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ABSTRACT:

Segmentation provides means to extract spatiabBgatures which can be added at pixel level éogbectral signature vector. As
shown in this paper, this framework allows effegticombination of the pixel and the object domain $pectral-spatial
classification. As an application, the mapping afdverranean urban leisure landscapes (San RoquBantd Ponsa, both Spain)
with WorldView-2 and airborne color imagery is peated. Turf grass, other vegetation and swimmirgpare the surface features
of interest as they have high relevance for urb@iogical studies. The random forest machine legrtéchnique is applied and
compared to other well-known classifiers, such apgport vector machine. A recently published adapof the random forest
method is utilized to calculate so-called conditibmariable importance in order to identify theesgint features. Especially for
complex problems and high dimensionality, the ratee of individual features is far from being olmsdo the human analyst and
the actual pattern in the data remain ‘hidden’ wredying on standard methods, such as scatter. Albtsfindings and statements of
this work are: random forests can deal with higiatisional feature spaces which contain correlateldpatentially unpredictive
features. For machine learning applications, awmgs®bject features at pixel level entails some amtlages as the
sampling/processing units are of uniform size andndt depend on the segmentation quality. Furthesmo is shown that the
random forest prediction accuracy is highest wramplementing pixel (spectral signature) and okijeatures.

1. INTRODUCTION Hence, alongside with the per-pixel spectral dir@nof an

image, incorporating a description of the spatialure can be

The increasing accessibility of spaceborne sub+mmetmlution
imagery (e.g. WorldView-2, QuickBird or GeoEye-1)vhded
to new emerging application ranges for remote sensf urban
environments, including intra-urban structuring (bld et al.,

useful for image classification (Camps-Valls et @010).
Especially when the objects of interest are sigaiftly larger
than the sensor system’s ground resolution, therewide
consensus that spatial information holds valuabferination

2005) and mapping of relevant urban surface mdderiawhich effectively complements the standard perdpsectral

(Brockhaus et al., 2010) and land covers (Benedikt&taal.,

dimension (Blaschke, 2010). In order to generatepatia

2003). Urban environments are among the most dymamidescription of an image, various techniques aravikneuch as

systems on Earth which therefore require constamtitoring

and updating of geo databases. Against this baakgro
automated routines are needed to convert the hmgergs of
available remote sensing data into valuable inféionato

accommodate planning and management activities.

For automated interpretation, the limiting factornhany urban
studies is the inherent complexity of this envir@mn
Complexity arises from the various artificial andural surface
materials encountered in urban environments suchsphbalt,
concrete, metals, tartan, bitumen, etc. (Heldenal.et2008).
Their spectral similarity but also their often wral linkage to
relevant urban land covers or uses impedes theddermf
spectral per-pixel signatures. Further complexstyintroduced
by the way different surface materials or land csvare
spatially arranged to meaningful spatial entities.

* Corresponding author.
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window-based approaches based on the concepts
postclassification filtering, morphological (Benetdion et al.,
2003) and texture (Haralick et al., 1973) transfations, or
Getis statistics (Ghimire et al., 2010). Windowépeéndent
approaches are for example based on graph theoma&k
and Unsalan, 2009). All these techniques can bedyo
categorized in preprocessing feature extraction

postprocessing filtering approaches (Camps-Valis.e2010).

Image segmentation provides another means for windo
independent feature extraction in order to add atialp
description of the image to the predictor spaceelRiwithin
homogeneous image regions are grouped togethé&jeots and
hence conceived as belonging together. As suctelgigan
inherit the attributes from their corresponding eulbfs).
However, the wealth of manifold object featureg(@bject’s
spectral statistics, textures, geometries or theiotual
relationships) is not always obvious to the analizspecially

of

and



the features’ interaction (e.g. correlation or defmcy) and
their direct dependence on the object creation ga®dtself
make it cumbersome for the analyst to find appedprfeature
sets by using standard methods (e.g. visual inigpeof feature
layers, scatterplots, and histograms). This inigaer applies
to complex or difficult classification problems. §pte this fact,
machine learning and feature selection is stillarmepresented
in object-based image analysis research (Novaak,e2011).

