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ABSTRACT: 

 

Majority of land use/cover classification studies are based on the use of spectral signatures at the per-pixel level, while ignoring 

spatial features inherent in an image. The maximum likelihood classifier (MLC) may be the most common classification method in 

practice, but the object-based classification (OBC) method has been obtained increasingly attention due to its capability of 

incorporating spatial information in a classification procedure. This paper provides a comparison of MLC and OBC based on 

different datasets – Landsat Thematic Mapper (TM), ALOS PALSAR L-band, and their combinations. Through comparative 

analysis of the classification results, we found that the OBC method cannot significantly improve overall land use/cover 

classification accuracy comparing with the maximum likelihood classification, but it indeed improve some vegetation classes having 

complex forest stand structure, and the OBC method is especially valuable for higher spatial resolution images. Also the OBC 

method has better performance than MLC when a combination of Landsat TM and PALSAR L-band data as extra bands is used. 

 

 

1. INTRODUCTION 

 

Many algorithms, from traditional per-pixel based parametric 

algorithms (e.g., maximum likelihood classification), to 

advanced nonparametric algorithms (e.g., neural network, 

decision tree classification, and support vector machine), and to 

object-based algorithms, have been used to classify remotely 

sensed data into land use/cover thematic maps (Lu and Weng, 

2007). Most of previous studies are based on the use of spectral 

signatures at per-pixel level, ignoring the use of spatial features 

inherent in an image. However, previous studies also have 

indicated the importance of using spatial features in the 

classification procedure in improving land use/cover 

classification, especially when high spatial resolution images 

are used (Lu et al., 2010). Different methods can be used to 

incorporate the spatial features into the classification 

procedure. One common method is to develop texture images 

with suitable texture measures (Lu et al., 2008; Li et al. 2011). 

The critical in using textural images is to identify suitable 

texture measures, as well as proper window sizes, image band, 

etc. In practice, it is often time-consuming and challenging to 

identify optimal textural images for a given study area (Li et 

al., 2011). The problem in using textural images is that texture 

is often site-dependent, that is, the same texture used in one 

study area cannot guarantee suitable in another landscape for 

land use/cover classification. Therefore, comparing with 

spectral signatures, textural images are not extensively applied 

in image classification, especially for medium or coarse spatial 

resolution image.  

 

Another common method to use spatial information is the 

object-based classification (OBC) method, which is the focus 

of this research. Unlike the per-pixel based classification 

algorithms, the OBC method is first to partition the raster 

image into segments with spatially continuous and 

homogeneous regions, and then classify the segments into land 

use/cover classes (Blaschke, 2010). Previous studies using 

OBC for land use/cover classification are mainly based on 

spectral signatures. How OBC can improve land use/cover 

classification based on different remotely sensed data sources 

has not been fully examined. Therefore, the objective of this 

paper is to conduct a comparative analysis of maximum 

likelihood classifier (MLC) and OBC for land use/cover 

classification based on different datasets, such as Landsat 

Thematic mapper (TM), radar data (ALOS PLASAR L-band 

data here), and combination of both datasets by using PALSAR 

L-band data as extra bands and by using a data fusion 

technique, in order to better understand the performance of 

OBC in different data sources with various spatial resolutions.  

 

2. STUDY AREA 

 

The study area is located in a moist tropical region of the 

Brazilian Amazon – Altamira, along the Transamazon 

Highway (BR-230) in the northern Brazilian state of Pará 

(Figure 1). The study area covers approximately 3,116 km2. 

The dominant native vegetation types are mature moist forest 

and liana forest. Major deforestation began in the early 1970s, 

coincident with the construction of the Transamazon Highway 

(Moran, 1981). Extensive deforestation since the 1980s has led 

to a complex landscape consisting of different succession 

stages, pasture, and agricultural lands (Moran et al., 1994; 

Moran and Brondizio, 1998; Lu et al., 2011). Different stages 

of successional vegetation are distributed along the 

Transamazon Highway and feeder roads. Annual precipitation 

in this study area is approximately 2,000 mm and is 

concentrated from late October through early June; the dry 

period lasts from June to September. Average temperature is 

about 26oC. 

 

3. METHODS 

 

The framework of land use/cover classification based on 

different remotely sensed datasets is illustrated in Figure 2. The 

major steps include image preprocessing (radiometric and 

atmospheric calibration for Landsat TM image, image-to-image 
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registration between Landsat TM image and PALSAR L-band 

data), design of different data scenarios, land use/cover 

classification with MLC and OBC, and comparison and 

evaluation of the classified results.  

