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ABSTRACT: 
Segmentation provides means to extract spatial/object features which can be added at pixel level to the spectral signature vector. As 
shown in this paper, this framework allows effective combination of the pixel and the object domain for spectral-spatial 
classification. As an application, the mapping of Mediterranean urban leisure landscapes (San Roque and Santa Ponsa, both Spain) 
with WorldView-2 and airborne color imagery is presented. Turf grass, other vegetation and swimming pools are the surface features 
of interest as they have high relevance for urban ecological studies. The random forest machine learning technique is applied and 
compared to other well-known classifiers, such as a support vector machine. A recently published adaption of the random forest 
method is utilized to calculate so-called conditional variable importance in order to identify the relevant features. Especially for 
complex problems and high dimensionality, the relevance of individual features is far from being obvious to the human analyst and 
the actual pattern in the data remain ‘hidden’ when relying on standard methods, such as scatter plots. The findings and statements of 
this work are: random forests can deal with high-dimensional feature spaces which contain correlated and potentially unpredictive 
features. For machine learning applications, accessing object features at pixel level entails some advantages as the 
sampling/processing units are of uniform size and do not depend on the segmentation quality. Furthermore, it is shown that the 
random forest prediction accuracy is highest when complementing pixel (spectral signature) and object features. 
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1. INTRODUCTION 

The increasing accessibility of spaceborne sub-meter-resolution 
imagery (e.g. WorldView-2, QuickBird or GeoEye-1) have led 
to new emerging application ranges for remote sensing of urban 
environments, including intra-urban structuring (Herold et al., 
2005) and mapping of relevant urban surface materials 
(Brockhaus et al., 2010) and land covers (Benediktsson et al., 
2003). Urban environments are among the most dynamic 
systems on Earth which therefore require constant monitoring 
and updating of geo databases. Against this background, 
automated routines are needed to convert the huge amounts of 
available remote sensing data into valuable information to 
accommodate planning and management activities. 

For automated interpretation, the limiting factor in many urban 
studies is the inherent complexity of this environment. 
Complexity arises from the various artificial and natural surface 
materials encountered in urban environments such as asphalt, 
concrete, metals, tartan, bitumen, etc. (Heldens et al., 2008). 
Their spectral similarity but also their often unclear linkage to 
relevant urban land covers or uses impedes the decoding of 
spectral per-pixel signatures. Further complexity is introduced 
by the way different surface materials or land covers are 
spatially arranged to meaningful spatial entities.  

Hence, alongside with the per-pixel spectral dimension of an 
image, incorporating a description of the spatial structure can be 
useful for image classification (Camps-Valls et al., 2010). 
Especially when the objects of interest are significantly larger 
than the sensor system’s ground resolution, there is wide 
consensus that spatial information holds valuable information 
which effectively complements the standard per-pixel spectral 
dimension (Blaschke, 2010). In order to generate a spatial 
description of an image, various techniques are known, such as 
window-based approaches based on the concepts of 
postclassification filtering, morphological (Benediktsson et al., 
2003) and texture (Haralick et al., 1973) transformations, or 
Getis statistics (Ghimire et al., 2010). Window-independent 
approaches are for example based on graph theory (Sirmacek 
and Unsalan, 2009). All these techniques can be broadly 
categorized in preprocessing feature extraction and 
postprocessing filtering approaches (Camps-Valls et al., 2010). 

Image segmentation provides another means for window-
independent feature extraction in order to add a spatial 
description of the image to the predictor space. Pixels within 
homogeneous image regions are grouped together to objects and 
hence conceived as belonging together. As such, pixels can 
inherit the attributes from their corresponding object(s). 
However, the wealth of manifold object features (e.g. object’s 
spectral statistics, textures, geometries or their mutual 
relationships) is not always obvious to the analyst. Especially 
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the features’ interaction (e.g. correlation or dependency) and 
their direct dependence on the object creation process itself 
make it cumbersome for the analyst to find appropriate feature 
sets by using standard methods (e.g. visual inspection of feature 
layers, scatterplots, and histograms). This in particular applies 
to complex or difficult classification problems. Despite this fact, 
machine learning and feature selection is still underrepresented 
in object-based image analysis research (Novack et al., 2011). 