The aim of this work is to empirically assess treue of
various object features as spatial descriptors imith pixel-
based framework for supervised classification. tpooating
object features into the pixel domain is assumed b®
appropriate for training, tuning and testing of iiae learning
applications that require accurate and spatiatigpendent data
samples. These requirements are not necessarilyirman
object-based framework where the processing/sampls are
of non-uniform size and constitute a generalizattbthe pixel
domain which falsely would be assumed to be hunge¥dent
correct. Or in other words, according to (Chan et 2009):
“Often, hard decisions are made in the early staafeshe
process, e.g., line extraction and segmentatiorsédltecisions
introduce errors which are then corrected in subsetstages
of the process. However, not all errors will bereoted.”

As an application, the mapping of coastal urbarsule
landscapes is presented which is aimed at extgastiimming
pools, vegetation and — as a subgroup of vegetattomf grass.
These surface features are important determinahte/ater
consumption and have important implications forauristudies
related to water demand, irrigation and the rolgreen spaces
in urban landscapes (Wentz and Gober, 2007; HofSatanitt,
2011; Salvador et al., 2011). For this purposedoan forests
(decision tree-based ensemble methods) are usgdskify two
pansharpened WorldView-2 scenes and one aeriat colige
of coastal tourist areas in Mallorca and AndaluSipain. The
prediction accuracy of random forests is compacethbse of
support vector machine, simple decision tree andras¢
neighbor classifiers. Moreover, feature scoringeldasn random
forests is used to quantify the importance of spéttands and
individual object features and, furthermore, to pame the
performances of the pixel and object domain as agetb assess
the synergy using both domains. It is further ases@go which
extent classification results potentially suffesrfr the so-called

curse of dimensionalityit can be assumed that random forests

cope well with high dimensional features spacesy@aa et al.,
2008) which potentially consist of correlated ampredictive

features. If this is the case, the conclusion wdddhat, instead
of pre-selecting features and searching appropsigenentation
scales, an unsurveyed feature set of multiple setatien

levels (quasi-continuous scale space) can be prdvid the
classifier and hence decrease laborious interventyp the

analyst.

2. DATA
2.1 Remote Sensing Data and Study Sites

In late 2009, the Earth observation satellite Wdidav-2 was
launched. It collects spectral data in eight barahging from
400 to 1040 nm with a nominal ground resolutior2 afi, while
the panchromatic mode covers a spectrum from 4ED@nm
with nominal 50 cm ground resolution (DigitalGloh2009).
Two WorldView-2 images are available for this study) A
WorldView-2 scene (Catalog-ID: 1030050005F96700)Sah
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Roque in the Cadiz province, Andalusia, Spain, whics
acquired on 1% July 2010 with 11.9° off-nadir and 69.92° sun
elevation angle. (2) A second WorldView-2 scene &@af1D:
1030050005F96700) was acquired o' February 2011 with
19.61° off-nadir and 36.41° sun elevation angleisTécene
covers Santa Ponsa on the Balearic Island of MaljoBpain.
Both scenes have been pansharpened with the hypeisph
color-space method (Padwick et al., 2010) whicleeoeding to
our visual inspection — well combined spatial desad spectral
properties of both modes. The same study areardd$onsa is
furthermore covered by an airborne digital imagéhwiO cm
ground resolution and three RGB color channels. Thage
was acquired during a flight campaign in March 2002
(SITIBSA (Serveis d'Informacio Territorial de leteB Balears),
2002).

