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ABSTRACT: 

The classification and recognition of agricultural crop types is an important application of remote sensing. New machine learning 

algorithms have emerged in the last years, but so far, few studies only have compared their performance and usability. Therefore, we 

compared three different state-of-the-art machine learning classifiers, namely Support Vector Machine (SVM), Artificial Neural 

Network (ANN) and Random Forest (RF) as well as the traditional classification method Maximum Likelihood (ML) among each 

other. For this purpose we classified a dataset of more than 500 crop fields located in the Canadian Prairies with a stratified 

randomized sampling approach. Up to four multi-spectral RapidEye images from the 2009 growing season were used. We compared 

the mean overall classification accuracies as well as standard deviations. Furthermore, the classification accuracy of single crops was 

analysed. Support Vector Machine classifiers using radial basis function or polynomial kernels exhibited superior results to ANN 

and RF in terms of overall accuracy and robustness, while ML exhibited inferior accuracies and higher variability. Grassland 

exhibited the best results for early-season mono-temporal analysis. With a multi-temporal approach, the highest accuracies were 

achieved for Rapeseed and Field Peas. Other crops, such as Wheat, Flax and Lentils were also successfully classified. The user’s and 

producer’s accuracies were higher than 85 %. 

 

1. INTRODUCTION 

Crop type classification is an important application of remote 

sensing. It is potentially much faster, more accurate and 

therefore more cost effective than conventional methods of 

generating regional crop area estimates. Crop type information 

at the field level can be used for agricultural surveys, subsidy 

control or, as auxiliary information for the prediction of crop 

yield and shortages thereof. 

In the following paper we are comparing the machine learning 

classifiers Random Forest (RF) (Breiman, 2001), Artificial-

Neural-Network (ANN) (Rosenblatt, 1958; Rumelhart et al., 

1986), and Support-Vector-Machine (SVM) (Cortes & Vapnik, 

1995). As a reference, we are also including the Maximum 

Likelihood (ML) algorithm, the most popular traditional 

supervised classification method. So far, the machine learning 

algorithms have not been widely used for crop classification, 

and as to our knowledge, their performance in this type of 

application has not been thoroughly compared.  

 

2. STATE-OF-THE-ART 

Since the dawn of remote sensing, numerous studies on crop-

type classification have been published. Either optical or the 

combination of Radar and optical data were used as primary 

data sources.  

In recent studies (Yang et al., 2011; Dixon & Candade, 2008) 

the superiority of non-parametric machine-learning algorithms 

to parametric classifiers, such as nearest neighbour or ML, has 

been described. Classification accuracies of Decision Trees such 

as RF, Artificial Neural Networks and Support Vector Machine 

were found to be similar. Artificial-Neural-Network and SVM 

achieved similar results in a land-cover classification study on 

Landsat TM data carried out by Dixon & Candade (2008), 

whereas ML performed significantly worse. In a comparison of 

Decision Tree (DT), ANN and ML, Pal & Mather (2003) 

reported non-significant differences in classification accuracy 

between the former two, whereas the manual work- and 

computational time effort turned out to be much more intensive 

for ANN. A land-cover classification with ANN, SVM, DT and 

ML published by Huang et al. (2002) resulted in higher 

accuracies of ANN and SVM as compared to DT. Nonetheless 

DT performed much faster with a calculation time of minutes 

compared to hours and days respectively for SVM and ANN. 

Hence, the major disadvantage of the machine learning 

classifiers is that their computational complexity is higher 

compared to traditional supervised methods, such as ML or 

Nearest Neighbor, but they also differ strongly among each 

other. 

However, as to our knowledge so far no crop classification 

study compared the main machine-learning algorithms RF, 

ANN and SVM altogether. 

 

3. DATA AND METHODS 

3.1 Data 

The classification was performed on a multi-temporal set of 

optical RapidEye images. They have a ground sampling 

distance of five meters and cover the optical electro-magnetic 

spectrum in five bands: blue, green, red, red-edge and near-

infrared (RapidEye, 2011). 

The study area of 20 by 25 km was located around the 

municipality of Indian Head, in south-eastern Saskatchewan, 

Canada. It contained 512 agricultural fields of known crop or 

cultivation types grown during the summer of 2009 (cf. Fig. 1). 

