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ABSTRACT: 

 

In this paper rotation invariant Local Binary Patterns (LBP) texture based descriptors are evaluated experimentally in the context of 

land-use and land-cover object-based classification. The texture descriptors were employed in the classification of an Ikonos-2 and a 

Quickbird-2 image. The experiments have shown that texture characterization approaches perform well when combined with the 

grayscale variance. We further investigate a novel descriptor resulting from the concatenation of the grayscale variance histogram 

and the histogram of codes generated by LBP. These experiments have demonstrated that the proposed descriptor, though more 

compact, performs as well as a bidimensional histogram representing the joint distribution of both quantities. Finally, the paper 

compares the discrimination capacity of the LBP based textural descriptors with that of features derived from the Gray Level Co-

occurrence Matrices (GLCM). The related experiments revealed a noteworthy superiority of LBP descriptors over the GLCM 

features in the context of remote sensing image data classification. 

 

 

1. INTRODUCTION 

Among the numerous texture descriptors proposed for image 

classification thus far, the features derived from the Gray Level 

Co-occurrence Matrix (GLCM) are by far the most widely used 

by the remote sensing (RS) community. A method for texture 

description based on Local Binary Patterns (LBP) has more 

recently been used with great success in various applications, 

such as facial recognition and visual inspection (Mäenpää et al., 

2003). LBP have been used predominantly on image 

segmentation, for example, (Wang, A., Wang, S., Lucieer, 

2010; Orkhonselenge, 2004; Lucieer, Stein, Fisher, 2005). Even 

rarer are publications on classification of RS images using LBP 

to characterize texture. An exception is the work of Song, Yang 

and Li (2010), which tests LBP on a mosaic of RS images, but 

the evaluation is restricted to synthetic images only. 

 

The general objective of this study is to evaluate the 

performance of the LBP texture descriptor in more 

representative conditions of real RS applications. Specifically, 

in this work we applied LBP in the classification of very high 

spatial resolution images, following the GEOBIA paradigm.  

 

The study is conducted upon a land-cover and a land-use 

classification problem, having Ikonos-2 and Quickbird-2 images 

as inputs. In the experiments, LBP is compared to descriptors 

based on Gray-Level Co-occurrence Matrices (GLCM). 

 

 

2. LBP TEXTURE DESCRIPTORS 

The LBP code associated to a pixel at w = (x,y) is computed 

from a set of P equally spaced samples over a circle of radius R 

centered at that pixel, as illustrated in Figure 1. From the 

intensities gp (0 ≤ p < P) of the P samples and the intensity gc of 

the central pixel a sequence of P binary values TP = {S(g0 - gc), 

S(g1 - gc),...,S(gP-1 - gc)} is computed, where S is the sign 

function, which takes the value 0 (zero) when the argument is 

negative and 1 (one) otherwise. 
 

 

   
P=8, R=1 P=16, R=2 P=24, R=3 

Figure 1. LBP computation for different P and R. 

 

 

A simple mapping procedure converts the bit sequence TP into a 

non negative integer value. Ojala et al. (2002) demonstrated 

empirically that only the TP sequences containing no more than 

two 0 to 1 or 1 to 0 transitions are relevant for texture 

characterization. By imposing rotation invariance to these 

sequences, a texture coding (LPBP,R) comes about, which is 

given by the number of 1’s in the sequence. A special additional 

code is created for TP sequences having more than two 

transitions 1 to 0 or 0 to 1. Formally:  
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Thus, LPBP,R, may take up to P+2 distinct values, which 

represent the gray level spatial distribution (texture) in a 

neighborhood of a given pixel. Clearly, LPBP,R is invariant to 

monotonic gray-scale changes. A multi-scale texture 

representation can be built by considering more than one LPBP,R 

code generated with multiple P and R values. 
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Since the LBP descriptors are invariant to monotonic gray scale 

changes and, they do not capture contrast information. Ojala 

and co-authors (2002) propose a local contrast descriptor, 

denoted henceforth as VARP,R, which is also rotation invariant, 

defined as: 
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where    
 

 
   
   
   . VARP,R is an approximation of local 

variance, that can be computed efficiently if performed 

concurrently with the computation of LBPP,R. The so called 

VARP,R image is built by replacing each image pixel by its 

corresponding VARP,R code.  

