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ABSTRACT: 

 

We present a segment-based approach to detecting damaged building roofs in aerial laser scanning data. It consists of a segmentation 

step, where points are grouped into planar segments, a feature extraction step, and a classification step, where each segment is 

classified as damaged or intact. Such a segment-based approach faces two major challenges: first, extraction of features that are 

relevant to the target classes and can adequately distinguish between the intact and damaged segments is not straightforward. 

Second, the generation of reference segments for training and testing is difficult due the complexity of interpreting point clouds. To 

overcome these challenges the role of feature selection and dimensionality reduction in training a classifier using few training 

samples is investigated. We evaluate the performance of several classifiers with different sets of features in terms of classification 

accuracy. The results indicate the usefulness of dimensionality reduction methods in segment-based classification of aerial laser 

scanning data with few training samples. With 12 features and 50 training segments a linear classifier outperforms more complex 

classifiers; however, dimensionality reduction methods result in larger improvements in the performance of complex classifiers.  
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1. INTRODUCTION 

Automated detection of damaged buildings in post-disaster 

aerial data has become a challenging topic of interest for 

researchers in the area of mapping and pattern recognition. 

Existing approaches are mainly based on classification and 

change detection techniques applied to satellite images (Balz 

and Liao, 2010; Dell'Acqua and Polli, 2011; Joyce et al., 2009; 

Kerle, 2010; Korkmaz and Kutay, 2010; Pan and Tang, 2010; 

Pesaresi et al., 2007), aerial images (Gerke, 2011; Gerke and 

Kerle, 2011; Guo et al., 2009; Kerle et al., 2005; Turker and 

San, 2004), and more recently laser scanning data (Oude 

Elberink et al., 2011; Rehor et al., 2008; Shen et al., 2010; 

Vögtle and Steinle, 2004). Aerial laser scanning data are 

particularly suitable for extracting objects of simple geometry 

such as planar roof surfaces (Khoshelham et al., 2005; 

Khoshelham et al., 2010; Sande et al., 2010; Vosselman et al., 

2004).  

 

In this paper, we investigate a segment-based approach to 

detecting damaged building roofs in aerial laser scanning data. 

It consists of a segmentation step, where the points are grouped 

into planar segments, a feature extraction step, and a 

classification step, where each segment is classified as damaged 

or intact. Such a segment-based approach faces two major 

challenges: first, extraction of features that are relevant to the 

target classes and can adequately distinguish between the intact 

and damaged segments is not straightforward. Second, the 

generation of reference segments for training and testing is 

difficult. The latter is because of the complexity of interpreting 

point clouds due to the absence of photometric information. 

Figure 1 shows an example of an intact and a damaged building 

captured in an aerial image and laser range data after the 

earthquake of 2010 in Haiti. For a human supervisor the 

interpretation of data and making distinction between the intact 

and the damaged roof is much easier in the image than in the 

point cloud. On the contrary, classification algorithms are 

expected to perform better in the point cloud where height 

information is available and object geometries are represented 

more accurately.   

 

In practice, the above challenges lead to a dimensionality 

problem in the classification. While we tend to include as many 

features as possible to compensate for our lack of knowledge 

about relevant features, quite often we do not have sufficient 

training samples to adequately train a high dimensional 

classifier, because of the difficulty of collecting reference data. 

The consequence is a poor performance of the classification 

algorithm. The objective of this paper is to investigate the role 

of dimensionality reduction in improving the classification of 

damaged building roofs. We evaluate feature selection methods 

as well as methods for mapping features to reduced dimensions, 

and compare their performances in terms of classification 

accuracy. We also analyse the effect of classifier complexity on 

learning the classifier from a few training samples. 

 

The paper proceeds with an overview of segment-based 

classification of damaged building roofs in Section 2. In Section 

3, methods for feature selection and mapping to reduced 

dimensions are described. Section 4 presents the experimental 

results of dimensionality reduction and classifier complexity. 

The paper concludes with some remarks in Section 5.    

 

2. CLASSIFICATION OF DAMAGED ROOFS 

The basic assumption in the segment-based detection of 

damaged roofs is that intact roofs appear in laser data as large 

planar segments whereas collapsed roofs are characterized by 

many small segments. The detection thus begins with a 

segmentation step to group individual points into planar 

regions. Then, a number of features are extracted for each 

segment. Finally, a trained classifier is employed to classify the 

segments into two roof classes of intact and damaged. The 

following sections describe the above steps.  
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2.1 Segmentation 

To segment the point cloud into planar segments the surface 

growing method developed by Vosselman et al. (2004) is 

employed. The surface growing algorithm begins with the 

selection of a number of seed surfaces in a Hough space by 

identifying the plane parameters that receive the most votes 

from the object points. These seed surfaces are then grown to 

neighbouring points that satisfy a coplanarity criterion. Further 

details of the surface growing algorithm can be found in 

Vosselman et al. (2004). 