 

 
 

Figure 1. Study area – Altamira, Pará State, Brazil 
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Figure 2. Framework of land use/cover classification with 

Landsat TM and ALOS PALSAR data 

 

3.1 Data Collection and Preprocessing 

 

Selection of a sufficient number of training and test samples are 

critical for land use/cover classification. In this research, 

sample plots for different land covers, especially for different 

stages of secondary succession (SS) and pasture were collected 

in the Altamira study area during July and August 2009. 

Meanwhile, a QuickBird image, which was acquired in 2008, 

was used to assist the selection of more training and test 

samples. The sample plots were used to create representative 

Region of Interest (ROI) polygons. A total of 432 sample plots 

were collected, including 220 ROIs for use as training sample 

plots for image classification and another 212 ROIs for use as 

test sample plots for accuracy assessment. A classification 

system consisting of three forest classes (upland [UPF], 

flooding [FLF], and liana [LIF]), three succession stages (initial 

[SS1], intermediate [SS2], and advanced [SS3]), agropasture 

(AGP), and three non-vegetated classes (water [WAT], wetland 

[WET], and urban [URB]) were designed (Lu et al., 2011).  

 

Landsat 5 TM image with 30 m spatial resolution, ALOS 

PALSAR L-band image with 12.5 spatial resolution, and 

QuickBird image with 0.6 m spatial resolution after data fusion 

with wavelet-merging technique were used in this research. The 

TM image, which was acquired on 2 July 2008, was 

geometrically registered to a previously corrected Landsat 5 

TM image with Universal Transverse Mercator coordinate 

system (zone 22, south). An improved image-based dark object 

subtraction model was used to perform radiometric and 

atmospheric correction for Landsat TM image (Chavez, 1996; 

Lu et al., 2002; Chander et al. 2009). The ALOS PALSAR 

FBD (Fine Beam Double Polarization) L1.5 products with HH 

and HV polarization options with 12.5-m pixel spacing were 

used. The PALSAR L-band images were acquired on 2 July 

2009. The L-band images were registered to the 2008 Landsat 5 

TM image with root mean square error of 1.020 pixels. The 

radar images were resampled to a pixel size of 10x10 m with 

the nearest neighbor technique during the image-to-image 

registration. The Lee-Sigma method with a window size of 5x5 

was employed to reduce speckle on the PALSAR data (Lee et 

al., 1994; Li et al., 2012).  

 

3.2 Design of Data Scenarios for Land Use/Cover 

Classification 

 

In order to effectively use both TM and PALSAR data, one 

common method to combine multi-sensor data is to develop 

textural images from a radar image and to incorporate them 

into multispectral image as extra bands. Our previous research 

has indicated that the best combination of textural images for 

HH image was the textures SM25 (second moment with a 

window size of 25 by 25 pixels) and CON31 (contrast with a 

window size of 31 by 31 pixels), and the best combination for 

HV image is the textures CON25 (contrast with a window size 

of 25 by 25 pixels) and SM19 (second moment with a window 

size of 19 by 19 pixels) (Li et al. 2012). Therefore, they were 

directly used in this research. Figure 3 provides a comparison 

of radar radiometric and textural images, indicating the 

different features in reflecting land surfaces.  

 

Another method to combine multi-sensor data is to use a 

suitable data fusion method to integrate Landsat TM and 

PALSAR image into a new multispectral image with improved 

spatial resolution. Since the wavelet-merging technique was 

regarded as the valuable approach to integrate optical and radar 

data in improving land use/cover classification (Lu et al., 

2011), this approach was used in this research to integrate TM 

multispectral and PALSAR L-band HH polarization image into 

a fused image with 10 m pixel spacing. A detailed description 

of the wavelet-merging technique is provided in Lu et al. 

(2011).  

 

Based on the Landsat TM, PALSAR, and the derived images, 

four scenarios – (1) Landsat TM multispectral bands; (2) ALOS 

PALSAR HH, HV and the selected textural images; (3) 

combination of TM multispectral bands and PALSAR-based 

textural images as extra bands; and (4) the fusion image by 

using wavelet-based merging techniques based on both TM 

multispectral and PALSAR L-band HH image, were designed.  
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3.3 Land Use/Cover Classification with Maximum 

Likelihood Classifier and Object-based Classifier 

 

MLC is the most common parametric classifier which assumes 

normal or near normal spectral distribution for each feature of 

interest. This classifier is based on the probability that a pixel 

belongs to a particular class and takes the variability of classes 

into account by using the covariance matrix (Jensen, 2005). 