 

In (Ojala et al. 2002) the texture of an image segment is 

described by a two dimensional  histogram representing the 

joint distribution of LBPP,R. and VARP,R codes inside the 

segment. Analogously, each object class can be described by 

two dimensional model histogram of the LBPP,R and VARP,R 

binary codes computed upon a set of segment samples 

belonging to the class being modelled. The comparison between 

the segment and the model texture is carried out by measuring 

the similarity between the corresponding histograms. In most of 

these studies the G statistic (Sokal and Rohlf, 1987), defined in 

equation (3), was used for the similarity measure between two 

histograms.  
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where f1 and f2 are the segment and model histograms 

respectively, and B is the number of bins in f1 and f2. It can be 

easily verified that G is always non negative and approaches 

zero as the histograms being compared become more similar.   

 

 

3. EXPERIMENTAL ANALYSIS 

Two experiments were conducted aiming at the evaluation of 

the texture descriptors considered in this study. 

 

The objective of the first experiment is to evaluate the 

classification accuracy associated with the descriptors  LBPP,R 

and VARP,R , and  estimate the gain from combining them into a 

single descriptor. The experiment also evaluates the loss of 

accuracy brought by concatenating  histograms of LBPP,R and 

VARP,R, forming a one-dimensional histogram as an alternative 

to two-dimensional histogram representing the joint distribution 

of LBPP,R  and VARP,R . 

 

The objective of the second experiment is to compare the LBP-

based descriptors with descriptors derived from the GLCM, the 

most widely used by the RS community to characterize textures. 

In this case, a Support Vector Machine (SVM) (Cortes and 

Vapnik, 1995) instead of the G statistic was used for 

classification, mainly due to its generally good performance and 

low demand for training samples (Huang et al., 2002; Bazi and 

Melgane, 2006; Pal and Foody, 2010).The first experiment 

explores land use and the second land cover classification. 

 

As the primary objective of the study was not to maximize the 

accuracy of classification, but to compare the performance 

associated with each descriptor, we chose in all experiments to 

classify the test images based solely on texture attributes. Most 

likely the inclusion of spectral or morphological attributes 

would lead to higher performances, on the other hand, it would 

imply an increase in the complexity of the classification stage.  

The value of parameters P and R in the LBP; the gray levels 

number; the distance and orientation used in the construction of 

co-occurrence matrix, impact the classification accuracy. The 

optimum values of these parameters are related to the size of 

periodic structures that ultimately characterizes the textures. 

The scale of interest is therefore crucial. Thus, the parameters of 

each approach should be adjusted for each particular 

application, which in most cases requires some experimentation. 

 

The programs used in the experiments for the calculation of 

LBP and VAR were obtained from University of Oulu (Oulu, 

2011). The implementation of SVM was obtained in (Chang 

and Lin, 2001). To calculate the attributes derived from the 

GLCM functions available in MATLAB (Mathworks, 2009) 

were used. 

 

3.1 Study Areas 

3.1.1 Area 1 – Land Use: Subset of a Quickbird-2 sensor 

image, panchromatic band,  size 4000 × 4000 pixels, captured 

on March 31, 2002 covering an area of the city of São Paulo 

(coordinates North / East 322464/7389053 South / West 

324872/7386671, projection UTM-SAD69). Figure 2(a) shows 

a color composite covering the test area. 

 

The urban blocks layer was obtained in vector format directly 

from the official Urban Planning Agency of São Paulo. The 

land-use classes of concern are: High standard horizontal 

housing, High standard residential buildings, Low standard 

residential housing, Slum areas and Unoccupied plots. Due to 

the high similarity among the classes High standard horizontal 

housing and High standard residential buildings, we opted to 

merge them into a single class named hereafter High standard 

horizontal or vertical residential areas. Figure 2(b) shows the 

reference land-use classification of the area, which was also 

provided by the São Paulo Urban Planning Agency (PMSP, 

2009). Table 1 indicates the number of urban blocks of each 

class according to the official records. 