For comparability, equally 125 ha subsets of thedhimages

are considered for the experimental set up of shisly. The
WorldView-2 scene and the aerial image of SantasRahare
exactly the same geographical extent. Both invetstigareas,
Santa Ponsa and San Roque, show very similar urban
landscapes. As high quality tourist destinationd eesidential
areas, they are characterized by large propertiis single
family dwellings and spacious gardens with swimmpapls

(cp. ~6 ha clips in Figure 1).
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Figure 1. Clips of the study areas and image data
2.2 Reference Data Collection

A 4-class scheme is applied which rigidly decomposescene
in (1) turf vegetation, (2) non-turf vegetation,) (Svimming
pool (non-vegetation) and (4) non-swimming pool o
vegetation). For each image, 2500 reference paeisselected
by simple random sampling and manually labeled mtieg to
the 4-class scheme by visually interpreting disedtbm the
image. The idealized scheme neglects the variousces of
uncertainty that accompany remote sensing and gé&akp
modeling (e.g. noisy and technically limited sensor
measurement, degrading processing for signal stosag data
transfer, and inherently vague concepts of clasgesfFoody
and Atkinson, 2002). Therefore, ‘uncertain’ pixeisere
discarded from the sample. The percentage of adisdapixels
(Table 1) can be seen as a quality measure ofnthgds and,
furthermore, can be kept in mind for the interpiieta of



classification accuracy estimates which rely on ‘tleaned’
sample. Consequently, accuracy measures only acdount
those parts of the images that can be visuallypneted.

Image Total sample Discarded L eft over
WorldView-2 2500 px 959 px 1541 px
(Santa Ponsa) (100%) (38.4%) (61.6%)
Aerial image 2500 px 476 px 1724 px
(Santa Ponsa) (100%) (19.0%) (81.0%)
WorldView-2 2500 px 486 px 2014 px
(San Roque) (100%) (19.4%) (80.6%)

Table 1. Sample size and non-interpretable pixels

3. METHODS
3.1 Segmentation and Feature Extraction

Image segmentation provides means to representniage
content on multiple scales which is particularlyitale for
complex scenes (Blaschke and Hay, 2001). In ordeomapute
object-based features of various scales, a thresd-le
segmentation hierarchy is generated by applyindirasblution
segmentation (Baatz and Schape, 2000). The algotfiens
parameters to control the objects’ size and fornthvienables
the analyst to represent the image content onwsusoales. In a
rather unsupervised manner, a sequence of scatde (s
parameter: 10, 40 and 160; increased by the fadter) was
applied to generate an object hierarchy which cottee whole
span, from very fine to very broad image conteptesentation.

Based on the segmentation levels, several objetiréetayers
were extracted; comprising spectral, texture, geégmand
context features (Table 1). An overview of varioobject
features and their computation can be found in nfibke
Documentation, 2012). The combined feature staclkolpéct
and standard per-pixel spectral features consis®@ tayers for
the 8-band datasets and 37 layers for the 3-batadeta

Mean
Minimum
Standard deviation

Spectral statistics of multispectral
bands

Texture of panchromatic band* Grey Level Co-ocaureeMatrix

Homogeneity

Area
Border length

Object geometry

Context of panchromatic band* Mean difference tiginigor objects

* for the aerial image a panchromatic band is sintedaby averaging RGB
intensities

given by (Strobl et al., 2009) and a formal degw@ip of
random forests can be obtained from (Breiman, 2001).

Recently, random forests became also popular inreéhmte
sensing community (e.g. Pal, 2005; Ghimire et2010; Wolf,
2011) because of their low computational costs godd
prediction accuracy which is for many classificafregression
problems comparable to the well-established suppector
machines (Pal, 2005). Furthermore, a major berigfithat
random forests hardly require any tuning.

3.3 Featurelmportance

Feature importance scores are calculated using réhefu
development of random forests, which implementsalted

conditional feature importance. This adaption, Wwhiwas

recently introduced by (Strobl et al., 2008), pd®d a better
estimate of feature importance as it removes thextien bias

towards correlated features. For detailed inforomathe reader
is referred to the published literature of the im@gors (see also
references provided in Table 3)

3.4 Evaluation Criteria

Random forests come with their internal test samtble, so-

called out-of-bag observations, which can be usedaf fair

measure of prediction accuracy (Breiman, 1996)s lused in

this study to calculate error matrices. In ordestonmarize a
matrix to a single value measure, we combine theraiv
producer and user accuracies by taking the arifonmaean

(referred to as MPU from here on). In contrasthie standard
measures such as overall accuracy and — to lessente-

kappa, the MPU should better account for the extem
imbalanced class distributions with turf grass aspecially

pools being the minorities, the latter accountiagdnly about

1-2% of the total.