The geo-referenced field boundaries, including crop type, 

seeding date and many more types of information, were 

originally collected for the ESA AGRISAR campaign 2009 

(ESA, 2009). 

After excluding very small classes and merging semantically 

similar classes, 10 different crop types were left for supervised 

classification. They consist of Wheat, Barley, Rapeseed, Oats, 

Field Peas, Lentils, Canary Seed, Flax, Grassland and Fallow 

(cf. table 1). Four cloud free images had been acquired on June 

2, August 10, August 25 and September 5. The study area was 

covered by RapidEye tile IDs 1363418 and 1363419. 
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Figure 1: Overview of study area Indian Head including field 

boundaries with crop types 

 

 

Crop type # of fields 

Wheat 161 

Rapeseed 136 

Grassland 79 

Field Peas 52 

Barley 40 

Lentils 38 

Flax 37 

Oats 30 

Fallow 19 

Canary Seed 18 

 

Table 1: Cultivated crops with number of fields in study area Indian 

Head (CA) 

 

3.2 Methods 

The workflow can be divided into two major steps: data pre-

processing and classification. 

 

3.2.1 Pre-processing:  At first, the spatial co-registration of 

field-boundaries to the images was visually checked and if 

necessary, corrected. In order to reduce the influence of mixed 

pixels at the edge of the fields, the field-boundaries were 

buffered by ten meters to the inside.  

The RapidEye data were processed in several steps. At first, the 

two image tiles of each acquisition date were mosaicked. 

Afterwards a basic atmospheric correction was performed on 

the mosaic. This includes radiance to top-of-atmosphere 

reflectance conversion as well as dark-object-subtraction 

(Chavez, 1996). Moreover, five different vegetation indices 

were calculated: ground cover (Maas & Rajan, 2008), NDVI 

(Rouse et al., 1973), MTVI2 (Haboudane et al., 2004), 

NDVIRE (Barnes et al., 2000), and MTCI (Dash & Curran, 

2007). They were calculated as additional sources of 

information in order to increase overall classification 

accuracies. 

In the next step, the spectral information as well as vegetation 

indices were extracted: the median of each of the five spectral 

bands and vegetation indices inside each buffered field 

boundary was calculated and saved to the attribute table of the 

vector containing the files field boundaries. This resulted in ten 

additional attributes per image date, 40 in total. We chose the 

median over mean due to a higher stability against outliers, 

which may occur due to anomalies and small water bodies 

within the crop fields.  

3.2.2 Classification:  Weka 3.6, a collection of machine 

learning algorithms for data mining tasks was used for the 

analysis (Hall et al., 2009). It is an Open-Source-Software-

Package, which can be used for classification and includes a 

built-in validation function. 

In order to assess the change in classification accuracy with 

time, four different image-date combinations were used. 

Starting with the first image, one image was added in each 

subsequent analysis, until all images in the study area were used 

in conjunction. This resulted in four datasets. 

The following classifiers were used: Naïve Bayes for ML, 

Random Forest (RF), Multi-Layer Perceptron in case of ANN, 

and LibSVM for Support Vector Machine. For the latter radial- 

basis-function (RBF) and polynomial kernels (POLY) were 

applied to the classification, hence five different classifiers were 

used in total.  

Parameter optimization for the machine learning classifiers was 

carried out with GridSearch for SVM-RBF, SVM-POLY and 

ANN while CVParameterSelection was used for RF. For SVM-

RBF parameters gamma and C were optimised in exponential 

steps of 0.5 between 10-5 and 10 as well as 10-1 and 105.  

The resulting values were then applied to the parameter search 

of SVM-POLY. Here the polynomial degree and coef0 

parameters were searched between 2 and 6 as well as 100 and 

106 respectively. 

The optimization of Artificial Neural Network includes two 

different steps: choice of architecture and parameter search. 

Initially we tested different configurations with one or two 

hidden layers and a variable number of hidden neurons. After 

finding the most successful and robust architecture, the number 

of neurons in the hidden layer equals number of attributes, the 

parameters learning rate and momentum were both optimized in 

steps of 0.1 between 0 and 1. 

