 
average size of objects to be created (Definiens, 2007). The 
higher the value assigned to this parameter, the bigger the size 
of the generated objects, and hence, the fewer the objects to be 
created. 
A weight must be as well assigned to the input images, 
according to their degree of importance in the segmentation 
process. This weight ranges from 0 to 1, and the greater its 
value, the bigger the importance granted to the respective input 
image is (Definiens, 2007).  
The platform WEKA 3.6.4, developed by the University of 
Waikato, New Zealand, was used for data mining. This open 
source software presents a collection of learning algorithms, 
consisting of pre-processing, classification and regression tools, 
besides grouping and association rules, which can also be 
directly applied to the input dataset (Hall et al., 2009).  
The database comprised orbital images and relief data. The 
images were acquired in August 2009 by the ALOS/AVNIR-2 
sensor, with a spatial resolution of 10 m, corresponding to three 
bands in the visible range and one in the near infrared range, 
pansharpened with the panchromatic image of the 
ALOS/PRISM sensor, with a spatial resolution of 2.5 m. The 
relief data were obtained from the geomorphometric database 
TOPODATA, resulting from the processing of SRTM (Shuttle 
Radar Topography Mission) data provided by USGS (United 
States Geological Survey). This processing aimed at filling 
sinks and refining the original data, yielding digital elevation 
models (DEM) with 30 m of spatial resolution (Valeriano, 
2005). 
The basic stages of the experiment reported in this paper are 
described in the following subsections, comprising the database 
preparation, images segmentation, generation of the hierarchical 
semantic network, land cover classification and validation. 
 
2.1 Database Preparation 

The database preparation consisted in the ALOS images and 
DEM processing. The multispectral bands were pansharpened 
with the panchromatic band, and the four resulting bands were 
subject to mathematical transforms. 
Since the rational polynomial coefficients (RPC) of ALOS 
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images are exclusively provided for data obtained in the Asian 
continent, 40 ground control points (GCPs) were collected on 
orthophotos with 1 m of spatial resolution covering the study 
area at a 1:25,000 scale (IBGE, 2011b) in order to orthorectify 
the AVNIR (70 x 70 km) scenes. The elevation was extracted 
from the SRTM data (Jacobsen, 2005; Richter and Teichert, 
2008). For the PRISM image (70 x 35 km), 20 GCPs were 
employed. The orthorectification was executed in ENVI 4.7, 
also using sensor attitude and ephemeris data obtained from the 
ALOS technical support team. 
The next step was the pansharpening of AVNIR-2 and PRISM 
images using the Gram-Schmidt method, available in ENVI 4.7. 
This method consists in the simulation of a panchromatic band 
from the multispectral bands, and the application of the Gram-
Schmidt transform to the set of multispectral bands and the 
simulated panchromatic band. After that, an inverse transform is 
accomplished, replacing the first band by the simulated 
panchromatic image. The Gram-Schmidt method presents 
greater accuracy than the Principal Components Analysis - PCA, 
for the former one uses the sensor spectral response to simulate 
the panchromatic band (ENVI, 2009). In the work of Pinho et 
al. (2005), the authors evaluated pansharpening methods applied 
to QuickBird images. They concluded that the Principal 
Components and the Gram-Schmidt methods, when applied to 
the four multispectral bands, presented the best results, although 
the latter one showed a comparative superiority. In the work 
reported in this paper, the authors as well acknowledged the 
spectral fidelity of the Gram-Schmidt method in a true color 
composition of the pansharpened bands when compared to the 
same composition of the original multispectral images. 
These pansharpened bands yielded new images resulting from 
the application of PCA and the conversion of the RGB into the 
HLS (Hue - H, Lightness - L, Saturation – S) system. The 
Normalized Difference Vegetation Index – NDVI was also 
extracted from such bands. All derived images were delimited 
by the study area boundaries and resampled so that all of them 
presented the same spatial resolution of 2.5 m. All these 
procedures were executed in ENVI 4.7. 
Following these procedures, the slope grid was generated using 
the TOPODATA DEM and the 3D Analyst module of ArcGIS 
9.0. Both the DEM and the slope grids were delimited by the 
study area boundaries and resampled to 2.5 m. The database was 
then composed by 14 layers: four pansharpened multispectral 
bands of ALOS, four principal components - PC, three 
components HLS, NDVI, DEM and slope grid. 
 