 

3.1.2 Area 2 - Land Cover: Ikonos-2 sensor image, 

panchromatic band, size 2800 × 2000 pixels, captured on May 

30, 2010, covering an area of the city of Rio de Janeiro 

(coordinates North / South 7471911 / 669457 and East / West 

7453904 / 688804, UTM-SAD 69 , WGS 1984), with size 2800 

× 2000 pixels. 

 

Figure 3a shows a color composite covering the test area (within 

the yellow polygons). The test area was segmented using the 

commercial system Definiens Developer (Definiens, 2009) and 

the resulting segments were manually classified by an 

independent group of photo-interpreters working in the 

framework of the PIMAR Project (PIMAR, 2010). The 

reference map produced is shown in Figure 3b,  and it contains 

three classes: Grass; Forest; and Urban. Table 3 provides 

additional information about the reference data. 
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Figure 2.  Quickbird-2 image used for land-use classification (a) 

and the corresponding land-use map (b). 

 

 

Table 1. Number of blocks of each land-use class 

 in experiment 1 

Land-use class Number of urban 

blocks 

Slum areas 25 

High standard horizontal or vertical 

residential areas 

101 

Unoccupied plots 8 

Low standard residential housing 42 

 

 

 

 

 

 
 

 

 

 

Figure 3. Ikonos-2 image of the study site in Rio de Janeiro (a); 

land-use map (b). 

 

Table 2.  Number of segments assigned of each land-use class in 

experiment 2. 

Land-cover classes Number of segments 

Grass type vegetation 5 

Forested areas 57 

Urban areas 26 

 

 

3.2 Experiments 

3.2.1 Experiment 1 – The contribution of contrast: This 

experiment aimed at assessing the relative performance of 

texture descriptors derived from LPBP,R e VARP,R for RS image 

classification. Specifically, four descriptors are evaluated: 

a) the LPBP,R histogram, 

b) the VARP,R histogram, 

c) the histogram resulting from the concatenation of 

LPBP,R and VARP,R histograms, and 

d) the bi-dimensional histogram that represents the joint 

distribution of LPBP,R / VARP,R. 

 

 High  standard horizontal or vertical areas              Slum areas  

 Low standard residential housing                 Unoccupied plots  

 

     Grass type vegetation          Forested areas         Urban areas        
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We have investigated the classification accuracy associated to 

LPBP,R and to VARP,R separately (configurations a and b), as 

well as the improvement brought by combining them into a 

single descriptor (configurations c and d). The experiment also 

investigated if the concatenation of both LPBP,R and VARP,R 

histograms (configuration c) is a proper replacement in terms of 

performance for the bi-dimensional histogram representing the 

joint distribution LPBP,R / VARP,R. Configuration c  constitutes a 

descriptor proposed in this work.  In all cases the VARP,R values 

were quantized in 8 levels. Classification was based on the G 

statistic (equation 3). 

 

Table 3 presents the Kappa values recorded for both 

applications and study areas considering only single scale 

versions of the texture descriptors. Table 4 shows the histogram 

length in each case. 

 

For  LPBP,R  used individually, the Kappa index ranged from 

0.69 to 0.81 and from 0.53 to 0.79 for study areas 1 and 2, 

respectively. The best and worst indexes were achieved with 

different combinations of P and R, in both applications. For 

instance, while (P,R) = (8,1) delivered the worst Kappa value 

for test site 1, its performance was near the maximum observed 

for test site 2 (Kappa = 0.78). The results indicate that the 

optimal setting of P and R may have an important impact in 

classification accuracy. It is worth mentioning that the best 

results in our experiments were obtained with P equal to 8 or 16 

and with R between 2 and 3, which is consistent with other 

studies on LBP (Ojala et al. 2002). 

 

In contrast, the choice of P and R did not affect substantially the 

performance associated to VARP,R. Notice that the indexes in the 

VAR columns of table 3 for both study areas are in most cases 

superior or slightly inferior to the best performance recorded for 

LPBP,R alone, although the VARP,R histogram is shorter (8 bins) 

than the LPBP,R histogram (10 bins). 