Finally the best number of trees between 100 and 1000 was 

determined using the CVParameterSelection-Function for 

Random Forest Classifier. 

 

3.2.3 Experiment 1: Assessment of overall classification 

accuracy. This task was performed with the WEKA 

Experimenter. For each dataset the beforehand optimized 

classifiers (cf. Table 2) were run 100 times each with an 

automatic random stratified selection of training and test sets, 

but same conditions for all classifiers. The splitting ratio was set 

to 80 % test and 20 % training data. All iterations were 

automatically validated by the software and exported to a csv-

file containing different quality measures. These include overall 

accuracy, kappa as well as training and testing time. However, 

single class information was not included. The overall accuracy 

was then analysed using statistical parameters such as mean and 

standard deviation. 

 

 Date 1 Date 2 Date 3 Date 4 

Parameter ANN 

LearnRate 0.6 0.6 0.7 0.4 

Momentum 0.3 0.1 0 0.2 

Parameter RF 

nTrees 500 400 100 600 

Parameter SVM 

Gamma 0.01 1 0.3 0.3 

C 300000 30 30 30 

Degree 3 4 2 2 

Coef0 1 10 1 3 

 
Table 2: Calculated optimized parameters per classifier and dataset. 
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With these measures a comparison of classification success, 

using the mean overall accuracy, and robustness, using standard 

deviations, was carried out. Finally the statistical significance of 

the different results was assessed by using a paired t-test at a 

significance level of 0.05.  

 

3.2.4 Experiment Setup 2: Assessment of classification 

accuracy for single crop types as a function of type of 

classifier and number of images. For this purpose all datasets 

were classified five times with each classifier using 5-fold 

cross-validation, in correspondence to the split-ratio in 

Experiment 1. The median result of each setup, run in WEKA 

Explorer, was then used as the reference result. Producer’s 

accuracy, user’s accuracy and F-Measure (cf. Equation 1) were 

used for quality assessment, whereas the error matrix provides 

information about class confusion. 

 

 
UAPA

UAPA
F






2    (1) 

 

PA: producer’s accuracy; UA: user’s accuracy 

 

4. RESULTS 

4.1 Overall classification accuracies 

Overall classification accuracy varied considerably among the 

classifiers used. Furthermore, the number of images used for the 

classification greatly affected classification accuracy. As shown 

in Figure 2 and Table 3 SVM-RBF exhibited the highest mean 

overall accuracies. The largest margin between different 

methods could be observed in mono-temporal analyses, using 

the first image only. SVM-RBF and SVM-POLY produced 

nearly identical results with 68.6 and 68.4 % respectively. 

Notably lower accuracies were observed using ANN and RF. 

The former achieved 61.8 % and the latter 55.8 % overall 

accuracy. According to the t-test the differences are statistically 

significant between SVM, ANN, and RF. With only 45 % 

overall accuracy, ML exhibited by far the worst results, which 

were also statistically different from the other ones. 

 
# of images 1 2 3 4 

Classifier Mean overall accuracy [%] 

ANN 61.8 80.2 87.4 87.1 

RF 55.8 82.3 86.6 87.4 

SVM-RBF 68.6 82.2 88.0 88.1 

SVM-POLY 68.4 80.3 87.7 87.8 

ML 45.0 75.8 79.1 78.9 
 

Table 3: Mean overall accuracies of all classifiers depending on number 

of image acquisitions in study area Indian Head. 

 

With the addition of a second coverage on August 5 the mean 

overall accuracies were raised by 12 to 31 %. The differences in 

classification performance among the used classifiers became 

much narrower. As exhibited in Table 3, RF and SVM-RBF 

accomplished nearly identical results with 82.2 and 82.3 % 

mean overall accuracy. However their stability, as assessed by 

their standard deviations (STD) varied slightly (cf. Table 4). 

Random Forest showed slightly more stable results with a STD 

of 2.38 % versus 2.65 % for SVM-RBF. The classification 

accuracies of ANN and SVM-POLY exhibited rather similar 

characteristics, but displayed statistically significant lower 

accuracies by 2 %, as well as slightly higher STDs than SVM-

RBF and RF. Maximum Likelihood showed again inferior 

results with a mean overall accuracy of 75.8 % and a STD of 

3.11 %. 

