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ABSTRACT: 
 
Semi-Supervised Learning recently catches much attention and has demonstrated its superiority to classify abundant unlabelled 
samples with only a few labelled samples. The goal of this paper is to provide an experimental comparison of the efficiency of graph 
based semi-supervised learning algorithms in context of multispectral image classification. We compared the classification accuracy 
and the spatial and temporal complexity of several standard graph based semi-supervised learning algorithms. We also propose an 
efficient semi-supervised learning algorithm which has linear complexity in both temporal and spatial domain. To achieve this, we 
first use multivariate Taylor series expansion to the Gaussian kernel function and then use the Woodbury formula to convert a large 
matrix inversion problem to a small matrix inversion problem. Experimental results show that our proposed algorithm can attain 
high accuracy when only a few training samples are available. 
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1. INTRODUCTION 

Multispectral image classification is a basic problem arising in 
change detection(Lu, Mausel et al. 2004; Radke, Andra et al. 
2005), land use/land cover investigation(Sobrino and Raissouni 
2000; Friedl, McIver et al. 2002), urban planning(Pauleit and 
Duhme 2000), etc. Traditional methods for image classification 
only use either labelled samples (supervised learning) or 
unlabelled samples (unsupervised learning). 
 
Graph based Semi-Supervised Learning (SSL), a learning 
framework between supervised learning and unsupervised 
learning, can do classification by simultaneously using both 
labelled and unlabelled samples. In the last decade, SSL has 
drawn much attention in pattern recognition and computer 
vision fields(Chapelle, Sch lkopf et al. 2006; Zhu 2006; Zhu 
and Goldberg 2009) due to its superiority over traditional 
supervised learning, like Support Vector Machine (SVM), 
Artificial Neural Networks (ANN), K Nearest Neighbours 
(KNN) etc., for classifying abundant unlabelled samples with 
only a few labelled samples available. For a continuously 
updating survey and some reference book, we recommend 
(Chapelle, Schölkopf et al. 2006; Zhu 2006; Zhu and Goldberg 
2009).  
 
In the remote sensing field, the value of graph based semi-
supervised learning has not been fully explored. Semi-
supervised support vector machine (S3VM) has been studied a 
lot for the remote sensing images classification (Bruzzone, Chi 
et al. 2006; Marconcini, Camps-Valls et al. 2009), but graph-
based semi-supervised learning, which has been studied deeply 
in computer vision and machine learning fields because of its 

solid mathematical background and excellent performance(Shi 
and Malik 2000; Zhu, Ghahramani et al. 2003; Zhou, Bousquet 
et al. 2004; Belkin, Niyogi et al. 2006), has been paid little 
attention in the remote sensing classification. The study of 
semi-supervised learning in the remote sensing field is 
particularly important for reasons below: 1) In remote sensing 
applications sufficient high-quality labelled samples are often 
difficult to obtain because they need long time, special devices 
and too many human activities to retrieve or label. On the other 
hand, however, huge amount of unlabelled data are relatively 
easy to collect. 2) Traditional supervised learning needs to be 
trained with the samples which cover the whole class 
distribution in order to achieve low generalization error. 
However, for remote sensing tasks, this is not easy because of 
the presence of transitional classes, restricted access to sites, 
uncertainties in classes, etc. (Powell, Matzke et al. 2004; 
Bradley 2009).  
 
The goal of this paper is to provide an experimental comparison 
of the efficiency of graph based semi-supervised learning in the 
context of multispectral image classification. We compared 
several standard graph based semi-supervised learning 
algorithms, as well as a new one we have recently developed, in 
respect to  the classification accuracy and the spatial and 
temporal complexity. The algorithms we studied include 
Harmonic Function (HF)(Zhu, Ghahramani et al. 2003), Local 
and Global Consistency (LGC) (Zhou, Bousquet et al. 2004), 
Anchor Graph Regularization (AGR)(Liu, He et al.) and 
Nystrom Approximation Method (NAM)(Camps-Valls, Bandos 
Marsheva et al. 2007) as well as our Taylor Series Expansion 
algorithm(TSE). In many experiments our new algorithm keeps 
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comparable classification accuracy, while saves considerable 
space and time. 
 