The random forest results are also compared tor otledi-
known machine learning algorithms. For better comaipiity,
the out-of-bag cases are not used for testing.east all
algorithms are trained and — if necessary — tunedhe same
75% subsample. The remaining 25% are used for ledgilog
MPU values. Table 4 lists the used algorithms, rthei
specifications and implementations as well as sdkeg
references.

Table 2. Object features

3.2 Random Forests

Random forests are tree-based ensemble methods wieighs
that they use the results from many (usually huiglrer

thousands) different decision tree models to cateuh response
(e.g. by majority voting). In the standard implertaion of
(Breiman, 2001), the individual models (base leanare

simple, unpruned decision trees based on the @iiicsiterion

which determines an optimal feature (variable) arttireshold
to partition the data at the trees’ nodes. Thesilezifeature of
random forests is the randomness which is injeatedo stages
of the tree construction processes. Firstly, taresconstructed
on bootstrap samples of the training data and, netgothe
Gini splitting criterion only searches on a randpndrawn
feature subset. For more in-depth information: Aailed
introduction to tree-based models and ensemble adsths
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Method Specifications/  Implementation References
Parameters
Random ntree =5000 R package (Breiman, 2001)
forest nry= ‘randomForest’
Jp]-1
Decision tree  Gini splits R package ‘rpart’ (Breiman, 1984)
Fully grown
No pruning
Support RBF kernel R package ‘e1071’  (Chang and Lin,
vector tune(): 2011)
machine cost =32
ganma = 0.023
k-nearest k=1 R package ‘class’ (Ripley, 2007)
neighbor
For calculation of featureimportance
Conditional ntree =1000 R package ‘party’ (Strobl et al., 2008)
random mry = vari m()

forests

Jlpl-1

Table 4. Machine learning algorithms



4. EXPERIMENTSAND RESULTS

4.1 Feature Sets

Three feature sets are defined in order to as$esgeneral
value of object features and to assess the syméngyegrating
both per-pixel spectral and object features:

1.

2.

3.

PX: standardn per-pixel spectral values aof-band

imagery

4.2 Featurelmportance

For more intuitive interpretability of feature impance scores,
only two 2-class problems are considered: (1) sejuer of turf
grass from other vegetation and (2) separationwofming
pools from other non-vegetated surfaces. Accorglinghe
reference sample for training and testing is &ter

Value of individual features. Figure 3 and Figure 4 show the
best 15 features and their importance scores ftin Beclass

OB: object features (extracted from segmentationproblems (only San Roque dataset). It can be obdetivat

levels)

features from all segmentation scales (10, 40 &% as well as

CO: complete feature set which combines PX and OBfrom the pixel domain are represented. Most countiiim comes

For each feature set, random forest MPU accuracgdsrded
from 20 independent trials in order to accounttfa issues of
data variance and algorithm stability. The ovetatidency is
the same for all three datasets: the OB set outpesfohe PX
set while the CO set brings — even if marginal — fyether

improvement (Figure 2).
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Figure 2. Comparison of feature sets: PX = per-pspaictral
values, OB = object features, CO = complete setdbabines
PX and OB

One of the twenty trials on the OB set is randoniipsen to
present confusion rates in an error matrix (Table 1

WorldView-2 / San Roque

cla/ref turf non-turf non-pool pool user
turf | 199 18 0 0| 0.917
non-turf 15 753 3 0| 0.977
non-pool 2 4 982 41 0.990
pool 0 0 2 36 | 0.947
producer 0.921 0.972 0.995 0.900
Aerial image / Santa Ponsa
cla/ref  turf non-turf non-pool pool user
turf 43 15 8 0 | 0.652
non-turf 16 494 78 0 | 0.840
non-pool 8 44 1261 41 0.957
pool 0 1 4 46 | 0.902
producer 0.642 0.892 0.933 0.920
WorldView-2 / Santa Ponsa
cla/ref turf non-turf non-pool pool user
turf 56 18 0 0| 0.757
non-turf 9 696 6 0| 0.979
non-pool 2 15 694 10.975
pool 0 1 5 39 | 0.867
producer 0.836 0.953 0.984 0.975