The aim of this work is to empirically assess the value of 
various object features as spatial descriptors within a pixel-
based framework for supervised classification. Incorporating 
object features into the pixel domain is assumed to be 
appropriate for training, tuning and testing of machine learning 
applications that require accurate and spatially independent data 
samples. These requirements are not necessarily met in an 
object-based framework where the processing/sample units are 
of non-uniform size and constitute a generalization of the pixel 
domain which falsely would be assumed to be hundred percent 
correct. Or in other words, according to (Chan et al., 2009): 
“Often, hard decisions are made in the early stages of the 
process, e.g., line extraction and segmentation. These decisions 
introduce errors which are then corrected in subsequent stages 
of the process. However, not all errors will be corrected.” 

As an application, the mapping of coastal urban leisure 
landscapes is presented which is aimed at extracting swimming 
pools, vegetation and – as a subgroup of vegetation – turf grass. 
These surface features are important determinants of water 
consumption and have important implications for urban studies 
related to water demand, irrigation and the role of green spaces 
in urban landscapes (Wentz and Gober, 2007; Hof and Schmitt, 
2011; Salvador et al., 2011). For this purpose, random forests 
(decision tree-based ensemble methods) are used to classify two 
pansharpened WorldView-2 scenes and one aerial color image 
of coastal tourist areas in Mallorca and Andalusia, Spain. The 
prediction accuracy of random forests is compared to those of 
support vector machine, simple decision tree and nearest 
neighbor classifiers. Moreover, feature scoring based on random 
forests is used to quantify the importance of spectral bands and 
individual object features and, furthermore, to compare the 
performances of the pixel and object domain as well as to assess 
the synergy using both domains. It is further assessed to which 
extent classification results potentially suffer from the so-called 
curse of dimensionality. It can be assumed that random forests 
cope well with high dimensional features spaces (Caruana et al., 
2008) which potentially consist of correlated and unpredictive 
features. If this is the case, the conclusion would be that, instead 
of pre-selecting features and searching appropriate segmentation 
scales, an unsurveyed feature set of multiple segmentation 
levels (quasi-continuous scale space) can be provided to the 
classifier and hence decrease laborious intervention by the 
analyst. 

2. DATA 

2.1 Remote Sensing Data and Study Sites 

In late 2009, the Earth observation satellite WorldView-2 was 
launched. It collects spectral data in eight bands ranging from 
400 to 1040 nm with a nominal ground resolution of 2 m, while 
the panchromatic mode covers a spectrum from 450 to 800 nm 
with nominal 50 cm ground resolution (DigitalGlobe, 2009). 
Two WorldView-2 images are available for this study: (1) A 
WorldView-2 scene (Catalog-ID: 1030050005F96700) of San 

Roque in the Cádiz province, Andalusia, Spain, which was 
acquired on 16th July 2010 with 11.9° off-nadir and 69.92° sun 
elevation angle. (2) A second WorldView-2 scene (Catalog-ID: 
1030050005F96700) was acquired on 16th February 2011 with 
19.61° off-nadir and 36.41° sun elevation angle. This scene 
covers Santa Ponsa on the Balearic Island of Mallorca, Spain. 
Both scenes have been pansharpened with the hyperspherical-
color-space method (Padwick et al., 2010) which – according to 
our visual inspection – well combined spatial detail and spectral 
properties of both modes. The same study area of Santa Ponsa is 
furthermore covered by an airborne digital image with 40 cm 
ground resolution and three RGB color channels. The image 
was acquired during a flight campaign in March 2002 
(SITIBSA (Serveis d'Informació Territorial de les Illes Balears), 
2002).  

For comparability, equally 125 ha subsets of the three images 
are considered for the experimental set up of this study. The 
WorldView-2 scene and the aerial image of Santa Ponsa share 
exactly the same geographical extent. Both investigation areas, 
Santa Ponsa and San Roque, show very similar urban 
landscapes. As high quality tourist destinations and residential 
areas, they are characterized by large properties with single 
family dwellings and spacious gardens with swimming pools 
(cp. ~6 ha clips in Figure 1). 