 

2. GRAPH BASED SEMI-SUPERVISED LEARNING  

2.1 General Notions of Graph 

We first introduce some notions. Given a sample set 

1 2 1{ , ,..., , ,..., | }d
k k n iV  x x x x x x  coming from c classes, 

and a class label set {1,2,..., }c , we assume that the first k 

samples in V have their class labels 1 2{ , ,..., | }k iy y y y   and 

the remaining n k samples’ labels are unknown. Define 
( , )G V E  as a graph with vertex set V and edge set 

{ ( , ) |1 , }i jE e i j n  x x . Since there is a one-to-one 

correspondence between graph vertices and samples, we will 
use both “vertex ix ” and “sample ix ” indifferently, i.e. 

vertex ix and sample ix  mean the same thing. If vertices ix  and 

jx have a connection, then ( , )i j ije wx x ; otherwise 0ije  . The 

weight ijw is a nonnegative real number which measures the 

similarity between samples ix  and jx . The matrix 

{ |1 , }ijw i j n  W is called weight matrix or adjacency 

matrix of the graph. The volume of vertex i  is defined 

as ( ) ij
j

vol i w .The Laplacian of graph ( , )G V E is defined 

as  L D W , where D  is a diagonal matrix with its diagonal 
elements ( )iiD vol i . The normalized Laplacian is defined as 

1/ 2 1/ 2
norm

   L D LD I S , where 1/2 1/2 S D LD  is the 

normalized weight matrix. It can be proved that 
both L and normL are positive semi-definitive matrices(Chung 

1997). 
 
2.2 Graph Based Semi-Supervised Learning 

There are two basic assumptions for semi-supervised learning:  
1) samples that are close to each other tend to be in the same 
class; 2) samples that are distributed on same manifold tend to 
be in the same class. Different formulations of these two 
assumptions yield several popular algorithms, including the 
Harmonic Function(Zhu, Ghahramani et al. 2003), Local and 
Global Consistency(Zhou, Bousquet et al. 2004) and Manifold 
Regularization(Belkin, Niyogi et al. 2006).  
 
Since it is closely related our algorithm, here we focus on the 
Local and Global Consistency learning method. Let f be the 
decision function defined on graph ( , )G V E . Then these 
assumptions mean: a) f should be sufficiently smooth on graph 
G, such that it will not change abruptly on nearby vertices 
coming from same class; b) f should have consistency property, 
such that it will not conflict with the prior information 
contained in the labelled samples. Combining these two 
constraints together, it will produce to semi-supervised learning 
algorithms in the framework of graph regularization. 
 
Define a n c  initial labelling matrix Y  (n is the total sample 
number and c is the number of classes from which these 
samples are retrieved) and let 1ijY   if sample ix comes from 

class j; 0ijY  otherwise. Let F  be a n c  matrix which we will 

learn on the graph. Then the Local and Global Consistency 
learning method defines an objective function as 
 
 

2

2

, 1 1

1 1 1
( )

2 ( ) ( )

n n

ij i j i i
i j i

w
vol i vol j


 

 
    
 
 
 F F F F Y (1) 

 
 
where iF and iY are the row vectors of matrices F and 

Y respectively, and  is a regularization parameter. The first 
term is smoothness constraint and the second term is 
consistency constraint. By setting the differentiation of ( )F  

with respect to F to zero, it will produce 
 
 

* 1( )   F I S Y                             (2) 
 
 
where / (1 ), 1 / (1 )        . Then the class label of 

sample ix is determined by *

1,...,
arg maxi ij

j c
y F


 . It is not difficult to 

show that the entry *
ijF  has the property: *0 1ijF  . From this 

point, the entry *
ijF can be treated as the likelihood of 

sample ix coming from class j. 

 
If there are n samples (including the labelled and unlabelled) 
coming from c classes, then to obtain the optimal solution   
using equation(2), one needs to invert a n n matrix. This 
operation has both time and space polynomial complexity. To 
be worse, in the remote sensing filed, the total sample number n 
can be easily up to millions or more. For example for a 
400 400 TM imagery, the dimension of the adjacency matrix 
or Laplacian matrix of the graph is 160000 160000  (The 
memory space consumed by a double precision full matrix is 
about 46GB. Although the space can be reduced by adopting 
sparse matrix, the memory is still considerably large when 
samples are densely distributed or gathered into compact 
clusters.). It is very intractable to invert such a matrix directly 
on a PC. Besides, large matrix inversion tends to have large 
perturbation due to noise affection.  Therefore an efficient 
algorithm has to be developed.  
 