 

2.2 Feature extraction 

Feature extraction is the critical step in the segment-based 

classification of point clouds. Besides the size of the segments 

which is assumed to be a characteristic feature of intact and 

collapsed roofs, the relevance of other features to the roof 

classes is not a priori known. We hypothesize that information 

about the direction of the plane normal, reflectance, height 

above the terrain and planarity of a segment (also points that are 

left out of a segment in the segmentation algorithm, here called 

unsegmented points), are relevant in distinguishing intact and 

collapsed roofs. This is realized by extracting 12 features as 

listed in Table 1.     

 

feat. 

 id 

Description 

1 number of points per segment (nP) 

2 root mean square of plane fitting residuals (rmsRes) 

3 ratio of plane fitting outliers (rOut) 

4 plane slope (s) 

5 z component of plane normal (nz) 

6 mean reflectance per segment (meanRfl) 

7 standard deviation of reflectance per segment (stdRfl) 

8 minimum height above DTM (minH) 

9 maximum height above DTM (maxH) 

10 mean height above DTM (meanH) 

11 ratio of points in a segment that have an unsegmented 

point in a neighbourhood of 1 m (rUnseg) 

12 mean point density in the bounding box of the 

segment (meanDns) 

Table 1.  Features extracted for each planar segment.  

 

2.3 Classification 

In statistical pattern recognition the task of classification is 

mainly to find a discriminant function between the features 

pertaining to different classes. Such a discriminant function is 

learned from a number of training samples, i.e. feature vectors 

with known labels. The performance of a classifier is influenced 

by the number of training samples, number of features and the 

complexity of the classifier (Jain et al., 2000).  

 

To analyse the effect of classifier complexity we experiment 

with three classifiers of different complexity, namely: Bayesian 

Linear Discriminant Classifier (LDC), Bayesian Quadratic 

Discriminant Classifier (QDC) and Nearest Neighbour 

Classifier (1-NN). For a two-class problem the linear 

discriminant function is defined as (Duda et al., 2001): 

where µ1 and µ2 are the mean vectors of the features pertaining 

to the two classes respectively, ∑ is the covariance matrix of the 

features assumed equal for the two classes, x is a feature vector 

to which we want to assign a class label, and c is a constant. 

The quadratic discriminant function is defined as: 

where ∑1 and ∑2 the covariance matrices of the features 

pertaining to the two classes are assumed to be different. 

 

The nearest neighbour classifier assigns to a test sample the 

class label of its nearest neighbour in the training set. It has a 

nonparametric discriminant function, which can take any 

complex form. Figure 2 shows examples of LDC, QDC and 1-

NN for a subset of Iris dataset with 2D features and two classes.  

 
A 

 
B 

 
C 

Figure 1. Comparison of aerial image and laser data of a damaged and an intact building. A. Pre-event aerial image; B. Post-event 

oblique aerial image; C. Post-event aerial laser data. 
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Figure 2. Examples of classifiers in the order of increasing 

complexity. A: linear discriminant classifier; B. quadratic 

discriminant classifier; C. nearest neighbour classifier. 
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3. DIMENSIONALITY REDUCTION 

With large numbers of features one would need a large number 

of training samples to adequately train a classifier. When few 

training samples are available, the problem of insufficient 

training can be avoided by reducing the dimensionality of the 

feature space. Dimensionality reduction can be done either by 

selecting a subset of features that lead to comparable or even 

improved classification accuracies, or by mapping the high-

dimensional feature space to lower dimensions. The following 

sections describe these methods. 

 

3.1 Feature selection 

Feature selection is essentially a search for a subset of all 

features that produces the lowest classification error. Several 

feature search and selection methods exist in literature. In this 

paper we experiment with the following feature search and 

selection methods:  

- Forward Selection (FS): the search begins with an empty 

set; then in subsequent steps one feature, whose addition 

reduces the classification error the most, is added at a time 

until no further reduction of error is achieved. 

- Backward Elimination (BE): the search begins with a full 

set; then in subsequent steps one feature, whose removal 

reduces the classification error the most, is eliminated at a 

time until no further reduction of error is achieved. 