2.2 Images Segmentation 

Three consecutive levels of segmentation were generated with 
the progressive reduction of the scale factor at each new level, 
containing an ever increasing number of objects of smaller sizes.  
Due to the spatial resolution and the morphometric 
configuration of the targets of interest in the images used for 
land cover classification in this work, the spectral parameter or 
color tended to be more important for segmentation than the 
shape parameter. For this reason, in all of the three segmentation 
levels, 0.1 has been assigned to the shape parameter, and 
consequently, the color parameter was set to 0.9, for they are 
complementary. The compactness and smoothness parameters 
were established heuristically, according to the diversity of 
classes found in the scene. Since targets of more regular 
geometry were present in the study area, like urban areas, burn 
scars, agricultural plots and reforestation areas, as well as targets 
with irregular boundaries, like forest, grasslands and sparse 
grasslands, and rockies, the value 0.5 was ascribed to the 
compactness parameter, and hence, smoothness was set to the 

same value, since they are complementary. 
For the second and third levels of segmentation, the weight 
value of 1.0 was assigned to the unique input image - NDVI, as 
a means to separate objects with vegetation from those with no 
vegetation at all. In the first segmentation level, the four 
pansharpened multispectral bands were used, aiming at 
discriminating the diverse types of targets existent in the scene 
and selected for classification. 
 
2.3 Generation of the Hierarchical Semantic Network 

The land cover classes were initially established based on a 
visual analysis of the pansharpened images, and were later 
adjusted in an iterative way as a function of the preliminary 
classification results. Eight land cover classes were defined: 
rockies, forest, grasslands, sparse grasslands, burn scars, 
reforestation, shadow, and urban areas. 
In total, 225 samples were collected for training the decision 
tree algorithm, accounting for the eight land cover classes, what 
approximately corresponds to 30 samples per class, excluding 
the class burn scars, since it presents a reduced area, and hence, 
a limited number of objects. 
The initial dataset for data mining, comprising statistical and 
texture attributes extracted from the first and finest level of 
segmentation, was generated in Definiens Developer 7.04. After 
the importing procedures, the input dataset was subject to a 
preliminary filtering (for removing noise and inconsistencies) 
executed in Weka 3.6.4, presenting 130 attributes (Table 1). 
 

Attribute (or Descriptor) Type  Total  
Mean  

Statistical 
16 

Standard-deviation 12 
GLCM 2nd Angular Moment 

Texture 

27 
GLCM Contrast 28 
GLCM Entropy 30 

GLCM Homogeneity 17 
 

Table 1. Attributes used for data mining 
 
For the calculation of the texture attributes, executed in the 
Definiens Developer 7.04, the GLCMs proposed by Haralick et 
al. (1973) were used. As previously explained, this approach 
extracts texture by means of the spatial relationship existent 
among the digital numbers in several directions. Among the 
available 14 texture parameters, four of greater relevance were 
used (Baraldi and Parmiggiani, 1995; Ito et al., 2011): 
• Second Angular Moment or Energy – measures the 

uniformity of texture, i.e. the amount of repeated pairs of 
pixels. High values indicate that the distribution of grey 
levels is constant, occurring a great repetition in the 
variation of the digital numbers. For a normalized matrix, 
the values are either positive or smaller or equal to 1. 

• Entropy – assesses the disorder in an image, corresponding 
to an inversely proportional measure to the second angular 
moment. High values indicate that the image does not own 
a uniform texture.  

• Contrast – corresponds to the difference between the 
highest and lowest values of a set of neighboring pixels. 
High values of contrast are associated with images 
composed by digital numbers of great amplitude, i.e. with a 
rough texture. 

• Homogeneity – measures the homogeneity of an image. 
High values correspond to small tonal differences between 
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adjacent pixels. This parameter is inversely proportional to 
the contrast and energy. 