In the next section, we give an algorithm which only needs to 
invert a small matrix, and thus has linear complexity in space 
and time.  
 
 

3. EFFICIENT GRAPH BASED SEMI-SUPERVISED 
LEARNING  

Many graph based SSL algorithms suffer from their polynomial 
complexity in both time and space, including HF, LGC and MR. 
Several speed-up algorithms have been reported in literature 
recently, including Nystroem approximation method(NAM) 
(Camps-Valls, Bandos Marsheva et al. 2007), Anchor Graph 
Regularization (AGR)(Liu, He et al.) and the eigenfunction 
approach(Fergus, Weiss et al. 2009).  In (Camps-Valls, Bandos 
Marsheva et al. 2007) a graph-based semi-supervised learning 
algorithm adopting Nystroem approximation method is 
introduced. But from our experience, the Nystroem method 
tends to be unstable when the chosen rows/columns are highly 
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correlated. Besides, it also needs to make a trade-off between 
the performance and the number of rows/columns used for 
approximation. Here, we develop an efficient SSL algorithm 
based on multivariate function Taylor Series Expansion (TSE) 
theory. Our algorithm is based on the Local and Global 
Consistency SSL algorithm (Zhou, Bousquet et al. 2004). We 
first use Taylor expansion to the Gaussian kernel function and 
then we use the Woodbury formula to convert a large matrix 
inversion problem to a small matrix inversion problem. 
Experimental comparison of these algorithms will be made in 
the next section. 
 
3.1 Approximation of Adjacency Matrix Using 
Multivariate Taylor Expansion 

Let 1 2( , ,..., ) d n
n

 X x x x   be a matrix with each column 

being a sample , 1..d
i i n x  . The edge weight between 

vertices ix and jx  can be written as 

 
 

2
exp

T
i j

ij i jw  


 
   

 

x x
                           (3) 

 
 

where
2

2
exp

2
k

k 

 
  
 
 

x
  is a scalar. So the adjacency matrix 

can be rewritten as 
 
 

W ΛEΛ                                     (4) 
 
 
where Λ is a diagonal matrix with diagonal 
elements ii i  and E  is a matrix with 0s on diagonal and 

with
2

exp
T
i j

ije


 
   

 

x x
 on off diagonal. Recall that the Taylor 

series expansion for a multivariate function ( )f x  is 
 
 

0 0 0

2

0 0 0

( ) ( ) ( ) ( )

1
( ) ( ) ( )

2

T

T

f f f

O

   

   

x x x x x

x x H x x x x
            (5) 

 
 

where gradient
0

0( )
f

f



 

 x x

x
x

 and Hessian
0

2

T

f





 

x x

H
x x

 . 

So the gradient and Hessian functions of
2

( ) exp
T

f


 
  

 

x x
x  are 

 
 

2 2

2 2 4

2
exp

2 4
exp

T

T T

f
 

  

 
   

 
  

   
  

x x x

x x x x
H I

                  (6) 

 
 

I is the identity matrix. Thus ( )f x   can be expanded at origin as 
 
 

2

2

2

1
( ) ( ) ( ) ( )

2

1 ( )

T T

T

f f f O

O


    

  

x 0 0 x x Hx x

x x
x

         (7) 

 
 
If  is large enough comparing with Tx x , then the higher order 
terms in equation (7) can be ignored and ( )f x  can be well 
approximated by the first three terms, i.e. 
 