- Plus-l-take-away-r (+l-r): the search begins with an initial 

set; then in subsequent steps l best features are added 

according to the FS criterion, and r worst features are 

removed according to the BE criterion.  

- Branch and Bound (BB): the full set is sequentially split 

into smaller subsets; then those subsets that have no part of 

the optimal subset are eliminated by backtracking.  

 

More detailed description of the feature selection methods can 

be found in (Jain and Zongker, 1997). 

 

3.2 Mapping features to reduced dimensions 

Two common mappings for reducing the feature space 

dimensions are: principal component analysis and linear 

discriminant analysis.   

 

Principal Component Analysis (PCA): The PCA mapping 

seeks a linear transformation of features to a basis defined by 

the eigenvectors corresponding to the largest eigenvalues of the 

covariance matrix of features. It is defined as: Y = X·H, where 

X contains the input features, Y contains the mapped features 

and H is the transformation matrix whose columns are the 

eigenvectors of the covariance matrix of X. If all the 

eigenvectors are used in H, then Y will have the same 

dimension as X, but if H is constructed out of a few 

eigenvectors corresponding to the largest eigenvalues then Y 

will be lower-dimensional than X. 

 

Linear Discriminant Analysis (LDA): The LDA mapping 

transforms the data to a lower-dimensional space, which 

maximizes the ratio of between-class scatter to within-class 

scatter. For a two-class problem the mapping becomes 

projection to a line: y = X·w, where X contains the input d-

dimensional features, y contains the mapped 1-dimensional 

features and w is the mapping. The LDA seeks a mapping that 

maximizes Fisher’s measure of separation between the two 

classes (Duda et al., 2001): 

 

where 
1

~  and 
2

~  are means of the projected features pertaining 

to the two classes respectively, and 
1

~s  and 
2

~s  are the 

corresponding scatters (proportional to variances). 

 

 

4. EXPERIMENTS AND RESULTS 

The laser scanning dataset used for the experiments was 

acquired over Haiti’s capital Port-au-Prince after it was hit by 

the earthquake of 12 January 2010. Figure 3 shows a 

visualization of the dataset by colour coding.  The dataset has 

an average point spacing of 3 points per m2, and contains 

reflectance data in addition to elevation. 

 

A total of 698 segments were labelled to serve as reference data. 

The labelling was done by delineating regions in post-event 

overlapping aerial images and transforming the pixels to the 

ground coordinate system by forward intersection. Then, the 

labels were passed from every image-based 3D point to the 

nearest laser point if the distance between the two points did not 

exceed a threshold. A value of 1.0 m for the threshold was 

experimentally found appropriate, corresponding to the relative 

accuracy of the image-based 3D points and the laser points. 

Finally, a label was assigned to each segment in the segmented 

laser data if at least 90% of the points within the segment had 

the same label. 

 

 
Figure 3. Aerial laser scanning data of the study area. 

 

Experiments with the classifiers and dimensionality reduction 

methods were carried out using the PRTools Matlab toolbox 

(Duin et al., 2007). To examine the problem of dimensionality 

an initial classification of the segments was carried out with 

different numbers of features and training samples. Figure 4 

illustrates the results. Here the features are sorted according to 

their Fisher distance, and the quadratic discriminant classifier is 

used. It can be seen that when sufficient training samples are 

available the weaker features (7~12) do not contribute to the 

accuracy of the classifier, and when fewer training samples are 

used the weaker features actually deteriorate the classifier’s 

performance. Figure 5 shows the learning curve of the quadratic 

classifier with all features. With around 100 training samples 

the classification errors calculated on the training samples and 

test samples are close; whereas with fewer training samples 

there is a large difference between the training error and the test 

error indicating that the classifier is not sufficiently trained. 
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This suggests that QDC needs a minimum of about 100 training 

samples to be sufficiently trained when all features are used. 

 

To test the effect of dimensionality reduction methods on the 

performance of the classifiers trained with a low number of 

training samples the following evaluation strategy was used. 

From the reference dataset 10 sets of training and test samples 

were generated. Each set was generated by randomly selecting 

50 training samples from the reference dataset, and placing the 

rest of the samples in the test set. This resulted in 10 sets, each 

containing 50 training samples and 648 test samples. For the 

evaluation of a given feature set, the classifier was trained by 

each training set, and the classification error (defined as the 

ratio of wrongly classified samples to the total number of 

samples) was estimated using the corresponding test set. The 

average error and standard deviation over the 10 experiments 

were then used for the evaluation of the classifier and feature 

set. 