With the addition of a third image from August 25 the 

classification results were further improved by 3 to 8 %. The 

machine learning algorithms still outperformed ML by 7.5 to 9 

% (cf. Table 3). SVM-RBF, again, reached the best mean 

accuracy with 88 % and the highest stability. Close second and 

third, SVM-POLY and ANN performed slightly worse at 87.7 

and 87.4 % respectively, whereas RF achieved 86.6 %. 

Adding the fourth and last satellite image from early September 

did not necessarily improve mean overall classification 

accuracies (cf. Table 3). Furthermore, in 2 cases a decrease in 

classification performance of 0.2 and 0.3 % for ML and ANN 

was observed. Both SVM classifiers exhibited near constant 

values, while the performance of RF was increased by 0.8 %. 

The stability of the classification results improved considerably 

to STDs of just over 2 %, with the exception of ML, which had 

a STD of 2.82 %. 

 

# of images 1 2 3 4 

Classifier Standard deviation [%] 

ANN 3.89 3.17 2.69 2.04 

RF 3.11 2.38 2.40 2.10 

SVM-RBF 2.82 2.65 2.39 2.05 

SVM-POLY 2.67 2.82 2.49 2.17 

ML 4.03 3.11 2.81 2.82 
 

Table 4: Standard deviations of all classifiers depending on number of 

image acquisitions in study area Indian Head (CA). 

 

 
 
Figure 2: Mean overall classification accuracies achieved at Indian 

Head (CA) by five different algorithms as a function of number of 

images used. 

 

4.2 Calculation complexity:   

Execution times varied greatly among different classifiers and 

number of acquisitions (cf. Table 5). Artificial Neural Network 

took the longest time for training, with an average of 7.7 to 15.1 

seconds training time per classification. With only one 

acquisition the computation times of the remaining machine 

learning algorithms resembled those of ANN. 

With more acquisition dates and thus more complex datasets the 

calculation times were shorter and more diverse among RF, 

SVM-RBF and SVM-POLY. With 1.1 to 6.2 seconds RF is 

much more computationally expensive than both SVM 

classifiers, which showed similar durations. Their average 

computation time of the training stage oscillated around 0.3 

seconds with the exception of SVM-POLY. 
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At two images with 0.684 seconds. ML featured by far the 

lowest computational cost with marginal time expenditures of 

0.004 to 0.007 seconds per training stage. 

 

# of images 1 2 3 4 

Classifier Training time per classification [sec] 

ANN 7.657 18.253 20.486 15.145 

RF 8.765 4.002 1.134 6.205 

SVM-RBF 9.631 0.281 0.335 0.292 

SVM-POLY 8.452 0.684 0.313 0.296 

ML 0.004 0.003 0.007 0.005 
 

Table 5: Mean computation time used for the training of five different 

classification algorithms at Indian Head (CA). 

 

In comparison to average training times, the testing or 

classification stage was generally performed much faster. For 

ANN the differences are particularly distinctive, while ML 

required slightly more time for testing than training. However 

both classifiers required only fractions of a second for the 

application of the learned models (cf. Table 6). Both SVM 

classifiers exhibited slightly longer testing times, but still no 

more than 0.039 seconds. With average testing times between 

0.011 and 0.175 seconds RF usually needed more time than the 

remaining classifiers. The duration seemed to be strongly 

correlated to the number of used trees, which is paralleled to 

training times, where the usage of three images required the 

least and the usage of one classifier the most computational 

effort. 

 

# of images 1 2 3 4 

Classifier Testing time per classification [sec] 

ANN 0.002 0.009 0.008 0.003 

RF 0.175 0.065 0.011 0.083 

SVM-RBF 0.035 0.018 0.030 0.039 

SVM-POLY 0.018 0.014 0.019 0.020 

ML 0.051 0.007 0.015 0.017 
 

Table 6: Mean computation time used by five different algorithms for 

the crop classification at Indian Head (CA). 