 

Figure 1. Clips of the study areas and image data 

2.2 Reference Data Collection 

A 4-class scheme is applied which rigidly decomposes a scene 
in (1) turf vegetation, (2) non-turf vegetation, (3) swimming 
pool (non-vegetation) and (4) non-swimming pool (non-
vegetation). For each image, 2500 reference pixels are selected 
by simple random sampling and manually labeled according to 
the 4-class scheme by visually interpreting directly from the 
image. The idealized scheme neglects the various sources of 
uncertainty that accompany remote sensing and geospatial 
modeling (e.g. noisy and technically limited sensor 
measurement, degrading processing for signal storage and data 
transfer, and inherently vague concepts of classes; cp. Foody 
and Atkinson, 2002). Therefore, ‘uncertain’ pixels were 
discarded from the sample. The percentage of discarded pixels 
(Table 1) can be seen as a quality measure of the images and, 
furthermore, can be kept in mind for the interpretation of 
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classification accuracy estimates which rely on the ‘cleaned’ 
sample. Consequently, accuracy measures only account for 
those parts of the images that can be visually interpreted. 

Image Total sample  Discarded Left over 
WorldView-2 
(Santa Ponsa) 

2500 px 
(100%) 

959 px 
(38.4%) 

1541 px 
(61.6%) 

Aerial image 
(Santa Ponsa) 

2500 px 
(100%) 

476 px 
(19.0%) 

1724 px 
(81.0%) 

WorldView-2 
(San Roque) 

2500 px 
(100%) 

486 px 
(19.4%) 

2014 px 
(80.6%) 

    
Table 1. Sample size and non-interpretable pixels 

3. METHODS 

3.1 Segmentation and Feature Extraction 

Image segmentation provides means to represent the image 
content on multiple scales which is particularly suitable for 
complex scenes (Blaschke and Hay, 2001). In order to compute 
object-based features of various scales, a three-level 
segmentation hierarchy is generated by applying multiresolution 
segmentation (Baatz and Schäpe, 2000). The algorithm offers 
parameters to control the objects’ size and form which enables 
the analyst to represent the image content on various scales. In a 
rather unsupervised manner, a sequence of scales (scale 
parameter: 10, 40 and 160; increased by the factor of 4) was 
applied to generate an object hierarchy which covers the whole 
span, from very fine to very broad image content representation. 

Based on the segmentation levels, several object feature layers 
were extracted; comprising spectral, texture, geometry and 
context features (Table 1). An overview of various object 
features and their computation can be found in (Trimble 
Documentation, 2012). The combined feature stack of object 
and standard per-pixel spectral features consists of 82 layers for 
the 8-band datasets and 37 layers for the 3-band dataset. 

Spectral statistics of multispectral 
bands 

Mean 
Minimum 
Standard deviation 

Texture of panchromatic band* Grey Level Co-occurrence Matrix 
Homogeneity 

Object geometry Area 
Border length 

Context of panchromatic band* Mean difference to neighbor objects 
* for the aerial image a panchromatic band  is simulated by averaging RGB 
intensities 

Table 2. Object features 

3.2 Random Forests 

Random forests are tree-based ensemble methods which means 
that they use the results from many (usually hundreds or 
thousands) different decision tree models to calculate a response 
(e.g. by majority voting). In the standard implementation of 
(Breiman, 2001), the individual models (base learners) are 
simple, unpruned decision trees based on the Gini split criterion 
which determines an optimal feature (variable) and a threshold 
to partition the data at the trees’ nodes. The decisive feature of 
random forests is the randomness which is injected at two stages 
of the tree construction processes. Firstly, trees are constructed 
on bootstrap samples of the training data and, secondly, the 
Gini splitting criterion only searches on a randomly drawn 
feature subset. For more in-depth information: A detailed 
introduction to tree-based models and ensemble methods is 

given by (Strobl et al., 2009) and a formal description of 
random forests can be obtained from (Breiman, 2001).  