Based on the field survey and a 2008 QuickBird image, a total 

of 220 sample plots (over 3,500 pixels) covering the 10 land 

cover types, each consisting of 15–30 plots, were used for 

image classification. In practice, the classification results from 

per-pixel based method often appear noisy because only pixel-

based spectral features are used in the classification procedure, 

without including spatial information inherent in remote 

sensing data.  

 

OBC provides an alternative for classifying remotely-sensed 

images into a thematic map based on segments comparing to 

the traditional per pixel-based classification methods. The OBC 

classification process consists of three steps (Jensen, 2005): (1) 

image segmentation – a moving window assesses spectral 

similarity across space and over all input bands, and segments 

are defined based on user-specified similarity thresholds, (2) 

creation of training sites and signature classes based on image 

segments, and (3) classification of the segments. This is done 

with the assistance of a reference image, which is an already 

classified image and is used to assign the majority class within 

each segment.  

 

In this OBC method, one critic step is to develop a suitable 

segmentation image. Segmentation is the process partitioning 

an image into isolated objects so that each object shares a 

homogeneous spectral similarity (Blaschke et al., 2004). These 

objects have better representative in the landscape than do the 

original pixels. The objects can be derived from image data and 

they are then analyzed using traditional classification methods 

such as minimum distance and MLC (Jensen, 2005; Lu et al., 

2010). Different segmentation algorithms such as Split and 

Merge, Watershed, and Markov Random Field were developed 

(Yu et al., 2006; Blaschke, 2010). In this research, the 

Watershed delineation approach was used. Different 

segmentation parameters (window size, weight mean factor, 

similarity tolerance and weight variance factor) based on 

different datasets were examined. The segment images were 

compared with visual inspection in order to identify the optimal 

parameters for segment image corresponding to different 

dataset. After the segment image was selected for each dataset, 

training sites (polygons), which coincide to the sample sites 

used in MLC, were selected. The classified image from MLC 

based on the training segments was used as a reference image.  

 

3.4 Evaluation of Land Use/Cover Classification Results 

 

The error matrix method is often used for evaluation of land-

cover classification results. This method provides a detailed 

assessment of the agreement between the classified result and 

reference data (Congalton and Green, 2008). Other accuracy 

assessment parameters, such as overall classification accuracy, 

producer’s accuracy, user’s accuracy, and kappa coefficient are 

calculated from the error matrix, as much previous literature 

has described  (e.g., Congalton, 1991; Congalton and Green, 

2008; Foody, 2002, 2009). In this study, a total of 212 test 

sample plots from the field survey and a 2008 QuickBird image 

were used for accuracy assessment, with 12–33 plots for each 

land cover. An error matrix was developed for each classified 

image, producer’s accuracy and user’s accuracy for each class 

and overall accuracy and kappa coefficient for each classified 

image were calculated from the relevant error matrix.  

 

4. RESULTANT ANALYSIS AND DISCUSSION 

 

The classification results by using MLC based on different 

datasets are illustrated in Figure 4. It indicates the significantly 

different classification performance between Landsat TM and 

ALOS PALSAR data. One obvious feature in the classification 

results is that urban areas cannot be effectively separated from 

vegetation types based on the PALSAR data. The quantitative 

evaluation of the classification results are summarized in Table 

1. For Landsat TM multispectral image, both MLC and OBC 

have similar overall accuracy with 81.1% – 81.6%, but OBC 

slightly improved SS2 and SS3 classification accuracies. For 

PALSAR data, OBC improved overall accuracy by 

approximately 1% compared to MLC, and OBC mainly 

improved FLF, LIF and AGP classes. Overall, PALSAR data 

have much poorer capability of land use/cover classification 

than TM multispectral image, with only 56.1%–57.1% v.s. 

81.1%–81.6%. For the combination of TM and PALSAR-

derived textural images, MLC even reduced classification 

accuracy, but OBC remained similar accuracy comparing with 

the results from Landsat TM image. On the other hand, when 

TM and PALSAR are fused with the wavelet-based method, 

the overall accuracies for both MLC and OBC increased by 

4.3% – 4.8% comparing with individual TM image. The fusion 

images are especially valuable for vegetation types such as 

UPF, LIF, SS1, SS2, and SS3. 

 

The results in Table 1 imply that MLC can provide reasonably 

good classification results when the data sets meet the 

requirement of normal distribution, such as in Landsat TM 

multispectral bands or data fusion results. When multiple 

source data are used, such as radar radiometric and textural 

images are combined as extra bands into multispectral image, 

use of MLC may reduce the classification performance. In this 

case, use of nonparametric algorithms, such as decision tree 

classifier, may provide better classification, as previous 

research indicated (Li et al., in review). This research also 

indicated OBC is more effective for improving forest 

classification accuracy with complex forest stand structure 

when higher spatial resolution images are used, such as the data 

fusion image in this research. The OBC method seems not 

effective for medium spatial resolution images, but as spatial 

resolution increases, OBC can significantly improve land 

use/cover classification performance, as previous research 

shown by using QuickBird imagery (Lu et al., 2010). 

