
Testing model transformations which derive
executable test cases from abstract ones

Erika R. C. de Almeida
Institute of Computing

State University of Campinas
Campinas, SP, Brazil

Email: erikarca@gmail.com

Eliane Martins
Institute of Computing

State University of Campinas
Campinas, SP, Brazil

Email: eliane@ic.unicamp.br

Abstract—Model transformations are the core mechanism of
model-driven testing. They are repeated many times so that any
error can cause large impacts. Therefore, they must be tested
before put in use. However, common testing techniques do not
apply, once the inputs are test models. Here we present how
we are applying a methodology that aims model transformation
testing in our use of model-driven testing to obtain executable
test cases from abstract ones.

I. I NTRODUCTION

Software project managers and developers building applica-
tions face the challenge of doing so within an ever-shrinking
schedule and with minimal resources. In their attempt to do
more with less, organizations want to test software adequately,
but as quickly and thoroughly as possible. To accomplish this
goal, organizations are turning to automated testing [1].

A convenient definition of automated testing might read as
follows: “The management and performance of test activities,
to include the development and execution of test scripts so
as to verify test requirements, using an automated tool”.
The automation of test activities provides its greatest value
in instances where test scripts are repeated, once automated
testing requires a much higher initial investment than manual
test execution does [2].

In an attempt to intend for the benefits of test automation
and at the same time reducing its initial cost, we propose
a methodology called MOST-WEB whose initial focus is
web applications. It combines model-based testing (MBT) and
model-driven testing (MDT). We take as basis the software
state model, designed according the software’s specification,
and we get its corresponding abstract test cases1. Such abstract
test cases are transformed into executable ones, according
Selenium2 format, following the MDT methodology.

The last transformation is not a simple process because the
abstract test cases are on the same level of abstraction of the
model, while the executable ones should take into account
software’s implementation details.

This shows MDT is directly dependent on the model trans-
formations, which are the core mechanism for this automation.

1Abstract test cases are those that are on the same level of abstraction of
the software model, not containing details of its implementation.

2Selenium is a suite of tools to automate web applications testing across
many platforms.

Writing complex model transformations is error-prone, and
efficient testing techniques are required as for any complex
program development and is an important challenge if MDT
is to succeed [3]. The need for reliable model transformations
is even more critical when they are to be reused. Indeed, a
single faulty transformation can make a whole model-driven
testing process vulnerable.

To test the correctness of a model transformation, there
are methodologies that differ greatly, ranging from a formal
proof [4] to the application of common testing techniques,
taking into account that now the inputs are models and
their characteristics [3], such as entities, their attributes and
relationships. Here we present the application of one of those
methodologies, which was proposed by Fleureyet al. [3].
It is an adaptation from a classical testing technique called
category-partition testing and was chosen due to its indepen-
dence of any specific model transformation language and the
existence of an associated tool.

The remainder of this paper is organized as follows: Section
2 summarizes our goal of testing model transformations and
how it is being achieved using Fleureyet al. methodology, and
Section 3 presents our conclusions and future work.

II. M ODEL TRANSFORMATION TESTING

The main goal of our work is the automatic generation of
executable test cases from abstract ones. To achieve it we
use model-driven testing (MDT), a methodology that can be
summarized as follows: the input artifact is a metamodel3 that
specifies how the platform independent test model (PIT) is;
PIT is transformed into another test model, also specified by
a metamodel, but now platform specific (PST); finally, it is
performed a last transformation to get the test code from PST.

Using MDT, we relied on Javed’s work [5] and specialized it
to web applications. Javed establishes two metamodels, SMC
as PIT and xUnit as PST, which respectively represent a
sequence of method calls (an abstract test case) and a unit
test independent of programming language. Moreover, he also
features the model transformations performed by QVT (SMC-
xUnit) and MOFScript (xUnit-test code).

3Metamodel is the model’s model that serves for explanation and definition
of relationships among the various components of the applied model itself.



In our work we use the same metamodels, especially to our
executable test case, a Selenium script, fits the xUnit meta-
model. But we made changes in the model transformations:
(i) the transformation SMC(PIT)-xUnit(PST), originally im-
plemented in QVT, was rewritten in ATL, which, although not
being the OMG (Object Management Group) standard, pro-
vides more extensive documentation and Eclipse IDE support;
and (ii) the transformation xUnit(PST)-test code, rendered in
MOFScript language, was just adapted for Selenium library.

So performing a model transformation, taking models as
input and producing other models as output, requires a clear
understanding of the abstract syntax and the semantics of both
the source and target models, and is an error-prone activity.