The classification rules derived from data mining were set by the 
C4.5 algorithm, created by Quinlan (1993) and implemented as 
the tree.J48 classifier in the Weka 3.6.4 platform. This algorithm 
builds decision trees based on training samples and through a 
recursive procedure of data partitioning. The trees are expressed 
as a flowchart, where each internal node executes a test with a 
given attribute, the branch (or arc) represents the test result, and 
the external node (or leaf) accounts for the expected class. For 
each node, the algorithm chooses the best attribute to separate 
the data in individual classes. The attributes that are not 
included in the tree are regarded as irrelevant (Han and Kamber, 
2006). If the number of samples and/or their class descriptive 
ability are not appropriate, the decision tree will incorrectly 
classify many objects. Big trees tend to data overfitting, while 
very small trees end up by missing important attributes of the 
data. The algorithm always strives to produce less complex and 
smaller trees, for they are more easily understandable and show 
a better performance. For this end, it uses entropy in order to 
assess to what extent the node is informative. Small entropy 
values mean that less information will be used to describe the 
data (Silva, 2006). 

�

2.4 Land Cover Classification 

The decision trees for land cover classification generated in 
Weka 3.6.4 were implemented in the Definiens Developer 7.04 
platform, through the conversion of the decision rules provided 
by the trees into crisp thresholds of hierarchical semantic 
networks. Several classifications were generated based on 
decision trees taking into account statistical and texture 
attributes. The selected decision tree was the one that presented 
at the same time a logical structure and a good classification 
result, which was then subject to statistical validation. 
 
2.5 Assessing the Land Cover Classification Accuracy 

In order to assess the land cover classification accuracy, 1,400 
random points were collected through stratified sampling based 
on the share of the expected areas of each class. A minimum 
number of 50 samples per class was observed, as defined by 
Congalton and Green (2009), for maps covering surfaces smaller 
than one million acres and containing less than 12 classes. Such 
samples referred to pixels so as to precisely avoid the bias that 
would occur in case the objects were selected as samples, given 
their great variation in their size. However, due to the reduced 
area of some classes, it was not possible to observe the 
minimum number of samples for all of them.  
Having the information of reference and assigned class to all 
samples, it was then possible to elaborate an error matrix, which 
is composed by reference samples in its columns, according to 
the information extracted from the orthophotos of Project RJ-25 
(IBGE, 2011b), and by classified samples in its rows according 
to the classification result. The orthophotos were produced by 
an aerophotogrammetric survey accomplished in 2005, with a 
spatial resolution of 0.7 m and at an approximate scale of 
1:30,000, and they were used to solve eventual interpretation 
conflicts. The authors did not discard the information that could 
be visually extracted from ALOS images, which effectively 
guided the identification of the reference samples classes. 
The error matrix indicates the omission errors, which 
correspond to samples that were not classified according to the 
reference samples, and commission errors, related to samples 
erroneously classified as belonging to other classes. Based on 

the errors and agreements of this matrix, the following indices 
were calculated: (a) global accuracy - relation between the 
number of correctly classified samples and the total number of 
reference samples; (b) producer´s accuracy – related to the 
omission errors, corresponding to the relation between the  
number of correctly classified samples of class k and the total 
number of reference samples of class k; (c) user´s accuracy - 
associated with commission errors, which refers to the relation 
between the number of correctly classified samples of class k 
and the total number of classified samples of class k; (d) Kappa 
index (K); e (e) conditional Kappa index (Congalton and Green, 
2009). 
  

 
3. RESULTS 

3.1 Land Cover of Nova Friburgo 

Figure 1 presents the decision tree that was trained based on the 
set of statistical and texture attributes and used for the land 
cover classification in Nova Friburgo (Figure 2). Ouf of the 
initial 130 attributes belonging to the input dataset, the data 
mining algorithm selected the following ones: NDVI, fourth 
principal component (PC 4), second angular moment, 
homogeneity, entropy, and slope. The decision tree structure is 
as follows: 
• Initially, the tree is divided into two major branches using the 
NDVI information.  
• In the left branch, classes with the lowest values of NDVI 
were discriminated, like those ones with no or very sparse 
vegetation: sparse grasslands, shadowed areas, burn scars, 
rockies, and urban areas.  
• The right branch, with greater NDVI values, comprised forest, 
reforestation, and grasslands.  
• In the left branch, the second angular moment was used to 
classify urban areas. This attribute measures the uniformity of 
texture, and values closer to 1 indicate homogeneous targets, 
i.e. those with uniform texture (Baraldi and Parmiggiani, 1995). 
This explains the low threshold value established to extract 
urban areas.  
• In the third level of this branch, shadow was classified based 
on entropy, which values correspond to uniform texture when 
low.  
• In the following level, the NDVI was used to classify burn 
scars, differentiating them from sparse grasslands and rockies, 
for the former class presents the lowest NDVI values, since 
there is no trace of vegetation on a recently burnt terrain. In the 
case of rockies, the presence of rock vegetation is common, 
what explains the fact that their NDVI values are bigger than 
the ones presented by burn scars.  
• In total, 19 samples of sparse grasslands were classified by the 
highest values of the NDVI homogeneity, while the remaining 
samples were separated from rockies for presenting the lowest 
values of slope, what indicates that rockies are found on the 
steepest slopes.  
• In the right branch, the greatest values of the NDVI 
homogeneity classified sparse grasslands. 
• In the immediate lower level, reforestation was discriminated 
from forest by the fourth principal component. According to 
Mather and Koch (2011), the last principal component 
highlights the contrast between the visible and the infrared 
bands. This is precisely the case of the reforestation class, which 
shows a high correlation among all visible bands, which own a 
low response on average, and a high response in the near 
infrared band, even higher than the one presented by forest. 
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Figure 1. Decision tree generated by the C4.5 algorithm 
 