Recently, random forests became also popular in the remote 
sensing community (e.g. Pal, 2005; Ghimire et al., 2010; Wolf, 
2011) because of their low computational costs and good 
prediction accuracy which is for many classification/regression 
problems  comparable to the well-established support vector 
machines (Pal, 2005). Furthermore, a major benefit is that 
random forests hardly require any tuning. 

3.3 Feature Importance 

Feature importance scores are calculated using a further 
development of random forests, which implements so-called 
conditional feature importance. This adaption, which was 
recently introduced by (Strobl et al., 2008), provides a better 
estimate of feature importance as it removes the selection bias 
towards correlated features. For detailed information the reader 
is referred to the published literature of the originators (see also 
references provided in Table 3)  

3.4 Evaluation Criteria 

Random forests come with their internal test sample, the so-
called out-of-bag observations, which can be used for a fair 
measure of prediction accuracy (Breiman, 1996). It is used in 
this study to calculate error matrices. In order to summarize a 
matrix to a single value measure, we combine the overall 
producer and user accuracies by taking the arithmetic mean 
(referred to as MPU from here on). In contrast to the standard 
measures such as overall accuracy and – to lesser extent – 
kappa, the MPU should better account for the extremely 
imbalanced class distributions with turf grass and especially 
pools being the minorities, the latter accounting for only about 
1-2% of the total. 

The random forest results are also compared to other well-
known machine learning algorithms. For better comparability, 
the out-of-bag cases are not used for testing. Instead, all 
algorithms are trained and – if necessary – tuned on the same 
75% subsample. The remaining 25% are used for calculating 
MPU values. Table 4 lists the used algorithms, their 
specifications and implementations as well as some key 
references.  

Method  Specifications / 
Parameters 

Implementation References 

Random 
forest 

ntree = 5000 
mtry = 

  1p −  

R package 
‘randomForest’ 

(Breiman, 2001) 

Decision tree Gini splits 
Fully grown 
No pruning 

R package ‘rpart’ (Breiman, 1984) 

Support 
vector 
machine 

RBF kernel 
tune(): 
cost = 32 
gamma = 0.023 

R package ‘e1071’ (Chang and Lin, 
2011) 

k-nearest 
neighbor 

k = 1  R package ‘class’ (Ripley, 2007) 

For calculation of feature importance 
Conditional 
random 
forests 

ntree = 1000 
mtry = 

  1p −  

R package ‘party’ 
varimp()  

(Strobl et al., 2008) 

Table 4. Machine learning algorithms 
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4. EXPERIMENTS AND RESULTS 

4.1 Feature Sets 

Three feature sets are defined in order to assess the general 
value of object features and to assess the synergy of integrating 
both per-pixel spectral and object features:  

1. PX: standard n per-pixel spectral values of n-band 
imagery 

2. OB: object features (extracted from segmentation 
levels)  

3. CO: complete feature set which combines PX and OB 

For each feature set, random forest MPU accuracy is recorded 
from 20 independent trials in order to account for the issues of 
data variance and algorithm stability. The overall tendency is 
the same for all three datasets: the OB set outperforms the PX 
set while the CO set brings – even if marginal – yet further 
improvement (Figure 2).   

 

Figure 2. Comparison of feature sets: PX = per-pixel spectral 
values, OB = object features, CO = complete set that combines 
PX and OB 

One of the twenty trials on the OB set is randomly chosen to 
present confusion rates in an error matrix (Table 1). 

WorldView-2 / San Roque       

cla/ref turf non-turf non-pool pool user 

turf 199 18 0 0 0.917 

non-turf 15 753 3 0 0.977 

non-pool 2 4 982 4 0.990 

pool 0 0 2 36 0.947 

producer 0.921 0.972 0.995 0.900 0.952 

Aerial image / Santa Ponsa       

cla/ref turf non-turf non-pool pool user 

turf 43 15 8 0 0.652 

non-turf 16 494 78 0 0.840 

non-pool 8 44 1261 4 0.957 

pool 0 1 4 46 0.902 

producer 0.642 0.892 0.933 0.920 0.842 

WorldView-2 / Santa Ponsa       

cla/ref turf non-turf non-pool pool user 

turf 56 18 0 0 0.757 

non-turf 9 696 6 0 0.979 

non-pool 2 15 694 1 0.975 

pool 0 1 5 39 0.867 

producer 0.836 0.953 0.984 0.975 0.916 

Table 5. Error matrices and producer and user accuracy of 
random forest classification using the complete feature set (CO)  