 

4.3 Single class results:   

The classification results for individual crop types exhibited 

different kinds of behaviour in terms of classification 

accuracies, depending on number and dates of acquisitions as 

well as utilized classifier. 

Using only one satellite image from June 2nd only Grassland 

could be safely classified with accuracies of around 90% (cf. 

Table 7). All classifiers besides RF featured superior results of 

producer’s accuracies as compared to user’s accuracies in 

excess of up to 9.7 %. Other notable results were obtained for 

the classes Rapeseed and Wheat. The former reached F-

Measures of up to 87.4 % with SVM-RBF, but showed large 

differences between producer’s and user’s accuracies. Wheat 

showed similar trends, but generally lower accuracies. Classifier 

dependant results could be further observed for Fallow where 

ANN outperformed the other classifiers, and for Field Peas for 

which both SVM classifiers achieved the highest accuracies, 

with respectable F-Measures of more than 70 %. The error rates 

for the remaining classes were high. 

The most notable class confusions were observed among the 

different cereal types Wheat, Barley and Oats. Other crops were 

also misclassified as Wheat or Rapeseed. In summary, large 

classes were usually over-classified while small classes were 

under-represented during classification with machine-learning 

techniques. This behaviour is backed by the already mentioned 

differences in producer’s and user’s accuracy. 

 
Classifier ANN RF SVM-RBF 

 Measure [%] PA UA F PA UA F PA UA F 

Crop Type          

Wheat 56.3 80.1 66.2 55.5 72.0 62.7 58.4 92.5 71.6 

Barley 28.6 10.0 14.8 21.7 12.5 15.9 0.0 0.0 0.0 

Oats 33.3 6.7 11.1 28.6 6.7 10.8 20.0 6.7 10.0 

Rapeseed 64.7 90.4 75.5 60.6 73.5 66.4 81.5 94.1 87.4 

Canary Seed 25.0 5.6 9.1 28.6 11.1 16.0 0.0 0.0 0.0 

Field Peas 59.5 42.3 49.4 51.1 44.2 47.4 72.0 69.2 70.6 

Lentils 36.8 18.4 24.6 22.9 21.1 21.9 53.8 36.8 43.8 

Flax 28.6 16.2 20.7 26.1 16.2 20.0 45.5 27.0 33.9 

Grassland 94.7 89.9 92.2 88.9 91.1 90.0 95.8 86.1 90.7 

Fallow 80.0 63.2 70.6 53.3 42.1 47.1 67.4 57.9 61.1 

Classifier SVM-POLY ML 

 Measure [%] PA UA F PA UA F 

Crop Type       

Wheat 59.3 95.0 73.0 55.3 45.3 49.8 

Barley 0.0 0.0 0.0 0.0 0.0 0.0 

Oats 33.3 6.7 11.1 25.0 16.7 20.0 

Rapeseed 80.4 87.5 83.8 47.1 48.5 47.8 

Canary Seed 0.0 0.0 0.0 6.1 16.7 9.0 

Field Peas 78.3 69.2 73.5 46.4 50.0 48.1 

Lentils 46.4 34.2 39.4 31.3 52.6 39.2 

Flax 44.8 35.1 39.4 12.8 16.2 14.3 

Grassland 93.2 87.3 90.2 93.2 86.1 89.5 

Fallow 55.0 57.9 56.4 33.3 47.4 39.1 

 

Table 7: Median classification accuracies for single crop types 

depending on classification algorithm used for the study area at Indian 

Head (CA). One satellite image from June 2 was used. PA: producer’s 

accuracy; UA: user’s accuracy; F: F-Measure. 