 

2

1
( ) ( ) ( )

2

1

T T

T

f f f



  

 

x 0 0 x x Hx

x x
                         (8) 

 
 
Plug equation (8) into equation (4), Then approximation of the 
adjacency matrix is  
 
 

2

1
( )T T T


     
 

W Λ ee I X X Λ Λ                   (9) 

 
 

where matrix Λ  is a diagonal matrix with diagonal 

element
2

ii i  x , and vector (1,1,...,1)Te . Furthermore, the 

volume of vertex i is  
 
 

2
2

( ) ( )Ti
i i i i iivol i C

  


    x y                    (10) 

 
 

where 
1 1

,
n n

j j j
j j

C  
 

  y x . Thus the approximation of the 

normalized adjacency matrix is 
 
 

1/ 2 1/2

2

1T T



 

  

S D WD

αα H H T


                        (11) 

 
 

where 1/ 2 1/ 2 1/ 2 1/ 2 2( ) /    T D ΛΛD D ΛΛΛD , 1/2α D Λe  

and 1/ 2H XΛD . It is worth noting that there are only n 
elements for vector α  or diagonal matrix T , and H  is same 
size as original data matrix. Thus the total space for storing the 
normalized adjacency matrix reduces tremendously. 

 
3.2 Using Woodbury Formula for Large Matrix Inversion 

In equation (11) the spatial complexity is reduced to linear 
order, but inverting matrix I S  (which is an n-by-n matrix) is 
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still time consuming.  But if we define a ( 1)n d   matrix 

1
[ ]T


M α H , then the normalized adjacency matrix is  

 
 

T S MM T                              (12) 
 
 
Using the Woodbury formula (Horn and Johnson 1990) 

1 1 1 1 1 1( ) ( )        AB C C C A I BC A BC , then  

 
 

1 1

1 1 1 1 1
1

( ) ( )

( )

T
n

T T
d

  

 

 

    


   

  

I S I MM T

K K M I M K M M K


           (13) 

 
 
where  K I T is a diagonal matrix, kI is the a k k  identity 

matrix. Equation (13) only concerns with a diagonal matrix 
inversion and a ( 1) ( 1)d d    matrix inversion, where d is the 
feature length, usually much smaller than sample number. Thus 
the final optimal solution in equation (2) is  
 
 

* 1 2 1( ) ( )T T    F K Y G I M G G Y             (14) 
 
 
where 1G K M  . 
 
3.3 Complexity analysis 

Inverting the diagonal matrix K  is to take reciprocal of its 
diagonal elements, thus this can be done quickly. The 
dimension of matrices M  and G are both ( 1)n d  . So 

2 T I M G is a ( 1) ( 1)d d    matrix, where d is the feature 

length (e.g.  6d  for TM image). Matrix TG Y  is a d c   
small matrix, where c is the class number. Therefore, the 
computation of inverting and multiplication of these matrices is 
trivial. As it will be seen in the next section, for TM image 
classification the speed is even faster than SVM, which is 
generally considered as a fairly efficient supervised 
classification algorithm. The memory-saving characteristic is 
also apparent, since the maximum space required for all the 
computation is as large as two X’s space and several vectors’ 
space. 
 
 

4.  EXPERIMENTAL COMPARISON 

We make comparison on computer with 2.13GHZ CPU and 
Matlab 2011a. For each algorithm, we choose parameters by 
searching in parameter space and finding optimal one which 
produces lower error rate. For the AGR, we count running time 
including the time of finding anchors.  
 
4.1 AVIRIS Image Dataset 

The first experimental dataset is a 220-band hyperspectral 
image: June 12, 1992 AVIRIS image Indian Pine Test Site 3. 
The reference ground truth is known. There are 16 land cover 

                                                                 
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.

html 

types in the ground truth map. We choose 14 of them and 
discard the other 2 because those 2 types have too few samples 
for training.  We also discard the first 6 bands, which are too 
noisy and have a very low SNR (Signal Noise Ratio), and use 
the remaining 214 bands for classification. We generate training 
samples by randomly selecting k samples as the labelled 
samples at each time (k=2, 3,…, 50) from each class and mix 
these 14k labelled samples together to form the training set. 
Then all the remainder of each class are put together to form the 
validation set. For each training set, we run the program 5 times 
and compute the final overall accuracy by averaging. 
Experimental results are shown in Figure 1 and Figure 2.  
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Figure 1. AVIRIS Dataset - Mean Overall Accuracy VS. 
Training Set Size 
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Figure 2. AVIRIS Dataset - Time Cost V.S. Training Set Size 
 