4.2 Feature Importance 

For more intuitive interpretability of feature importance scores, 
only two 2-class problems are considered: (1) separation of turf 
grass from other vegetation and (2) separation of swimming 
pools from other non-vegetated surfaces. Accordingly, the 
reference sample for training and testing is filtered. 

Value of individual features: Figure 3 and Figure 4 show the 
best 15 features and their importance scores for both 2-class 
problems (only San Roque dataset). It can be observed that 
features from all segmentation scales (10, 40 and 160) as well as 
from the pixel domain are represented. Most contribution comes 
from the per-object spectral statistics (mean, minimum and 
standard deviation). Concerning the extraction of turf grass, the 
model also relies on texture and context features. 

  

Figure 3. Feature importance scores (the prefix ‘Xnumber_’ 
denotes the segmentation scale; i.e. ‘X10_’ for example refers 
to a ‘fine’ segmentation level with scale parameter of 10; ‘X0_’ 
indicates the pixel level) 

 

Figure 4. Feature importance scores 

Value of individual WorldView-2 bands: In order to assess 
the value of individual WorldView-2 bands, feature importance 
scores are calculated based on models using only the PX feature 
set. Concerning the extraction of turf grass, the results obtained 
on the San Roque and the Santa Ponsa datasets are quite 
different. For San Roque the NIR2 (860-1040nm) and Green 
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spectra (510-580nm) are most influential for the model. For 
Santa Ponsa, the Rededge spectrum is most decisive (Figure 5). 
The differences might be induced/intensified by seasonality 
(different phenological stages at times when the images were 
acquired, see Section 2.1). 

For the extraction of swimming pools the results are better 
matching (Figure 6). For both datasets, the spectra between 705 
and 1040 nm (Rededge, NIR1, and NIR2) as well as the Blue 
band provided most value to the model.   

 

Figure 5. Importance of WorldView-2 bands for the extraction 
of turf grass 

 

Figure 6. Importance of WorldView-2 bands for the extraction 
of swimming pools 

4.3 Dimensionality 

Figure 7 shows the effect of high dimensional feature spaces on 
classification accuracy (MPU values). As an initial step, 
features have been ranked according to their importance score. 
Then, MPU values are obtained from series of independent 
random forest trials, where the number of features used in the 
model is incremented step-wisely, starting with the strongest 
feature and proceeding with subsequent ranks until the last trial 
(using the whole set). According to Figure 7, dimensionality 
and potentially weak features appear to be no significant burden 
for the classifier. 

4.4 Comparison of Machine Learning Algorithms 

Simple decision tree and nearest neighbour classifiers as well as 
a state-of-the-art support vector machine were used as 
benchmark for the random forest approach (applied only for 
WorldView-2 / San Roque dataset). As it could be expected, 
nearest neighbour and simple decision tree provided worse 
accuracy values (MPU), while the random forest approach came 
close to the support vector machine model which performed 
best (Figure 8).  

 

Figure 7. Dimensionality 

 

Figure 8. Comparative performances of classifiers 

5. CONCLUSION 

Urban landscapes are complex scenes and the automated 
generation of accurate mapping products requires exploiting the 
image content on the spectral and spatial/structural perspective 
as well as on various scales. Object-based image analysis 
provides means to extract manifolds of such features. However 
deciding which features are helpful is often difficult to decide 
for both the human analyst and the computer. Against this 
background, an integration of machine learning, pixel domain 
and object domain was presented. In our experimental setup, the 
synergetic use of both domains led to improved results and 
random forests showed a good response to high dimensionality 
with potentially correlated or weak features. Reasoning from 
that, the efforts for laborious manual feature selection (incl. 
definition of segmentation parameters) can be reduced, 
respectively handed over to the computer (as long as 
computational costs can be afforded).  
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