 
Classifier ANN RF SVM-RBF 

 Measure [%] PA UA F PA UA F PA UA F 

Crop Type          

Wheat 84.4 90.7 87.4 78.9 95.7 87.0 85.5 95.0 90.0 

Barley 80.6 62.5 70.4 84.6 55.0 66.7 81.8 67.5 74.0 

Oats 63.2 40.0 49.0 78.6 36.7 50.0 70.6 40.0 51.1 

Rapeseed 95.7 98.5 97.1 95.7 98.5 97.1 98.5 98.5 98.5 

Canary Seed 63.2 66.7 64.9 88.9 44.4 59.3 71.4 55.6 62.5 

Field Peas 92.5 94.2 93.3 94.3 96.2 95.2 94.0 90.4 92.2 

Lentils 84.2 84.2 84.2 87.5 73.7 80.0 86.5 84.2 85.3 

Flax 87.5 94.6 90.9 75.6 83.8 79.5 85.0 91.9 88.3 

Grassland 91.4 93.7 92.5 89.2 93.7 91.4 86.7 91.1 88.9 

Fallow 87.5 73.7 80.0 84.2 84.2 84.2 85.7 94.7 90.0 

Classifier SVM-POLY ML 

 Measure [%] PA UA F PA UA F 

Crop Type       

Wheat 84.4 93.8 88.8 81.6 74.5 77.9 

Barley 77.1 67.5 72.0 54.8 57.5 56.1 

Oats 61.1 36.7 45.8 38.1 26.7 31.4 

Rapeseed 99.3 97.8 98.5 97.0 96.3 96.7 

Canary Seed 76.9 55.6 64.5 28.1 50.0 36.0 

Field Peas 95.9 90.4 93.1 97.9 90.4 94.0 

Lentils 87.5 92.1 89.7 73.0 71.1 72.0 

Flax 91.9 91.9 91.9 69.0 78.4 73.4 

Grassland 86.9 92.4 89.6 91.0 89.9 90.4 

Fallow 87.5 94.7 90.0 64.3 94.7 76.6 

 
Table 8: Median classification accuracies for single crop types 

depending on classification algorithm used for the study area at Indian 

Head (CA). Two satellite images from June 2 and August 10 were used. 

PA: producer’s accuracy; UA: user’s accuracy; F: F-Measure. 

 

After adding a second image from August 10th certain classes 

were classified much more precisely than with mono-temporal 

coverage only (cf. Table 8). However, the results of Grassland 

remained nearly stagnant or slightly lower with F-Measures 

between 86.6 and 90.8 %. In this configuration Rapeseed 

reached very accurate results with F-Values between 92 and 

94.6 % for all classifiers. Other classes with F-Values over 80 

% included Wheat, Fallow and Field Peas. In all cases the 

machine learning classifiers outperformed ML by up to 8 %. 

Flax and Lentils were classified at around 70 % accuracy. The 
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remaining crop types Barley, Oats and Canary Seed were 

poorly classified due to a high level of confusion with Wheat. 

 
Classifier ANN RF SVM-RBF 

 Measure [%] PA UA F PA UA F PA UA F 

Crop Type          

Wheat 88.2 88.2 88.2 81.5 95.7 88.0 85.4 94.4 89.7 

Barley 77.4 60.0 67.6 78.6 55.0 64.7 79.4 67.5 73.0 

Oats 57.1 40.0 47.1 60.0 30.0 40.0 57.1 40.0 47.1 

Rapeseed 96.4 99.3 97.8 98.5 97.8 98.2 97.8 99.3 98.5 

Canary Seed 72.2 72.2 72.2 83.3 55.6 66.7 66.7 66.7 66.7 

Field Peas 94.2 94.2 94.2 94.1 92.3 93.2 96.1 94.2 95.1 

Lentils 82.5 86.8 84.6 91.2 81.6 86.1 91.2 81.6 86.1 

Flax 83.3 94.6 88.6 79.5 94.6 86.4 89.5 91.9 90.7 

Grassland 87.1 93.7 90.2 91.3 92.4 91.8 91.1 91.1 91.1 

Fallow 85.0 89.5 87.2 81.8 94.7 87.8 89.5 89.5 89.5 

Classifier SVM-POLY ML 

 Measure [%] PA UA F PA UA F 

Crop Type       

Wheat 83.5 94.4 88.6 81.0 73.9 77.3 

Barley 77.8 70.0 73.7 50.0 50.0 50.0 

Oats 73.3 36.7 48.9 34.5 33.3 33.9 

Rapeseed 97.8 98.5 98.2 95.6 94.9 95.2 

Canary Seed 84.6 61.1 71.0 34.8 44.4 39.0 

Field Peas 94.2 94.2 94.2 95.9 90.4 93.1 

Lentils 91.9 89.5 90.7 71.8 73.7 72.7 

Flax 84.6 89.2 86.8 65.2 81.1 72.3 

Grassland 91.3 92.4 91.8 92.1 88.6 90.3 

Fallow 89.5 89.5 89.5 69.2 94.7 80.0 

 
Table 9: Median classification accuracies for single crop types 

depending on classification algorithm used for the study area at Indian 

Head (CA). Three satellite images from June 2, August 10 and August 

25 were used. PA: producer’s accuracy; UA: user’s accuracy; F: F-

Measure. 