 

 

Table 3.  Kappa indexes for single scale texture descriptors 

given by different combinations of LPBP,R  and  VARP,R . 

P,R 

Kappa index 

Study Area 1 Study Area 2 

L
B

P
 

V
A

R
 

L
B

P
+

V
A

R
 

L
B

P
/V

A
R

  

L
B

P
 

V
A

R
 

L
B

P
+

V
A

R
 

L
B

P
/V

A
R

  

8,1 0.69 0.81 0.81 0.83 0.78 0.72 0.83 0.83 

8,2 0.76 0.79 0.90 0.89 0.79 0.77 0.85 0.86 

8,3 0.79 0.77 0.88 0.90 0.65 0.82 0.86 0.86 

16,2 0.81 0.80 0.84 0.86 0.78 0.77 0.91 0.87 

16,3 0.81 0.77 0.87 0.88 0.78 0.84 0.86 0.86 

24,3 0.81 0.76 0.88 0.86 0.76 0.77 0.82 0.83 

24,5 0.78 0.68 0.86 0.85 0.53 0.77 0.74 0.77 

 

 

Table 3 also reveals that the combined descriptors 

LPBP,R+VARP,R, and LPBP,R/VARP,R consistently outperformed  

LPBP,R  and VARP,R. In our experiments both combinations 

brought in average an absolute improvement of 0.10 to the 

Kappa index for both study areas, which is a significant 

performance gain considering automatic RS image 

classification. Again, these results are consistent with (Ojala et 

al. 2002). 

 

 

Table 4. Histogram bins length of differents P and R. 

 #bins 

P,R 

L
B

P
 

V
A

R
 

L
B

P
+

V
A

R
 

L
B

P
/V

A
R

  

8,1 10 8 18 80 

8,2 10 8 18 80 

8,3 10 8 18 80 

16,2 18 8 26 144 

16,3 18 8 26 144 

24,3 26 8 34 208 

24,5 26 8 34 208 

 
 

It should be noted that both combined descriptors – 

LPBP,R+VARP,R and LPBP,R/VARP,R – achieved similar 

performances. Thus the descriptor LPBP,R+VARP,R, proposed in 

this work preserved the information contained in LPBP,R/VARP,R 

that was relevant for class discrimination in both test 

applications. Additionally, Table 4 shows that the 

LPBP,R+VARP,R descriptor is significantly more compact than 

the bi-dimensional version LPBP,R/VARP,R. Thus, this novel 

descriptor has the potential to simplify the classifier design, to 

reduce the demand for training samples and to improve the 

classifier generalization capacity. 

 

To close this section, it must be noticed that no significant 

performance difference has been observed in our experiments 

between corresponding single and multi-scale versions of LBP 

descriptors.  

 

3.2.2 Experiment 2 – Comparing  LPBP,R and GLCM: 
The objective of this experiment was to compare the descriptors 

based in LBP with features derived from GLCM.  

 

To make the descriptors comparable, the same classifier design 

should be applied for all descriptors. Clearly, the G statistic 

does not qualify for that purpose since the GLCM features are 

not treated as histograms. So, in this experiment we elected a 

SVM, working in one-against-all mode for all classifications, 

due to its generally good performance in dealing with large 

numbers of features.  

 

Single scale variants of LBP combined or not with the contrast 

information have also been investigated. Different 

configurations for the GLCM computation have been 

considered, specifically, the number of image gray levels 

(Ng{128, 64, 32, 16}) and the distance (d{1, 2, 3}) 

characterizing the position operator. In all cases, co-occurrence 

matrices of four orientation angles ({0°, 45°, 90, 135°}) were 

computed for each segment.  Different statistics were calculated 

for each GLCM, bringing about four feature vectors, which 

were then averaged to form a single texture descriptor. Of the 

14 statistics originally proposed by Haralick et al. (1973) for 

generating texture features from GLCM, only a sub-set is used 

in practice. Among them, entropy, energy, homogeneity, 
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contrast and correlation are probably the most widely used 

(Petrou and Sevilla, 2006). In addition to them, we also used 

dissimilarity, variance and shade to describe textures in our 

experiment, as they are also quite frequently used in RS 

applications (Clausi and Zhao, 2002; Morales et al., 2003; Liu 

et al., 2006). 