Therefore, to be confident that our model transformations
are correct, test activity must be performed over them. For
this purpose, it was chosen the methodology proposed by
Fleurey et al. which is based on category-partition testing.
Such strategy divide the input domain into ranges and then
select test data from each of these ranges. The ranges for
an input domain define a partition of the input domain and
thus should not overlap. Partition testing has been adapted
to test UML models, and Fleureyet al. adapted it to test
model transformations. In this specific case, the input domain
is modeled by the input metamodel of the transformation. The
idea is to define partitions for each property of this metamodel.

To represent combinations of partition ranges, they intro-
duce the notions of model fragments, object fragments and
property constraints. A model fragment is composed of a set
of object fragments. An object fragment is composed of a set
of property constraints which specify the ranges from which
the values of the properties of the object should be taken from.
They are defined in order to check that the set of test models
covers the input metamodel of a transformation [3].

Based on these concepts, it is possible to define an itera-
tive engineering process for selecting a set of input models
intended to test a model transformation. This process takes
two inputs: the input metamodel of the transformation under
test and a set of test models. From the input metamodel, it
is generated a set of model fragments according to a test
criterion. Then the next step checks that there is at least one
test model that covers each model fragment.

To automate this engineering process, the authors imple-
mented a tool called Metamodel Coverage Checker (MMCC).
MMCC is available as an Eclipse IDE project that has two
basic executable artifacts: the first one generates automatically
the model fragments of the desired metamodel, and the second
one scores the test models coverage.

As MOST-WEB is composed of two independent model
transformations (SMC-xUnit e xUnit-test code), this test pro-
cess must be performed twice. Here it is clear the advantage
of the Fleureyet al. process being language independent, once
our model transformations are written in different languages,
ATL and MOFScript.

Table I summarizes the results for the first step. It shows
how many model fragments were generated for each meta-
model and for each available test criterion, which are all ranges

and all partitions. These fragments are our test requirements
and we must prepare test cases to cover them. The test cases
will be test models, instances of their respective metamodels.

TABLE I
MODEL FRAGMENTS PER METAMODEL ACCORDING A TEST CRITERION.

Test criterion SMC xUnit
All Partitions 23 33
All Ranges 43 73

Now we are preparing these test models to score their
coverage on the respective metamodel. With a robust test set
we will finally be able to assert if the transformation output
is correct. This last step, which represents a test oracle, is not
performed by MMCC tool and will be done manually.

III. C ONCLUSION AND FUTURE WORK

This paper presented how we are testing model transfor-
mations, which are used to derive executable test cases from
abstract ones in a use of model-driven testing (MDT). A
model transformation takes as input a model conforming to
a given metamodel and produces as output another model
which also conforms to a metamodel. Moreover, it can be
considered nothing else than a regular program which requires
tests to assure it is reliable. However, using common testing
techniques is not so easy due to the fact its inputs are models.
For this reason, we choose an approach that aims at testing
model transformations.

The testing process is basically composed of two stages
which generate model fragments of the desired metamodel
and scores their coverage by test models. If the coverage is
low, the test analyst must design more test models. Otherwise,
it is possible to assert if the target models are being correctly
generated by the model transformations.

We are now in phase of model fragments generation. Then
we are going to design a set of test models to obtain their
coverage on the respective metamodel. At last, with a robust
test set, we will be able to see if the model transformation is
reliable.

ACKNOWLEDGMENT

The authors would like to thank RobustWeb project and
CAPES for supporting this study.

REFERENCES

[1] E. Dustin, J. Rashkaand, and J. Paul,Automated software testing: intro-
duction, management and performance. Addison-Wesley Professional,
1999.

[2] R. Ramler and K. Wolfmaier, “Economic perspectives in test automation:
Balancing automated and manual testing with opportunity cost,” in AST
’06 Proceedings of the 2006 International Workshop on Automation of
Software Test, 2006, pp. 85–91.

[3] F. Fleurey, B. Baudry, P. Muller, and Y. Traon, “Qualifying input test
data for model transformations,”Software and Systems Modeling, vol. 8,
no. 2, pp. 185–203, 2009.

[4] M. Hulsbusch, B. Konig, A. Rensink, M. Semenyak, C. Soltenborn, and
H. Wehrheim, “Full semantics preservation in model transformation a
comparison of proof techniques,” University of Twente, The Netherlands,
Tech. Rep. 70058, 2010.

[5] A. Javed, P. Strooper, and G. Watson, “Automated generation of test cases
using model-driven architecture,” inAST ’07 Proceedings of the Second
International Workshop on Automation of Software Test, 2007, pp. 3–9.