 
Classifier ANN RF SVM-RBF 

 Measure [%] PA UA F PA UA F PA UA F 

Crop Type          

Wheat 81.3 91.9 86.3 79.7 95.0 86.7 80.7 93.8 86.8 

Barley 66.7 50.0 57.1 70.8 42.5 53.1 78.1 62.5 69.4 

Oats 35.7 16.7 22.7 40.0 6.7 11.4 25.0 10.0 14.3 

Rapeseed 92.9 95.6 94.2 90.9 95.6 93.2 92.3 97.1 94.6 

Canary Seed 66.7 66.7 66.7 81.8 50.0 62.1 75.0 50.0 60.0 

Field Peas 86.5 86.5 86.5 88.9 92.3 90.6 86.5 86.5 86.5 

Lentils 71.9 60.5 65.7 73.7 73.7 73.7 72.7 63.2 67.6 

Flax 65.1 75.7 70.0 67.4 78.4 72.5 65.0 70.3 67.5 

Grassland 88.5 87.3 87.9 88.1 93.7 90.8 88.8 89.9 89.3 

Fallow 71.4 78.9 75.0 87.5 73.7 80.0 84.2 84.2 84.2 

Classifier SVM-POLY ML 

 Measure [%] PA UA F PA UA F 

Crop Type       

Wheat 81.3 91.9 86.3 79.7 95.0 86.7 

Barley 66.7 50.0 57.1 70.8 42.5 53.1 

Oats 35.7 16.7 22.7 40.0 6.7 11.4 

Rapeseed 92.9 95.6 94.2 90.9 95.6 93.2 

Canary Seed 66.7 66.7 66.7 81.8 50.0 62.1 

Field Peas 86.5 86.5 86.5 88.9 92.3 90.6 

Lentils 71.9 60.5 65.7 73.7 73.7 73.7 

Flax 65.1 75.7 70.0 67.4 78.4 72.5 

Grassland 88.5 87.3 87.9 88.1 93.7 90.8 

Fallow 71.4 78.9 75.0 87.5 73.7 80.0 

 
Table 10: Median classification accuracies for single crop types 

depending on classification algorithm used for the study area at Indian 

Head (CA). Four satellite images from June 2, August 10, August 25 

and September 5 and were used. PA: producer’s accuracy; UA: user’s 

accuracy; F: F-Measure. 

 

Further improvements of the classification accuracies were 

observed with a third satellite coverage (cf. Table 9). The 

already well-recognised class Rapeseed achieved even stronger 

classification accuracies of more than 95 % in all measures and 

with all classifiers. With accuracies of more than 90 % Field 

Peas exhibited an increase of 5 to 12 % in F-Measure compared 

to only two satellite coverages, meanwhile Grassland did not 

show variation in classification accuracy between one, two or 

three image acquisitions. 

The classes Flax, Lentils, Fallow and Wheat possessed a 

specific behaviour showing a strong dependency on the 

classifier used. Their F-Measures did not fall below 79.5 % 

while using machine learning classifiers, but only ranged from 

72 to 78 % with ML. Moreover, both SVM-classifiers 

outperformed RF and ANN, in case of Lentils by up to 12.4 %, 

in case of Wheat by up to 3 %. The Cereals Barley and Oats 

showed improvements over using two images resulting in 

accuracies of around 70 % for Barley, but still only around 50 

% for Oats with RF, ANN and both SVM-classifiers. The 

classification accuracy for Canary Seed remained constant at 

around 60 to 65 %. 

The addition of the fourth and last satellite image from 

September 5th produced only minor improvements for Canary 

Seed and predominantly similar results for any other crop (cf. 

Table 10). 