 

5. CONCLUSIONS 

 

This research indicates that Landsat TM multispectral image 

provided better land use/cover classification than ALOS 

PALSAR L-band data. Integration of TM multispectral and 

PALSAR L-band data through the data fusion method is 

valuable for improving classification performance by 4.3% – 

4.8%. However, the combination of TM multispectral and 

PALSAR-derived textural images as extra bands may reduce 

classification performance if MLC was used. This research 

indicates that MLC is valuable for land use/cover classification 

when the remote sensing data have normal distribution, but not 

suitable for multiple source data due to the violation of normal 

distribution assumption. OBC is especially valuable for 

improving the classification performance of forest covers 

having complex forest stand structure and especially useful 

when higher spatial resolution images are used for land 

use/cover classification.  
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a, b, c – HH image, SM25 and 

CON31 textures;  d, e, f – HV 
image, CON25 and SM19 

textures; g – TM band 5 image

g

 
 

Figure 3. A comparison of ALOS PALSAR L-band HH, HV and derived textural images, as well as Landsat TM band 5 image in the 

Altamira study area (Note: SM25 and SM19 represent the second moment with a window size of 25x25 pixels and of 19x19 pixels; 

CON31 and CON25 represent contrast with a window size of 31x31 pixels and of 25x25 pixels) 

 

 
 

  Figure 4. A comparison of classification results with MLC for the Altamira study area from different datasets: (a) Landsat TM 

image; (b) PALSAR L-band data; (c) TM multispectral and PALSAR L-band HH fusion image with the wavelet-merging technique 

 

Table 1. Comparison of classification results with MLC and OBC on different data scenarios 

 

  

Landsat TM image ALOS PALSAR image Combination of TM & PALSAR Fusion of TM & PALSAR 

MLC OBC MLC OBC MLC OBC MLC OBC 

PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA 

UPF 69.7 88.5 66.7 88.0 51.5 39.5 33.3 44.0 81.8 62.8 69.7 76.7 75.8 89.3 78.8 92.9 

FLF 93.3 73.7 86.7 68.4 73.3 61.1 80.0 63.2 86.7 68.4 86.7 76.5 93.3 70.0 93.3 82.4 

LIF 83.3 71.4 83.3 71.4 25.0 15.8 58.3 21.2 66.7 88.9 83.3 71.4 91.7 84.6 91.7 84.6 

SS1 57.9 57.9 57.9 55.0 42.1 50.0 42.1 53.3 42.1 72.7 36.8 77.8 79.0 71.4 68.4 61.9 

SS2 87.5 75.0 91.7 81.5 66.7 64.0 62.5 68.2 87.5 80.8 83.3 76.9 87.5 91.3 87.5 91.3 

SS3 85.7 85.7 90.5 86.4 23.8 38.5 28.6 35.3 38.1 80.0 76.2 72.7 90.5 86.4 100.0 84.0 

AGP 73.1 82.6 69.2 81.8 76.9 62.5 88.5 67.7 96.2 75.8 96.2 75.8 80.8 91.3 73.1 86.4 

WAT 87.5 100.0 95.8 100.0 83.3 95.2 91.7 88.0 87.5 100.0 91.7 100.0 87.5 100.0 91.7 100.0 

WET 80.0 92.3 80.0 92.3 33.3 55.6 20.0 75.0 80.0 85.7 86.7 92.9 80.0 100.0 80.0 92.3 

URB 100.0 82.1 100.0 85.2 60.9 87.5 60.9 77.8 100.0 88.5 100.0 92.0 100.0 79.3 100.0 82.1 

OCA 81.1 81.6 56.1 57.1 78.3 81.1 85.9 85.9 

KAP 0.79 0.80 0.51 0.52 0.76 0.79 0.84 0.84 

Note: MLC and OBC represent maximum likelihood classification and object-based classification; PA and UA represent producer’s 

accuracy and user’s accuracy; OCA and KAP represent overall classification accuracy and kappa coefficient. UPF, FLF and 

LIF represent upland, flooding, and liana forests; SS1, SS2 and SS3 represent initial, intermediate, and advanced succession 

vegetation stages; AGP, WAT, WET and URB represent agropasture, water, wetland, and urban. 
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