4.2 Landsat Image Dataset 

The second experimental dataset is made up of a Landsat-7 
Enhanced Thematic Mapper (ETM+) image with path 143 and 
row 029 acquired in Sep 01, 1999. This region, located in 
northwest China, is known as the ancient Silk Road, which is 
the gateway from East Asia to West Asia and Europe. On the 
north of this region there is the second largest desert in China, 
Gurbantunggut Desert. This region is on the transition from 
plain to dessert and contains land cover types varying greatly, 
and thus it is suitable to test the generalization ability of semi-
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supervised classifier. A subregion of 660 660 pixels has been 
considered and its pseudo colour image is shown in figure 3. 
Four typical land cover classes (i.e. water represented by dark 
blue pixels, farm represented by red pixels, sand represented by 
light khaki and residential area by other dark pixels) are defined 
and their corresponding labelled sample sets are manually 
determined from ground reference data. The capacities of these 
labelled sample sets are 1734, 1729, 1087 and 1011, 
respectively. Bands {1, 2, 3, 4, 5, 7} of the ETM+ imagery are 
used. In all experiments, the training samples for each land 
cover type are selected randomly from their corresponding 
labelled samples sets and the rest of the labelled samples are 
mixed together as the validation set. In order to compare the 
effectiveness of classification, we design experiments with 
training samples varying 1 to 30, i.e. {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
15, 20, 30} for each land cover class. So the training sets size 
are {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 60, 80, 120} and the 
validation sets size are {5557, 5553, 5549, 5545, 5541, 5537, 
5533, 5529, 5525, 5521, 5501, 5481, 5441}. Classification 
accuracy is evaluated on these validation sets in the assumption 
that all the samples' labels are unavailable. Experimental results 
are shown in figure 4 to figure 6. 
 
 

 
 

Figure 3. ETM+ Dataset - Pseudo Color Image of The Study 
Area 
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Figure 4.  ETM+ Dataset - Mean Overall Accuracy VS. 
Training Set Size 

 
Figure 4 is the mean overall accuracy vs. training set size and 
figure 5 is the Standard Variance (StdV) of overall accuracy vs. 
training set size. From these figures we can infer that SVM 
have content result (i.e. mean OA  80% and StdV of OA  5%) 
only when the training set size is larger than 20, while the semi-
supervised algorithms remain rather stable performance even 
only when 1 training sample for each class is used. It is worth 
noting that TSE achieves the best OA and meanwhile keeps a 
rather lower deviation.  
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Figure 5. ETM+ Dataset - Standard Variance of Overall 
Accuracy VS. Training Set Size 
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Figure 6. ETM+ Dataset - Average Time Cost V.S. Training Set 
Size 

 
Figure 6 is the time cost of each classifier vs. training set size, 
with a logarithmic vertical axis. As expected, the time cost of 
SVM grows linearly with training set size, and the time cost of 
the other three semi-supervised learning algorithms remain 
constant. This can be answered by the fact that as training set 
grows, the number of support vectors also increases and as a 
result each test sample needs to compare more times to 
determine its class label. Thus the accumulated time cost for all 
the test samples may considerably increase. On the other hand, 
semi-supervised learning classifiers have time cost only related 
with the graph on which it learns, so even though the training 
set size grows, the test samples are unchanged and thus the 
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graph size remains the same, and therefore the time cost is 
nearly constant. As is shown in the figure, among the three 
semi-supervised learning classifiers, TSE has a lower time cost 
than SVM, which has been considered to be a rather efficient 
classifier in literature. 
 
 

5. CONCLUSIONS 

We evaluate several standard graph based SSL algorithms in the 
context of the remote sensing field. To overcome the 
polynomial complexity of graph based SSL, we also propose an 
efficient SSL algorithm which has linear complexity in both 
time and space. To achieve this we first use multivariate Taylor 
series expansion and then adopt the Woodbury formula for 
matrix inversion. As it demonstrated, in general, when only a 
few labelled samples are available, SSL performs no worse 
(often much better) than traditional supervised methods like 
SVM, KNN. In experiments we also noted that SSL tends to be 
not only less sensitive to number of training samples, but also 
less sensitive to the labelled sample’s location on the class 
distribution. This may be due to the fact that SSL can learn on 
manifold (Belkin and Niyogi 2004). These properties of SSL 
have their potential value in the remote sensing field, because in 
many cases collecting sufficient high quality labelled samples is 
not a trivial task.  
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