Table 5. Error matrices and producer and user acguwf
random forest classification using the completéuiieaset (CO)
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from the per-object spectral statistics (mean, mimh and
standard deviation). Concerning the extraction dfdtass, the
model also relies on texture and context features.

Top-15 Features for the Extraction of Turf Grass
WorldView-2 (San Roque)

X40_GLCM_Homogeneity PAN
X10_Standard_deviation_PAN
X40_Mean_B3
X40_Standard_deviation_PAN
X40_Min._pixel_value_PAN
X10_Mean_Dif2Neighb._PAN
X10_Min._pixel_value_PAN
X10_GLCM_Homogeneity PAN
X10_Mean_B3

X160_Mean_B8

X0_B3

X40_Mean_B1

X160_Mean_B7
X160_Mean_B6

X0_B4

[ T T 1
0.0000 0.0005 0.0010 0.0015

Feature Importance

Figure 3. Feature importance scores (the prefirutdber’
denotes the segmentation scale; i.e. ‘X10_' fomepa refers
to a ‘fine’ segmentation level with scale parametet0; ‘X0_’
indicates the pixel level)

Top-15 Features for the Extraction of Swimming Pools
WorldView-2 (San Roque)

X40_Min._pixel_value_B8
X10_Min._pixel_value_B8
X40_Mean_B8
X10_Mean_B8
X10_Mean_B7

X0_B7
X10_Standard_deviation_B6
X0_B8
X10_Standard_deviation_B2
X40_Mean_B7

X0_B2

X10_Mean_B6
X160_Min._pixel_value_B8
X40_Standard_deviation_B6
X40_Mean_B6

[ T T T I T T 1
0.0000 0.0010 0.0020 0.0030
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Figure 4. Feature importance scores

Value of individual WorldView-2 bands: In order to assess
the value of individual WorldView-2 bands, featumgportance
scores are calculated based on models using omlly Xhfeature
set. Concerning the extraction of turf grass, ttselte obtained

on the San Roque and the Santa Ponsa datasets itge qu
different. For San Roque the NIR2 (860-1040nm) andeGr



spectra (510-580nm) are most influential for thedelo For
Santa Ponsa, the Rededge spectrum is most dedtgued 5).
The differences might be induced/intensified by sseality
(different phenological stages at times when thagies were
acquired, see Section 2.1).

For the extraction of swimming pools the resulte better
matching (Figure 6). For both datasets, the spéettaeen 705
and 1040 nm (Rededge, NIR1, and NIR2) as well as tbe Bl
band provided most value to the model.

WorldView-2 (San Roque) WorldView-2 (Santa Ponsa)
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NR1HB7 [ (NIR2)B8 [
(Yellow)B4 [_] (Red)B5 []
(Blue) B2 :l (Green) B3 :]
(Rededge) B6 (NIR1) B7
(Red) BS (Blue)B2 |
(Coastal) B1 (Yellow) B4 |
| e m— T T T
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Figure 5. Importance of WorldView-2 bands for theraction
of turf grass
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Figure 6. Importance of WorldView-2 bands for theraction
of swimming pools

4.3 Dimensionality

Figure 7 shows the effect of high dimensional femgpaces on
classification accuracy (MPU values). As an initislep,

features have been ranked according to their irapoe score.
Then, MPU values are obtained from series of inddpet

random forest trials, where the number of featwssd in the
model is incremented step-wisely, starting with giengest
feature and proceeding with subsequent ranks tirtilast trial

(using the whole set). According to Figure 7, disienality

and potentially weak features appear to be nofagnit burden
for the classifier.