 

 
 

Figure 3: Crop specific classification results achieved with SVM-RBF 

in study area at Indian Head  (CA) as a function of number of images 

used. 

 

5. DISCUSSION 

The classification accuracy varied strongly among the tested 

crop types. Grassland could be classified early in the growing 

season with only one satellite image. The addition of further 

satellite imagery did not increase its classification accuracy. 

The best results were generally accomplished for Rapeseed, 

which can be accurately classified using two images, though the 

results still improved with a third coverage. Nearly as good 

results were achieved for Field Peas, which could be safely 

recognised in early August with two images. Lentils, Flax and 

Fallow achieved similar results over time. They reached 

maximum accuracies of around 90 % which is slightly lower 

than the accuracies of Rapeseed and Field Peas, but comparable 

to these of Grassland. The examined cereals, namely Wheat, 

Barley and Oats, exhibited different behaviour regarding their 

achieved accuracies. While the accuracies of Wheat were 

generally high, comparable to these of Grassland, Barley and 

especially Oats were classified much worse. Most 

misclassifications of the latter two classes could be attributed to 

false positive classifications of Wheat, which might have been a 

result of the skewed class sizes of the trainings sets. The role of 

relative and absolute size of a class used for training and its 

impact on the classification accuracy will have to be further 

investigated.  

Classification results were strongly influenced by the number of 

satellite images used as well as the type of classifier. Both SVM 

classifiers outperformed RF and ANN in most cases. The 

poorest results by far were obtained with ML. The observed 

differences between ML and the used non-parametric classifiers 

are similar to the findings of other studies (Yang et al., 2011; 

Dixon & Candade, 2008; Huang et al., 2002). Nonetheless, in 
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our study we also observed larger, in some cases even 

significant, differences among the machine-learning algorithms. 

These were found specifically on the early-season mono-

temporal dataset, where overall accuracies diverged by up to 17 

% between SVM-RBF and RF. With additional satellite 

imagery coverage the results converged to similar overall 

accuracies for all machine learning classifiers. 

Classification accuracy improved with the number of images 

used. However, there seemed to be a threshold of maximum 

overall accuracy which could be achieved. It was just below 90 

%. In September, by the time of the last image acquisition, some 

early sown crops were close to reaching maturity or were 

mature already. They had senesced and thus, no distinctive 

signal could be picked up by the sensors. Though, despite 

stagnant mean overall accuracies one specific classification 

behaviour was observed: While increasing the number of 

images, the classifier robustness increased strongly, which 

suggests less influence of the choice of training data and higher 

certainty of results in single classification runs. This 

development was even observed between three and four satellite 

images, which is in contrast to mean overall accuracies. 

In the context of calculation complexity our results agree very 

well with these of other studies (Pal & Mather, 2003; Huang et 

al., 2002). ANN required by far the highest calculation times, 

whereas the training and testing of RF took usually longer than 

both SVM types. ML excelled in both stages with very short 

computation times. But all in all, WEKA performed the 

classifications very fast in a matter of seconds.  

Artificial Neural Network produced good results, usually in 

between SVM and RF, but has many disadvantages. The 

complex architecture optimization, low calculation robustness 

and enormous training time outweigh the good mean 

classification accuracies. In this study, we found it to be the 

least favourable classifier among the machine-learning methods. 

ML offers the most comfortable usage, where no parameters 

have to be optimized and calculation times are marginal. 

However, these advantages are outweighed by the poor 

classification performance.  

Support Vector Machine with polynomial kernel (SVM-POLY) 

serves as an alternative to SVM-RBF with primarily non-

significantly inferior classification results and slightly more 

complex setup.  

Random Forest in contrast is easy to use, since only one 

variable needs to be set by the user. However, its classification 

accuracies when only one satellite coverage was used was the 

worst among machine-learning methods whereas its robustness 

was among the best. 

After evaluating all measures, namely classification accuracy, 

robustness, calculation complexity and usability, Support 

Vector Machine with RBF-Kernel emerged as the best solution 

for the classification of different crop types using multi-

temporal RapidEye data. This method excelled in classification 

performance and robustness and exhibited faster calculation 

time compared ANN.  
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