 

Figure 6 shows the performance of the classifiers with PCA as 

the dimensionality reduction method. In all three classifiers only 

the first four principal components seem to be useful for 

classification. The remaining 8 components do not contribute to 

the accuracy of the classifiers; in fact, they worsen the 

performance of QDC. Also, note that LDC outperforms the 

more complex classifiers regardless of how many principal 

components are used. 

 

Table 2 summarizes the feature selection results. Note that an 

optimal subset of features could not be found by all search 

methods, although it is clear that some features, notably 1 

(number of points per segment), 3 (ratio of plane fitting 

outliers), 10 (mean height above DTM) and 11 (ratio of points 

located near an unsegmented point), are selected by more search 

methods. Figure 7 shows the performance of classifiers with 

different feature selection methods. While the results of 

different feature selection methods are quite comparable, the 

simplest classifier, LDC, again performs better than the more 

complex classifiers with most of the selected feature subsets. 

 

 
Figure 4. Performance of Bayesian quadratic classifier with 

different numbers of features and training samples. 

 
Figure 5. Learning curve of Bayesian quadratic classifier with 

increasing number of training samples. 

 
Figure 6. Performance of classifiers with increasing number of 

principal components of features. 

 
Figure 7. Performance of classifiers with different features 

selection methods. 

Search 

method 
Classifer Error 

Features 

1 2 3 4 5 6 7 8 9 10 11 12 

FS 

LDC 0.167 X         X X X 

QDC 0.194 X X X X X X X   X X  

1-NN 0.195  X X X X     X X  

BE 

LDC 0.163 X  X X   X X  X X  

QDC 0.183 X X X  X  X   X X  

1-NN 0.216  X X     X  X  X 

+2-1 

LDC 0.173 X  X X X  X X X X X  

QDC 0.193 X X X X X X X X   X  

1-NN 0.194  X  X      X X  

+1-2 

LDC 0.168 X  X  X  X  X X X  

QDC 0.181 X X X  X  X X   X  

1-NN 0.206  X X     X X X X  

BB 

LDC 0.185 X         X   

QDC 0.178          X X  

1-NN 0.198         X X   

Table 2.  Results of different feature selection methods. 
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Figure 8 shows a comparison of classification results with 

different dimensionality reduction methods, including the 

feature mapping by linear discriminant analysis. In all cases the 

least complex linear discriminant classifier gives better 

classification results. The combination of feature selection by 

backward elimination with LDC leads to the highest 

classification accuracy of 84%. The classification errors are the 

largest for the 1-NN classifier. The quadratic classifier performs 

relatively poorly when all features are used, but its performance 

improves with LDA and PCA mapping as well as feature 

selection. In general, classification results of more complex 

classifiers are more improved by the feature mapping and 

selection methods.  

 

Figure 9 shows the classification results of LDC with features 

selected by backward elimination superimposed on an oblique 

aerial image of the study area. Note that the classified segments 

are only those which were in our reference dataset. They are 

somewhat dispersed because of the criteria used for assigning 

labels to the segments as described in the beginning of this 

section. In the close-ups of Figure 9 we can see that the method 

performs well in classifying intact roof segments from those that 

are completely collapsed into rubble. Most of the classification 

errors occur in large roof segments that are partly damaged. 

These are classified as intact while in the reference data they 

were identified as damaged roofs.  

 

 
Figure 8. Comparison of dimensionality reduction methods. 

 

5. CONCLUSIONS 

In this paper we investigated the problem of dimensionality in 

segment-based classification of damaged roofs in aerial laser 

scanning data. It was shown that presenting a classifier with 

many features but not enough training samples will result in 

poor classification results. When such a situation is 

unavoidable, feature selection methods as well as methods for 

mapping features to reduced dimensions in general lead to an 

improved performance of the classifier. Our experimental 

results also showed that less complex classifiers perform better 

when the number of training samples in proportion to the 

number of features is small. 

 

In this study we considered only two classes of intact and 

damaged to classify the roof segments. In reality, many roof 

segments are only partly damaged while many others are totally 

collapsed into rubble piles. Extending the segment-based 

classification method with more classes to obtain better 

classification results will be a topic of future research. 
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Figure 9. Classification results. A. laser segments classified as intact (green) and damaged (red) superimposed on an aerial image of 

the study area; B. close-up of some correctly classified segments; C. close-up of some wrongly classified segments.  
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