4.4 Comparison of Machine Learning Algorithms

Simple decision tree and nearest neighbour classiéis well as
a state-of-the-art support vector machine were usead
benchmark for the random forest approach (appliely €or

WorldView-2 / San Roque dataset). As it could beeexpd,
nearest neighbour and simple decision tree providedse
accuracy values (MPU), while the random forest appin came
close to the support vector machine model whictfopered

best (Figure 8).
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Dimensionality
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Figure 7. Dimensionality

Comparison of Machine Learning Algorithms
WorldView-2 (San Roque)

Nearest Neighbor 0.909
Random Forest
Decision Tree

Support Vector Machine

0.952
0.916
0.955

r T T 1
0.90 0.92 0.94 0.96
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Figure 8. Comparative performances of classifiers

5. CONCLUSION

Urban landscapes are complex scenes and the aetbmat
generation of accurate mapping products requirpbiing the
image content on the spectral and spatial/strucpaespective

as well as on various scales. Object-based imagdysis
provides means to extract manifolds of such featurewever
deciding which features are helpful is often difficto decide
for both the human analyst and the computer. Agdinis
background, an integration of machine learningeptkomain
and object domain was presented. In our experirhsetap, the
synergetic use of both domains led to improved ltesand
random forests showed a good response to high dioelity
with potentially correlated or weak features. Reasprfrom
that, the efforts for laborious manual feature ct@a (incl.
definition of segmentation parameters) can be reduc
respectively handed over to the computer (as losg a
computational costs can be afforded).

REFERENCES

Baatz, M. and Schépe, A., 2000. Multiresolution Segtation:
an optimization approach for high quality multi-ecamage
segmentation, in: Strobl, J., Blaschke, T., GriesebB. (Eds.),
Angewandte geographische Informationsverarbeiturig Xl
Beitrage zum AGIT-Symposium Salzburg 208zhmann
Verlag, Heidelberg, pp. 123.

Benediktsson, J. A., Pesaresi, M. and Arnason, 032
Classification and feature extraction for remotesgemnimages
from urban areas based on morphological transfoomst
IEEE Transactions on Geoscience and Remote Serkin@),
pp. 1940-1949.



Blaschke, T., 2010. Object based image analysisefobte
sensinglSPRS Journal of Photogrammetry and Remote
Sensing65 (1), pp. 216.

Blaschke, T. and Hay, G. J., 2001. Object-orienteade
Analysis and Scale-space: Theory and Methods faldiiog
and Evaluating Multiscale Landscape Structurgernational
Archives of the Photogrammetry, Remote Sensindgsaatial
Information ScienceXXXIV-4/W5, pp. 22-29.

Breiman, L., 1984. Classification and regressionstree
Wadsworth International Group, Belmont, CalifornisgAl

Breiman, L., 1996. Out-of-bag estimation: Technieglort,
Department of Statistics, University of CalifornieBerkeley,
California, USA.

Breiman, L., 2001. Random Fored#achine Learning45 (1),
pp. 5-32.

Brockhaus, J., Wright, W., Hendricks, M. and FlemiSg
2010. Delineation of roofing material within an arb
environment: Integration of WorldView-2 Imagery andar
Data. Technical Report, United States Military AcageNew
York, USA.

Camps-Valls, G., Shervashidze, N. and Borgwardt, K. M
2010. Spatio-Spectral Remote Sensing Image Claggifica
With Graph KernelslEEE Geoscience and Remote Sensing
Letters7 (4), pp. 741-745.

Caruana, R., Karampatziakis, N. and Yessenalin&20Q8. An
empirical evaluation of supervised learning in hitimensions.
In: International Conference on Machine Learning (ICMpp.
96-103.

Chan, J., Bellens, R., Canters, F. and Gautama, 2, 200
Assessment of Geometric Activity Features for Arelp
Classification of Urban Man-made Objects using Mdigh
Resolution Satellite ImageriPhotogrammetric Engineering
and Remote Sensings (4), pp. 397-412.

Chang, C.-C. and Lin, C.-J., 2011. LIBSVM: A library for
support vector machineBCM Transactions on Intelligent
Systems and Technolody pp. 27:127:27.