  
Figure 2. Land cover classification – Nova Friburgo, RJ, Brazil 

 
3.2 Land Cover Classification Accuracy 

The obtained global accuracy was 88% and the Kappa index 
attained 0.81 (Table 2), regarded as of excellent quality 
according to a qualitative rating of Landis and Koch (1977). 
Only the class ‘urban areas’ presented omission errors greater 
than 50%, being confused in some cases with sparse grasslands, 
forest, and burn scars. On the other hand, this class did not 
present commision errors, i.e. the user´s accuracy reached 100%. 
The classes grasslands and burn scars, on their turn, presented 
low user´s accuracies, due to the reported confusion with urban 
areas. 
The values for the user´s conditional Kappa index lay between 
0.38 and 1.00, while for the producer´s conditional Kappa, these 
values ranged from 0.45 to 0.96. The worst performance was 
observed for the classes burn scars and sparse grasslands, which 
respectively obtained 0.38 and 0.50 for the user´s conditional 
Kappa index. Regarding the producer´s conditional Kappa 
index, the worst performance was attained by the urban class, 
with a value of 0.45.  
 

4. CONCLUSIONS 

Considering the global Kappa index, it is possible to state that 
the generated classification presented an excellent accuracy 
according to a special ranking established by Landis and Koch 
(1977). The land cover classes, when individually evaluated by 
the conditional Kappa index, showed an accuracy varying from 
very good to excellent, since the great majority of the obtained 
indices lay over 0.60.  
This work demonstrated the importance of including additional 
information other than purely spectral for the discrimination of 
land cover classes. In this particular case, slope was able to 
differentiate two classes which presented similar spectral and 
texture response, as it was the case of rockies and sparse 
grasslands, discriminated in the last branch of the decision tree 
with the aid of such geomorphometric attribute. In operational 
terms, the elaboration of the semantic network by means of data 
mining proved to be advantageous, for allowing the automation 
of both the attributes selection and the decision rules definition, 
demonstrating hence to be less vulnerable to the interpreter´s 
subjectivity. Moreover, this classification approach allows the 
reapplication of the hierarchical semantic network in further 
areas  with similar characteristics as to the existing types of land 
cover classes and their spatial configuration (Camargo et al., 
2009b). 
 

Table 2. Error matrix of the land cover classification 
 

Ro-
ckies

Forest Grass-
lands

Sparse 
Grass-
lands

Burn 
Scars

Refo-
resta-
tion

Sha-
dow

Urban 
Areas

Total 
Classi-

fied

Rockies 20 1 1 3 25

Forest 418 12 2 7 439

Grasslands 4 4 78 3 4 93

Sparse 
Grasslands

4 7 30 16 57

Burn Scars 1 7 1 9 18

Reforesta-
tion

1 15 16

Shadow 1 2 41 44

Urban Areas 28 28

30 425 97 34 8 21 45 60 720

0.66 0.96 0.78 0.88 0.87 0.71 0.91 0.45
Kappa 
Index

0.79 0.88 0.81 0.50 0.38 0.94 0.93 1.00 0.81

Reference Samples

Class

Total Collected

Producer´s Cond. 
Kappa

User´s Cond. 
Kappa

C
la

ss
ifi

ca
tio

n
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