 

Table 5 shows the measured Kappa values. Figure 4 shows the 

best and the worst values obtained for each descriptor and 

reveals a clear superiority of LBP in comparison to GLCM 

descriptors.  

 

 

 
Figure 4. Kappa index for LBP and GLCM descriptor in both 

test areas. 

 

Table 5.  Kappa index obtained with SVM for (a) 

LPBP,R+VARP,R  and  (b) GLCM. 

P,R 

Kappa index 

for 

LPB+VAR 

  Ng,d 
Kappa index for 

GLCM features 

Study 

Area 1 

Study 

Area 2 
   

Study    

Area 1 

Study 

Area 2 

8,1 0.86 0.86   16,1 0.80 0.66 

8,2 0.89 0.93   16,2 0.78 0.68 

8,3 0.89 0.93   16,3 0.78 0.66 

16,2 0.90 0.93   32,1 0.84 0.75 

16,3 0.87 0.89   32,2 0.82 0.73 

24,3 0.86 0.89   32,3 0.82 0.78 

24,5 0.91 0.77   64,1 0.84 0.82 

 (a)    64,2 0.80 0.77 

     64,3 0.82 0.67 

     128,1 0.84 0.77 

     128,2 0.81 0.75 

     128,3 0.82 0.68 

                                                                         (b) 

 

The discrimination capacity of each descriptor can be evaluated 

by inspecting the maximum and minimum values measured in 

each case. For study area 1, 0.91 was the maximum value 

obtained with LBP, while the maximum performance achieved 

with GLCM was 0.86. For study area 2 the maximum Kappa 

index values was 0.93 for LBP, whereas the maximum values 

obtained with GLCM was 0.80. It is meaningful that the best 

result with GLCM for test site 1 (Kappa = 0.86) was close to the 

worst results measured with LBP (Kappa = 0.86). A similar 

behavior was observed for study area 2. 

 

The observed superiority of LBP over GLCM descriptors is 

noteworthy, especially considering that they occur around high 

values of Kappa index. Furthermore, these results suggest that 

the parameter setting is more critical for GLCM (Ng, d and ) 

than for LBP (P and R). 

 
 

4. CONCLUSION 

In this paper descriptors based on Local Binary Patterns (LBP) 

for texture characterization in very high resolution satellite 

images have been investigated. Different single descriptor 

variants have been tested on Ikonos-2 and Quickbird-2 images 

for land-cover and land-use classification. 

 

The experiments corroborated the results found in other studies, 

wherein the discrimination capacity of LBP substantially 

increased when they are combined with the contrast 

information.  

 

This paper proposed a novel texture descriptor that results from 

concatenating the histogram of a texture binary code and the 

histogram of a local variance estimate, as a replacement for the 

bi-dimensional histogram that represents the joint distribution of 

binary codes and local variance. 

 

The experimental analysis demonstrated that the proposed 

descriptor, although more compact, preserved the discrimination 

capacity of bi-dimensional histograms. 

 

Finally, the paper compared the LBP descriptors with textural 

features derived from the Gray Level Co-occurrence Matrix, 

which are the textural descriptors most commonly used by the 

Remote Sensing community. The experiments revealed a 

noteworthy superiority of LBP descriptors over the GLCM 

features. 

 

 

REFERENCES 

 
Bazi, Y., Melgani, F., 2006.  Toward an Optimal SVM 

Classification System for Hyperspectral Images. IEEE 

Transactions on Geoscience and Remote Sensing, 44, pp. 

33743385.  

 

Definiens, 2009.  Definiens Developer System version 7.0. 

Chang, C.C., Lin, C. J., 2001. LIBSVM: a library for support 

vector machines. www.csie.ntu.edu.tw/~cjlin/libsvm (Accessed 

26 Sep. 2011) 

 

Clausi, D.A., Zhao, Y., 2002, Rapid extraction of image texture 

by co-occurrence using a hybrid data structure. Computers & 

Geosciences, 28, pp.763773. 