DigitalGlobe, 2009. The Benefits of the 8 Spectrah@=aof
WorldView-2. White Paper.

Foody, G.M.and Atkinson, P.M., 2002. Uncertaintyémote
sensing and GIS. J. Wiley, Hoboken, NJ.

Ghimire, B., Rogan, J. and Miller, J., 2010. Contebdarad-
cover classification: incorporating spatial deperagein land-
cover classification models using random foreststhe Getis
statistic.Remote Sensing Letteds(1), pp. 45-54.

Haralick, R. M., Shanmugam, K. and Dinstein, I.,397
Textural Features for Image Classificatit/BEE Transactions
on Systems, Man, and Cyberneti®¢6), pp. 610-621.

Heldens, W., Esch, T., Heiden, U. and Dech, S.8280tential
of hyperspectral remote sensing for characterisaifairban
structure in Munich, in: Jurgens, C. (EdRgmote sensing -
New Challenges of High Resolution. Proceedings of the

272

EARSeL Joint Workshop, March 5-7, 2008, Bochumim@ey
Geographischen Instituts der Ruhr-Universitat, Bochum
Germany.

Herold, M., Couclelis, H. and Clarke, K. C., 2005. Toke of
spatial metrics in the analysis and modeling obuarland use
changeComputers, Environment and Urban Syste?8s(4),

pp. 369-399.

Hof, A. and Schmitt, T., 2011. Urban and touristdaise
patterns and water consumption: Evidence from Medip
Balearic Islands.and Use Policy28 (4), pp. 792-804.

Novack, T., Esch, T., Kux, H. J. H. and Stilla, R011.
Machine Learning Comparison between WorldView-2 and
QuickBird-2-Simulated Imagery Regarding Object-Based
Urban Land Cover ClassificatioRemote Sensing (10), pp.
2263-2282.

Padwick, C., Deskevich, M., Pacifici, F. and SmathdpS.,
2010. WorldView-2 Pan-Sharpening. @pportunities for
emerging geospatial technologigsmerican Society for
Photogrammetry & Remote Sensing, Bethesda, Md.

Pal, M., 2005. Random forest classifier for rematesing
classificationInternational Journal of Remote Sensi2é (1),
pp. 217-222.

Ripley, B.D., 2007. Pattern recognition and neuraloeks, 1st
ed. Cambridge University Press, Cambridge.

Salvador, R., Bautista-Capetillo, C. and Playan, EL120
Irrigation performance in private urban landscapestudy
case in Zaragoza (Spaitjandscape and Urban Planning00
(3), pp. 302-311.

Sirmacek, B. and Unsalan, C., 2009. Urban-Area anttiiBgi
Detection Using SIFT Keypoints and Graph ThetBEE
Transactions on Geoscience and Remote Senéi@t), pp.
1156-1167.

SITIBSA (Serveis d'Informacio Territorial de lesekl Balears),
2002. Ortofoto, 5.000, 2002 de las Islas BaleareéRIB9.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, ahd
Zeileis, A., 2008. Conditional Variable Importance Random
ForestsBMC Bioinformatics9 (1), p. 307.

Strobl, C., Malley, J. and Tutz, G., 2009. An intngtion to
recursive partitioning: Rationale, application, and
characteristics of classification and regressierdr bagging,
and random forest®sychological Methodd.4 (4), pp. 323-
348.

Trimble Documentation, 2012. eCognition Develop@:B.
Reference Book, Trimble Germany GmbH, Munich, Germany

Wentz, E. A. and Gober, P., 2007. DeterminantsnoéiSArea
Water Consumption for the City of Phoenix, ArizoWéater
Resources Manageme@atl (11), pp. 1849-1863.

Wolf, N., 2011. Feature Evaluation for a Transfézafpproach
of Object-based Land Cover Classification Based ondkand
QuickBird Satellite DataPhotogrammetrie - Fernerkundung -
Geoinformation2011, 3, pp. 135-144.