 

Cortes, C., Vapnik, V.N., 1995.  Support-vector networks. 

Machine Learning, 20, pp. 273297.  

 

Haralick, R. M., Dinstein, I., Shanmugam, K., 1973. Textural 

features for image classification. IEEE Transactions on 

Systems, Man, and Cybernetics. 3, pp. 610–621. 

 

Huang, C., Davis, L. S., Townshed, J. R. G., 2002,  An 

assessment of support vector machines for land cover 

441



 

classification. International Journal of Remote Sensing. 23, pp. 

725749. 

 

Liu, X., Clarke, K., Herold, M., 2006. Population Density and 

Image Texture: A Comparison Study. Photogrammetric 

Engineering & Remote Sensing, 72, pp. 187–196. 

 

Lucieer, A., Stein, A., Fisher, P., 2005. Multivariate texture-

based segmentation of remotely sensed imagery for extraction 

of objects and their uncertainty. International Journal of 

Remote Sensing, 26, pp. 29172936. 

 

Mäenpää, T.; Turtinen, M.; Pietikäinen, M., 2003. Real-time 

surface inspection by texture. Real-Time Imaging, v. 9, part 5, p. 

289-296. 

 

Mathworks, 2009. MATLAB Image Processing Toolbox, 

version 6.3. 

 

Morales, D.I., Moctezuma, M., Parmiggiani, F., 2003. Urban 

and Non Urban Area Classification by Texture Characteristics 

and Data Fusion. In Geoscience and Remote Sensing 

Symposium, 2125 July 2003, Toulouse, France, pp. 

35043506. 

 

Ojala, T., Pietikäinen, M., Harwood, D., 1996,  A Comparative 

study of Texture Measures with Classification Based on Feature 

Distributions. Pattern Recognition, 29, pp. 5159. 

 

Ojala, T., Pietikäinen, M., Mäenpää, T., 2002,  Multiresolution 

gray scale and rotation invariant texture classification with local 

binary patterns. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 24, pp. 971987. 

 

Orkhonselenge, T., 2004. Texture based segmentation of 

remotely sensed imagery for identification of geological units.  

M.Sc. thesis, International Institute for Geo-information Science 

and Earth Observation, Enschede, NL. 

 

Oulu, 2011. University of  Oulu - Department of Computer 

Science and Engineering. LBP  Available online at: 

www.cse.oulu.fi/MVG/Downloads/LBPMatlab (accessed 26 

Sep. 2011) 

 

Pal, M., Foody, G.M., 2010. Feature Selection for Classification 

of Hyperspectral Data by SVM. IEEE Transactions on 

Geoscience and Remote Sensing, 48, pp. 22972307.  

 

Petrou, M., Sevilla, P.G., 2006.  Dealing with Texture, (West 

Sussex: Wiley). 

 

Pimar, 2010. Programa Integrado de Monitoria Remota de 

Fragmentos Florestais e de Crescimento Urbano no Rio de 

Janeiro (Remote Monitoring Integrated Programme for Forest 

Fragments and Urban Growth in Rio de Janeiro). 

www.nima.puc-rio.br/sobre_nima/projetos/pimar/index.php 

(accessed 26 Sep. 2011) 

 

PMPS - São Paulo Urban Planning Agency, InfoLocal. 

http://infolocal.prefeitura.sp.gov.br (accessed 19 Apr. 2009) 

Sokal, R. R., Rohlf, F.J. (2ed), 1987. Introduction to 

Biostatistics. (New York: W.H. Freeman and Co). 

 

Song, C., Yang, F., Li, P., 2010.  Rotation invariant texture 

measured by local binary pattern for remote sensing image 

classification. In Second International Workshop on Education 

Technology and Computer Science, 6-7 March 2010, Wuhan, 

China,  pp. 36.  

 

Wang, A., Wang, S., Lucieer, A., 2010. Segmentation of 

multispectral high-resolution satellite imagery based on 

integrated feature distributions. International Journal of Remote 

Sensing,  31, pp. 14711483. 

442


